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Abstract

The power fallacy refers to the misconception that what holds on average –across an

ensemble of hypothetical experiments– also holds for each case individually. According to

the fallacy, high-power experiments always yield more informative data than do low-power

experiments. Here we expose the fallacy with concrete examples, demonstrating that a

particular outcome from a high-power experiment can be completely uninformative,

whereas a particular outcome from a low-power experiment can be highly informative.

Although power is useful in planning an experiment, it is less useful—and sometimes even

misleading—for making inferences from observed data. To make inferences from data, we

recommend the use of likelihood ratios or Bayes factors, which are the extension of

likelihood ratios beyond point hypotheses. These methods of inference do not average over

hypothetical replications of an experiment, but instead condition on the data that have

actually been observed. In this way, likelihood ratios and Bayes factors rationally quantify

the evidence that a particular data set provides for or against the null or any other

hypothesis.
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A Power Fallacy

It is well known that psychology has a power problem. Based on an extensive

analysis of the literature, estimates of power (i.e., the probability of rejecting the null

hypothesis when it is false) range at best from 0.30 to 0.50 (Bakker, van Dijk, & Wicherts,

2012; Button et al., 2013; Cohen, 1990). Low power is problematic for several reasons.

First, underpowered experiments are more susceptible to the biasing impact of

questionable research practices (e.g., Bakker et al., 2012; Button et al., 2013; Ioannidis,

2005). Second, underpowered experiments are, by definition, less likely to discover

systematic deviations from chance when these exist. Third, as explained below,

underpowered experiments reduce the probability that a significant result truly reflects a

systematic deviation from chance (Button et al., 2013; Ioannidis, 2005; Sham & Purcell,

2014).

These legitimate concerns suggest that power is not only useful in planning an

experiment, but should also play a role in drawing inferences or making decisions based on

the collected data (Faul, Erdfelder, Lang, & Buchner, 2007). For instance, authors,

reviewers, and journal editors may argue that: (1) for a particular set of results of a

low-power experiment, an observed significant effect is not very diagnostic; or (2) for a

particular set of results from a high-power experiment, an observed non-significant effect

is very diagnostic (i.e., it supports the null hypothesis). However, power is a

pre-experimental measure that averages over all possible outcomes of an experiment, only

one of which will actually be observed. What holds on average, across a collection of

hypothetically infinite unobserved data sets, need not hold for the particular data set we

have collected. This difference is important, because it counters the temptation to dismiss

all findings from low-power experiments or accept all findings from high-power

experiments. Below we outline the conditions under which a low-power experiment is
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uninformative: when the only summary information we have is the significance of the

effect (i.e., p < α). When we have more information about the experiment, such as test

statistics or, better, the data set itself, a low-power experiment can be very informative.

A basic principle of science should be that inference is conditional on the available

relevant data (Jaynes, 2003). If an experiment has yet to be conducted, and many data

sets are possible, all possible data sets should be considered. If an experiment has been

conducted, but only summary information is available, all possible data sets consistent

with the summary information should be considered. But if an experiment has been

conducted, and the data are available, then only the data that were actually observed

should be incorporated into inference.

When Power is Useful for Inference

As Ioannidis and colleagues have emphasized, low power is of concern not only when

a non-significant result is obtained, but also when a significant result is obtained: “Low

statistical power (because of low sample size of studies, small effects, or both) negatively

affects the likelihood that a nominally statistically significant finding actually reflects a

true effect.” (Button et al., 2013, p. 1).

To explain this counter-intuitive fact, suppose that all that is observed from the

outcome of an experiment is the summary p < α (i.e., the effect is significant). Given that

it is known that p < α, and given that it is known that the power equals 1− β, what

inference can be made about the odds of H1 vs H0 being true? Power is the probability of

finding a significant effect when the alternative hypothesis is true, Pr (p < α | H1) and,

similarly, the probability of finding a significant effect when the null hypothesis is true

equals Pr (p < α | H0). For prior probabilities of true null hypotheses Pr (H0) and true
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alternative hypotheses Pr (H1), it then follows from probability theory that

Pr (H1 | p < α)

Pr (H0 | p < α)
=

Pr (p < α | H1)

Pr (p < α | H0)
× Pr (H1)

Pr (H0)

=
1− β
α
× Pr (H1)

Pr (H0)
.

(1)

Thus (1− β)/α is the extent to which the observation that p < α changes the prior odds

that H1 rather than H0 is true.

Bakker et al. (2012) estimated that the typical power in psychology experiments to

be 0.35. This means that if one conducts a typical experiment and observes p < α for

α = 0.05, this information changes the prior odds by a factor of .35/.05 = 7. This is a

moderate level of evidence (Lee & Wagenmakers, 2013, Chapter 7).1 When p < α for

α = 0.01, the change in prior odds is 0.35/0.01 = 35. This is stronger evidence. Finally,

when p < α for α = 0.005 (i.e., the threshold for significance recently recommended by

Johnson, 2013), the change in prior odds is 0.35/0.005 = 70. This level of evidence is an

order of magnitude larger than that based on the earlier experiment using α = 0.05. Note

that doubling the power to 0.70 also doubles the evidence.

Equation 1 highlights how power affects the diagnosticity of a significant result. It is

therefore tempting to believe that high-power experiments are always more diagnostic

than low-power experiments. This belief is false; with access to the data, rather than the

summary information that p < α, we can go beyond measures of diagnosticity such as

power. As Sellke, Bayarri, and Berger (2001, p. 64) put it: “(...) if a study yields

p = .049, this is the actual information, not the summary statement 0 < p < .05. The two

statements are very different in terms of the information they convey, and replacing the

former by the latter is simply an egregious mistake.”

Example 1: A Tale of Two Urns

Consider two urns that each contain ten balls. Urn H0 contains nine green balls and

one blue ball. Urn H1 contains nine green balls and one orange ball. You are presented
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with one of the urns and your task is to determine the identity of the urn by drawing balls

from the urn with replacement. Unbeknownst to you, the urn selected is urn H1.

In the first situation, you plan an experiment that consists of drawing a single ball.

The power of this experiment is defined as

Pr (reject H0 | H1) = Pr (“draw orange ball” | H1) = 0.10. This power is very low.

Nevertheless, when the experiment is carried out you happen to draw the orange ball.

Despite the experiment having very low power, you were lucky and obtained a decisive

result. The experimental data permit the completely confident inference that you were

presented with urn H1.

In the second situation, you may have the time and the resources to draw more balls.

If you draw N balls with replacement, the power of your experiment is 1− (0.9)N . You

desire 90% power and therefore decide in advance to draw 22 balls. When the experiment

is carried out you happen to draw 22 green balls. Despite the experiment having high

power, you were unlucky and obtained a result that is completely uninformative.

Example 2: The t-Test

Consider the anomalous phenomenon of retroactive facilitation of recall (Bem, 2011;

Galak, LeBoeuf, Nelson, & Simmons, 2012; Ritchie, Wiseman, & French, 2012). The

central finding is that people recall more words when these words are to be presented

again later, following the test phase. Put simply, people’s recall performance is influenced

by events that have yet to happen. In the design used by Bem (2011), each participant

performed a standard recall task followed by post-test practice on a subset of the words.

For each participant, Bem computed a “precognition score”, which is the difference in the

proportion of correctly recalled items between words that did and did not receive post-test

practice.

Suppose that a researcher, Dr. Z, tasks two of her students to reproduce Bem’s
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Experiment 9 (Bem, 2011). Dr. Z gives the students the materials, but does not specify

the number of participants that each should obtain. She intends to use the data to test

the null hypothesis against a specific effect size consistent with Bem’s results. As usual,

the null hypothesis states that effect size is zero (i.e., H0 : δ = 0), whereas the alternative

hypothesis states that there is a specific effect (i.e., H1 : δ = δa). Dr. Z chooses δa = 0.3, a

result consistent with the data reported by Bem (2011), and plans to use a one-sided t test

for her analysis.

A Likelihood Ratio Analysis

The two students, A and B, set out to replicate Bem’s findings in two experiments.

Student A is not particularly interested in the project and does not invest much time,

obtaining only 10 participants. The power of A’s experiment is 0.22, which is quite low.

Student A sends the data to Dr. Z, who is quite disappointed in the student; nevertheless,

when Dr. Z carries out her analysis the t value she finds is 5.0 (p = .0004).2

Figure 1A shows the distribution of p under the null and alternative hypotheses.

Under the null hypothesis, the distribution of p is evenly spread across the range of

possible p values (horizontal blue line). Under the alternative that the effect size is

δa = 0.3, however, p values tend to gather near 0 (upper red curve). The low power of the

experiment can be seen by comparing the area under the null hypothesis’ blue line to the

left of p = 0.05 with that under the alternative’s red curve; the area is only 4.4 times

larger.

However, for the observed p value, the information is greater. We can compute the

likelihood ratio of the observed data by noting the relative heights of the densities at the

observed p value (vertical dashed line). The probability of the observed p value under the

alternative is 9.3 times higher under the alternative hypothesis than under the null

hypothesis. Although not at all decisive, this level of evidence is generally considered
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substantial (Jeffreys, 1961, Appendix B). The key point is that it is possible to obtain

informative results from a low-power experiment, even though this was unlikely a priori.

Student B is more excited about the topic than Student A, working hard to obtain

100 participants. The power of Student B’s experiment is 0.91, which is quite high. Dr. Z

is considerably happier with Student B’s work, correctly reasoning that Student B’s

experiment is likely to be more informative than Student A’s. When analyzing the data,

however, Dr. Z observes a t value of 1.7 (p = 0.046).3

Figure 1B shows the distribution of p under the null and alternative hypotheses. As

before, the distribution of p is uniform under the null hypothesis and right-skewed under

the the alternative that the effect size is δa = 0.3. The high power of the experiment can

be seen by comparing the area under the null hypothesis’ blue line to the left of p = 0.05

with that under the alternative’s red curve; the area is 18.2 times larger.

However, for the observed p value, the information is almost completely

uninformative, as the probability of the observed p value under the alternative is only 1.83

times higher under the alternative hypothesis than under the null hypothesis. The key

point is that it is possible to obtain uninformative results from a high-power experiment,

even though this was unlikely a priori.

A Bayes Factor Analysis

For the above likelihood ratio analysis we compared the probability of the observed

p value under the null hypothesis H0 : δ = 0 versus the alternative hypothesis

H1 : δ = δa = 0.3. The outcome of this analysis critically depends on knowledge about the

true effect size δa. Typically, however, researchers are uncertain about the possible values

of δa. This uncertainty is explicitly accounted for in Bayesian hypothesis testing (Jeffreys,

1961) by quantifying the uncertainty in δa through the assignment of a prior distribution.

The addition of the prior distribution means that instead of a single likelihood ratio, we
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use a weighted average likelihood ratio, known as the Bayes factor. In other words, the

Bayes factor is simply a likelihood ratio that accounts for the uncertainty in δa.

More concretely, in the case of the t test example above, the likelihood ratio for

observed data Y is given by

LR10 =
p (Y | H1)

p (Y | H0)
=
tdf, δa

√
N (tobs)

tdf (tobs)
, (2)

where tdf, δ
√
N (tobs) is the ordinate of the non-central t-distribution and tdf (tobs) is the

ordinate of the central t-distribution, both with df degrees of freedom and evaluated at

the observed value tobs. To obtain a Bayes factor, we then assign δa a prior distribution.

One reasonable choice of prior distribution for δa is the default standard Normal

distribution, H1 : δa ∼ N (0, 1), which can be motivated as a unit-information prior

(Gönen, Johnson, Lu, & Westfall, 2005; Kass & Raftery, 1995). This prior can be adapted

for one-sided use by only using the positive half of the normal prior (Morey &

Wagenmakers, 2014). For this prior, the Bayes factor is given by

B10 =
p (Y | H1)

p (Y | H0)

=

∫
p (tobs | δa)p (δa | H1) dδa

p (t | δ = 0)

=

∫
tdf, δa

√
N (tobs)N+(0, 1) dδa

tdf (tobs)

=

∫
LR10(δa)N+(0, 1) dδa. (3)

where N+ denotes a normal distribution truncated below at 0.

Still intrigued by the phenomenon of precognition, and armed now with the ability

to calculate Bayes factors, Dr. Z conduct two more experiments. In the first experiment,

she again uses 10 participants. Assuming the same effect size δa = 0.3, the power of this

experiment is still 0.22. The experiment nevertheless yields t = 3.0 (p = .007). For these

data, the Bayes factor equals B10 = 12.4, which means that the observed data are 12.4
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times more likely to have occurred under H1 than under H0. This is a non-negligible level

of evidence in support of H1, even though the experiment had only low power.

In the second experiment, Dr. Z again uses 100 participants. The power of this

experiment is 0.91, which is exceptionally high, as before. When the experiment is carried

out she finds that t = 2.0 (p = 0.024). For these observed data, the Bayes factor equals

B10 = 1.38, which means that the observed data are only 1.38 times more likely to have

occurred under H1 than under H0. This level of evidence is nearly uninformative, even

though the experiment had exceptionally high power.

In both examples described above, the p value happened to be significant at the .05

level. It may transpire, however, that a nonsignificant result is obtained and a power

analysis is then used to argue that the nonsignificant outcome provides support in favor of

the null hypothesis. The argument goes as follows: “We conducted a high-power

experiment and nevertheless we did not obtain a significant result. Surely this means that

our results provide strong evidence in favor of the null hypothesis.” As a counterexample,

consider the following scenario. Dr. Z conducts a third experiment, once again using 100

participants for an exceptionally high power of 0.91. The data yield t = 1.2 (p = .12). The

result is not significant, but neither do the data provide compelling support in favor of H0:

the Bayes factor equals B01 = 2.8, which is a relatively uninformative level of evidence.

Thus, even in the case that an experiment has high power, a non-significant result is not,

by itself, compelling evidence for the null hypothesis. As always, the strength of the

evidence will depend on both the sample size and the closeness of the observed test

statistic to the null value.

The likelihood ratio analyses and the Bayes factor analyses both require that

researchers specify an alternative distribution. For a likelihood ratio analysis, for instance,

the same data will carry different evidential impact when the comparison involves

H1 : δa = 0.3 than when it involves H1 : δa = 0.03. We believe the specification of an
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acceptable H1 is a modeling task like any other, in the sense that it involves an informed

choice that can be critiqued, probed, and defended through scientific argument. More

importantly, the power fallacy is universal in the sense that it does not depend on a

specific choice of H1; the scenarios sketched here are only meant as concrete examples to

illustrate the general rule.

Conclusion

On average, high-power experiments yield more informative results than low-power

experiments (Button et al., 2013; Cohen, 1990; Ioannidis, 2005). Thus, when planning an

experiment, it is best to think big and collect as many observations as possible. Inference

is always based on the information that is available, and better experimental designs and

more data usually provide more information.

However, what holds on average does not hold for each individual case. With the

data in hand, statistical inference should use all of the available information, by

conditioning on the specific observations that have been obtained (Berger & Wolpert,

1988; Pratt, 1965). Power is best understood as a pre-experimental concept that averages

over all possible outcomes of an experiment, and its value is largely determined by

outcomes that will not be observed when the experiment is run. Thus, when the actual

data are available, a power calculation is no longer conditioned on what is known, no

longer corresponds to a valid inference, and may now be misleading.

Consequently, as we have demonstrated here, it is entirely possible for low-power

experiments to yield strong evidence, and for high-power experiments to yield weak

evidence. To assess the extent to which a particular data set provides evidence for or

against the null hypothesis, we recommend that researchers use likelihood ratios or Bayes

factors. After a likelihood ratio or Bayes factor has been presented, the demand of an

editor, the suggestion of a reviewer, or the desire of an author to interpret the relevant
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statistical evidence with the help of power is superfluous at best and misleading at worst.
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Footnotes

1While odds lie on a naturally meaningful scale calibrated by betting, characterizing

evidence through verbal labels such as “moderate” and “strong” is necessarily subjective

(Kass & Raftery, 1995). We believe the labels are useful because they facilitate scientific

communication, but they should only be considered an approximate descriptive

articulation of different standards of evidence.

2In order to obtain a t value of 5 with a sample size of only 10 participants, the

precognition score needs to have a large mean or a small variance.

3In order to obtain a t value of 1.7 with a sample size of 100, the the precognition

score needs to have a small mean or a high variance.
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Figure Captions

Figure 1. A dissociation between power and evidence. The panels show distributions of p

values under the null hypothesis (horizontal blue line) and alternative hypothesis (red

curve) in Student A’s and B’s experiments, restricted to p < 0.05 for clarity. The vertical

dashed line represents the p value found in each of the two experiments. The experiment

from Student A has low power (i.e., the p-curve under H1 is similar to that under H0) but

nonetheless yields an informative result; the experiment from Student B has high power

(i.e., the p-curve under H1 is dissimilar to that under H0) but nonetheless yields an

uninformative result.
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