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The Need for Bayesian Hypothesis Testing in Psychological

Science

Mike is an honest, hard-working graduate student at a respectable psychology

department somewhere in the Mid-West. Mike’s thesis centers on the unconscious

processing of fear-inducing stimuli. Mike is well aware of the recent crisis of confidence in

psychology (Pashler & Wagenmakers, 2012), a crisis brought about by a toxic mix of

fraud, questionable research practices (John, Loewenstein, & Prelec, 2012; Simmons,

Nelson, & Simonsohn, 2011), lack of data sharing (Wicherts, Borsboom, Kats, &

Molenaar, 2006), publication bias (Francis, 2013), and a blurred distinction between

statistical analyses that are pre-planned and post-hoc (De Groot, 1956/2014;

Wagenmakers, Wetzels, Borsboom, van der Maas, & Kievit, 2012).

Undeterred, Mike sets out to conduct his own research according to the highest

standards. He immerses himself in the relevant literature and after some thought devises

the “Abstract Unconscious Fear Processing” (AUFP) theory, which predicts that due to

the way the brain processes certain stimuli, there are abstract patterns of shapes that

when processed only unconsciously, will produce a very high fear response. The AUFP

theory makes three specific predictions about processing of fear-inducing stimuli. The first

prediction is that when these special, abstract shapes are simply shown to participants,

they will be only mildly more disliked than similar, but non-AUFP, stimuli. The second

prediction is that when the stimuli are shown in a dual-task scenario (where participants

are required to perform two tasks simultaneously), AUFP stimuli will produce a moderate

fear-related physiological response due to the occasional lapses of conscious attention to

the stimuli. The third prediction is that when presented to the participants in a hypnotic

state, the physiological response will be very large compared with non-AUFP stimuli.

Mike proceeds to test each of the three predictions in a separate experiment, each



Bayesian Hypothesis Testing 3

with 25 participants receiving AUFP stimuli and 25 participants receiving non-AUFP

stimuli. To counteract hindsight bias and HARKing (Hypothesizing After the Results are

Known; De Groot, 1956/2014; Kerr, 1998), Mike first preregisters each experiment on the

Open Science Framework (Open Science Collaboration, 2012), detailing in advance his

entire analysis plan including criteria for excluding outliers and transformations of

dependent variables. Mike then collects the data and conducts the planned statistical

analyses. The results show that p = .04 in all three experiments; none of the 95%

confidence intervals for effect size overlap with zero. Consequently, Mike concludes that in

each of the experiments the results are significant, the null hypothesis can be rejected, the

effects are present, and the data support Mike’s AUFP theory. His peers congratulate

Mike on his exemplary academic conduct, and the party to celebrate the significant results

lasts well into the night. Mike later manages to publish the findings in Psychological

Science, earning Open Science badges for “Open Materials”, “Open Data”, and

“Preregistration” along the way.

Mike has done almost everything right, and in many ways his research is a blueprint

that all studies in experimental psychology should seek to emulate: no questionable

research practices, no confusion between exploratory and confirmatory research, and

almost perfect transparency in methodology and data.1 Nevertheless, as we explain below

in detail, Mike’s conclusions are based on flimsy evidence. Hence, Mike’s findings run the

risk of being spurious, polluting the field and setting back research in his field several

years. Mike’s party, we suggest, was wholly premature.

The goal of this chapter is twofold. Our main goal is to explain why the logic

behind p value significance tests is faulty, leading researchers to mistakenly believe that

their results are diagnostic when they are not. Our secondary goal is to outline a Bayesian

alternative that overcomes the flaws of the p value procedure, and provides researchers

with an honest assessment of the evidence against or in favor of the null hypothesis.
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The Logic of p Values: Fisher’s Disjunction

Almost without exception, psychologists seek to confirm the veracity of their

findings using the statistical method of null hypothesis significance testing (NHST). In

this method, first proposed by Sir Ronald Aylmer Fisher (1890-1962), one puts forward a

null hypothesis that represents the absence of the effect of interest. The inadequacy of this

null hypothesis is then considered evidence for the presence of the effect. Hence, the core

idea behind NHST is similar to a proof by contradiction: to show that A holds, one

hypothesizes the opposite (i.e., not-A), and demonstrates that this situation is impossible

(or, in NHST, unlikely).

The inadequacy of the null hypothesis is measured through the infamous p value

(Nuzzo, 2014). The p value is the probability of encountering the value of a test statistic

at least as extreme as the one that was observed, given that the null hypothesis is true. In

other words, the p value captures the extremeness of the data under the null hypothesis.

Extreme results –usually, p values smaller than a threshold of .05– are cause to reject the

null hypothesis. Indeed, as proposed by Fisher, the p value quantifies “the strength of the

evidence against the [null] hypothesis” (Fisher, 1958, p. 80); when p = .001 this is more

compelling evidence against the null hypothesis than when p = .049.2

As discussed in Wagenmakers (2007), some authors have given explicit guidelines

with respect to the evidential interpretation of the p value. For instance, Burdette and

Gehan (1970, p. 9) associated specific ranges of p values with varying levels of evidence

(see also Wasserman, 2004, p. 157): When p > .1 this yields “little or no real evidence

against the null hypothesis”; .05 < p < .1 implies “suggestive evidence against the null

hypothesis”; .01 < p < .05 yields “moderate evidence against the null hypothesis”; and

p < .01 constitutes “very strong evidence against the null hypothesis”.

The logic that underlies the p value as a measure of evidence is based on what is

known as Fisher’s disjunction. According to Fisher, a low p value indicates either that an
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exceptionally rare event has occurred or that the null hypothesis is false. The next section

shows that this logic is not as compelling as it appears at first glance.

The Illogic of p Values

Despite their dominance in scientific practice, p values have been criticized on many

counts (for reviews see Berger & Wolpert, 1988; Nickerson, 2000; Wagenmakers, 2007).

Here we focus on an inherent weakness of p values: the fact that they depend only on

what is expected under the null hypothesis H0 — what is expected under an alternative

hypothesis H1 is simply not taken into consideration. As we will see below, this omission

disqualifies the p value as a measure of evidence.

To the best of our knowledge, this general critique was first put forward by Gosset,

the inventor of the t test, who wrote Egon Pearson in 1926 and argued that “...an observed

discrepancy between a sample mean and a hypothesized population mean ‘doesn’t in itself

necessarily prove that the sample was not drawn randomly from the population even if the

chance is very small, say .00001: what it does is to show that if there is any alternative

hypothesis which will explain the occurrence of the sample with a more reasonable

probability, say .05...you will be very much more inclined to consider that the original

hypothesis is not true’ (Gosset[1926], quoted in Pearson, 1938)” (Royall, 1997, p. 68).

This critique was echoed by Berkson (1938, p. 531): “My view is that there is never

any valid reason for rejection of the null hypothesis except on the willingness to embrace

an alternative one. No matter how rare an experience is under a null hypothesis, this does

not warrant logically, and in practice we do not allow it, to reject the null hypothesis if,

for any reasons, no alternative hypothesis is credible.” (italics in orginal).

To appreciate the logical validity of the Gosset-Berkson critique, it is important to

recognize that Fisher’s disjunction is similar to the modus tollens argument in deductive

reasoning. In abstract form, this syllogistic argument proceeds as follows:



Bayesian Hypothesis Testing 6

(Premise) If A, then B;

(Premise) not B;

(Conclusion) not A.

A specific example is the following:

(Premise) If Mark has been hanged, then he is dead;

(Premise) Mark is alive;

(Conclusion) Mark has not been hanged.

Fisher’s disjunction is of the same form, and as cast below, it is logically valid:

(Premise) If H0, then not y;

(Premise) y;

(Conclusion) not H0.

Henceforth, we will use y to denote the observed data; in the NHST syllogism

above, one summarizes y by the p value, integrating over more extreme outcomes that

have not been observed. For the discussion in this chapter, the distinction is irrelevant

(but see Berger & Wolpert, 1988 for scenarios where the distinction is relevant).

For deductive reasoning then, Fisher’s disjunction is a valid case of modus tollens.

However, statistical inference is probabilistic, and therefore Fisher’s disjunction is really of

the following form:

(Premise) If H0, then y very unlikely;

(Premise) y;

(Conclusion) H0 very unlikely.

But this probabilistic version of modus tollens, however, is not logically valid. To see

this, consider the following non-sequiturs; first, an example suggested by Pollard and

Richardson (1987):
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(Premise) If Tracy is an American then it is very unlikely that

she is a US congresswoman;

(Premise) Tracy is a US congresswoman;

(Conclusion) It is very likely that Tracy is not an American.

Of course, the conclusion should be that Tracy is an American – if she were not it

would be impossible for her to be a US congresswoman. Another example is inspired by

Beck–Bornholdt and Dubben (1996):

(Premise) If an individual is a man, he is unlikely to be the Pope;

(Premise) Francis is the Pope;

(Conclusion) Francis is probably not a man.

One final example:

(Premise) If John does not have ESP, then he probably will not make money

at the casino tonight;

(Premise) John made money at the casino tonight;

(Conclusion) John probably has ESP.

The fact that the typical reasoning from Fisher’s disjunction is logically invalid is

well-known (e.g., Beck–Bornholdt & Dubben, 1996; Cohen, 1994; Cortina & Dunlap, 1997;

Falk & Greenbaum, 1995; Falk, 1998; Pollard & Richardson, 1987; Krämer & Gigerenzer,

2005; Rouder, Morey, Verhagen, Province, & Wagenmakers, 2014; Schneider, 2014; but see

Edwards, 1996; Hagen, 1997, 1998; for a review see Nickerson, 2000). Surely there must be

a way of reasoning in situations of uncertainty that is logically valid. In the next section,

we present a generalization of propositional logic that can be used for just this purpose.
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Generalizing Logic: The Bayesian Perspective

Consider observed data y, a null hypothesis H0, and an alternative hypothesis H1.

The first two premises in the modus tollens NHST argument state that p(y | H0) is low.

What we would like is a method of using the premises we have to make a statement about

the plausibility of the hypothesis, given the data. If the plausibility is sufficiently low, we

can reject H0. The central question is: what are the laws of plausibility?

Cox (1946) showed that given three simple axioms –including one that requires the

laws of plausibility to be generalizations of propositional logic –the laws of plausibility are

precisely the laws of probability. Our target for inference is p(H0 | y), which represents the

plausibility of H0 given the observed data. Assume one is reluctant to reject H0 when it

has considerable plausibility, that is, when p(H0 | y) is relatively high. Since the laws of

plausibility are the laws of probability, we know that

p(H0 | y) =
p(y | H0)p(H0)

p(y | H0)p(H0) + p(y | H1)p(H1)
, (1)

by Bayes’ theorem, which forms the foundation for Bayesian statistics.

As expected, when y is an impossibility under H0, Equation 1 reproduces the result

from deterministic syllogistic reasoning: when p(y | H0) equals zero then so will p(H0 | y).

However, when y is merely improbable rather than impossible, the a posteriori plausibility

of H0 depends crucially on (1) the prior plausibility of H0 (cf. the ESP example above);

and (2) p(y | H1), that is, the unlikeliness of the data under the alternative hypothesis (cf.

the US congress example above). In the words of Sellke, Bayarri, and Berger (2001, p.

64-65): “The clear message is that knowing that the data are ‘rare’ under H0 is of little

use unless one determines whether or not they are also ‘rare’ under H1.”

At this point, those invested in NHST may interject that the syllogistic

counter-examples are far-fetched, that science does not necessarily have to use logical rules

for inference, and that –from a practical point of view– the negative consequences of using
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p values are overstated. The next section intends to demonstrate with a concrete example

that such counterarguments fall flat: the drawbacks of p values are real and noticeable

even in standard, run-of-the-mill statistical paradigms.

A Concrete Example: Results from AUFP Re-examined

The practical ramifications of p value logic are apparent from Mike’s AUFP research

discussed in the first paragraphs of this chapter. Recall that Mike tested 25 participants

with AUFP stimuli and 25 participants with non-AUFP stimuli. In each of the

experiments, the dependent measure was assumed to be approximately normally

distributed, and therefore the adequacy of the null hypothesis H0 : δ = 0 (i.e., AUFP and

non-AUFP stimuli do not differ on the dependent measure) was assessed using a

two-tailed, unpaired t test. In each experiment, the result was t(48) = 2.11, p = .04. The

95% confidence interval for δ ranges from .03 to 1.16 and does not overlap with zero.

The statistical outcomes of each experiment are displayed in the three right-hand

panels of Figure 1. In each panel, the solid line indicates the t distribution that is

expected under H0, and the gray vertical line indicates the test statistic that was observed

in the experiment. For all three experiments, the observed test statistic is in the 98th

percentile and can therefore be considered relatively extreme, given that H0 holds. Hence,

it appears that in all three experiments, the data provide ample justification to reject H0,

a line of reasoning that pervades current-day statistical reasoning in all empirical

disciplines including psychology.

However, consider what happens when we add, for each experiment, the

expectations based on a plausible alternative hypothesis H1, the hypothesis that the p

value ignores. The top two panels of Figure 1 feature an alternative hypothesis for

Experiment 1 (i.e., the test that AUFP stimuli are liked somewhat less than non-AUFP

stimuli when simply shown). This alternative hypothesis is characterized by a relatively
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small effect size: H1 : δ = .15. In the top right panel, the dotted line shows the

expectation for the test statistic under this alternative hypothesis. The top left panel

illustrates what this means in terms of the population difference between participants

viewing AUFP stimuli and those viewing non-AUFP stimuli. It is immediately apparent

that, even if AUFP stimuli are more disliked than non-AUFP stimuli, the predicted

differences are relatively small. Hence, the observed p value is not diagnostic; the top right

panel of Figure 1 shows that the observed data y are almost as likely to have occurred

under H0 as under H1. The likelihood ratio (i.e., the ratio of the ordinates of the two

distributions at the point of the observed test statistic) is only 2.56.

The two middle panels feature an alternative hypothesis for Experiment 2 (i.e., the

test that AUFP causes moderate physiological responses in dual-task scenarios) that is a

little more extreme: H1 : δ = .60. The middle left panel illustrates what this means in

terms of the population difference between participants viewing AUFP stimuli and those

viewing non-AUFP stimuli. The middle right panel shows that the observed data are now

clearly more likely under H1 than under H0; the likelihood ratio is 8.61. Note that under

H1 : δ = .60 the expectation is at its peak for the observed test statistic. Under any other

alternative hypothesis, the peak expectation shifts away from the observed test statistic.

Consequently, considered across all possible alternative hypotheses H1 : δ = x, the

maximum likelihood ratio is achieved for H1 : δ = .60. In other words, suppose a

researcher reports a likelihood ratio and is motivated to present the null hypothesis in the

least favorable light. The researcher cheats and cherry-picks the alternative hypothesis

that maximizes the likelihood ratio; the alternative hypothesis of choice is H1 : δ = .60,

where the expectation peaks at the observed test statistic and the likelihood ratio equals

8.61.

The bottom panels feature an alternative hypothesis for Experiment 3 (i.e., the test

that AUFP causes large physiological responses when participants are in a hypnotic state)
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that is relatively extreme: H1 : δ = 2.0. The bottom left panel illustrates what this means

in terms of the population difference between participants viewing AUFP stimuli and

those viewing non-AUFP stimuli. Surprisingly perhaps, the bottom right panel shows that

the observed data are now more likely under H0 than under H1, even though p = .04.

How can this be? As indicated by the solid curve, the null hypothesis H0 : δ = 0 predicts t

values that are relatively small; as indicated by the dashed curve, the alternative

hypothesis H1 : δ = 2.0 predicts t values that are relatively high. The observed t value

(indicated by the gray line) falls somewhere in between these two expectations, but is

more consistent with H0 than it is with H1. In other words, the observed data are

somewhat rare under the null hypothesis (as indicated by p = .04), but they are more rare

under the alternative hypothesis H1 : δ = 2.0. This difference in rarity is quantified by a

likelihood ratio that is 13, 867 in favor of H0. This result illustrates the phenomenon that

“(...) the more powerful the test, the more a just significant result favors the null

hypothesis.” (Pratt, 1961, p. 166).

This trio of p values highlights the importance of the alternative hypothesis; the

evidence is weak in all but the second experiment shown in the middle panel of Figure 1.

For the top and bottom panels, the data do not provide compelling evidence for AUFP;

hence, Psychological Science should not have accepted Mike’s paper, and the party

celebrating the results was uncalled for. This should be shocking: in all three experiments,

p = .04, the confidence intervals do not overlap with zero, and yet it is wholly premature

to reject the null hypothesis, for at least two out of the three experiments.

This is so important, so vital, that we repeat it here. All three of Mike’s

experiments yielded a significant result, p < .05, yet for only one of them did the

statistical evidence actually support his claim that the null hypothesis should be rejected

(albeit not as strongly as the p value may suggest). This occurs because the data may be

extreme under H0, but they are not likely under H1 either, and it is the balance between
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the two that provides the evidence. As noted by Edwards (1965, p. 402): “The trouble is

that in classical statistics the alternative hypothesis is essentially undefined, and so

provides no standard by means of which to judge the congruence between datum and null

hypothesis; hence the arbitrariness of the .05, .01, and .001 levels, and their lack of

agreement with less arbitrary measures of congruence. A man from Mars, asked whether

or not your suit fits you, would have trouble answering. He could notice the discrepancies

between its measurements and yours, and might answer no; he could notice that you did

not trip over it, and might answer yes. But give him two suits and ask him which fits you

better, and his task starts to make sense, though it still has its difficulties.”

The paradox is visualized in Figure 2: the referee is Fisherian, and, considering the

abysmal state of boxer H0, declares his opponent Ha the winner. To the audience,

however, it is clear that boxer Ha does not look too healthy either, and a decision based

only on the state of boxer H0 is irrational, premature, and potentially misleading.

The Bayesian Remedy

Implicit in the above discussion is that a more appropriate measure of evidence is

given by the likelihood ratio, that is, the relative plausibility of the observed data y

occurring under H1 versus H0: p(y | H1)/p(y | H0) (Royall, 1997). Unfortunately, it

happens rarely that we know H1 exactly (e.g., δ = .25 or δ = .30). However, we might

know H1 approximately – and when we are Bayesian, our uncertainty about the true value

of δ can be formalized using a probability distribution. This way we can define an

alternative hypothesis not by a single, specific effect size, but rather by a collection of

different effect sizes, weighted by their plausibility.

After assigning effect size a distribution, we wish to compute the overall evidence for

H0 : δ = 0 versus the “composite” alternative hypothesis H1 : δ ∼ f(·). This can be

accomplished by averaging the likelihood ratios over the distribution that has been
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assigned to effect size under H1 (e.g., Lee & Wagenmakers, 2013, Chapter 7). This

average likelihood, better known as the Bayes factor (Jeffreys, 1961), quantifies the extent

to which the data are more likely under H1 than under H0.

What remains is to choose a distribution for effect size under H1. This choice can

be guided by general desiderata such as scale invariance (i.e., the prior should result in the

same Bayes factor regardless of the unit of measurement) and model consistency (i.e., the

prior should give rise to a Bayes factor that asymptotically converges upon the true

model). Based on these and other desiderata, outlined in Bayarri, Berger, Forte, and

Garćıa-Donato (2012), an attractive prior for effect size is a Cauchy distribution3 with

scale 1. Of course, other choices are possible: a standard normal distribution, a Cauchy

distribution with smaller width, etc. Each choice corresponds to a different assumption

about the alternative hypothesis; consequently, each choice yields a different measures of

evidence, something that is already apparent from Figure 1. Researchers may check the

robustness of their conclusions by examining a range of prior distributions (Wagenmakers,

Wetzels, Borsboom, & van der Maas, 2011). As an example, consider again Mike’s data.

Table 1 shows the Bayes factors for different prior distributions on effect size.

For Mike’s data, the Cauchy(0,r = 1) prior yields BF10 = 1.45, indicating that the

data are about equally likely under H1 and H0. A similar conclusion (i.e., BF10 = 1.83)

follows when we halve the scale of the Cauchy distribution. A standard normal

distribution for effect size yields BF10 = 2.02. These different choices underscore the

robustness of the general conclusion: the data are not very informative. To explore the

upper limits of the evidence we can use “oracle priors”, distributions on effect size that are

informed by the data themselves. Specifically, an oracle prior is constructed by peaking at

the data and tinkering with the shape of the prior distribution until the results provide

the maximum possible support in favor of the alternative hypothesis. When it comes to

the assessment of evidence, data-based tinkering of the prior distribution amounts to
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nothing less than statistical cheating. Nevertheless, oracle priors serve a function because

they provide an upper bound on the evidence in favor of the alternative hypothesis – the

true level of evidence is necessarily less impressive than that obtained by cheating. In

particular, the “oracle width prior” cherry-picks the width of a normal distribution to

make the evidence in favor of H1 appear as strong as possible. This unrealistic prior yields

BF10 = 2.51 – despite cherry-picking the prior width, this evidence is still relatively weak.

An absolute upper bound on the evidence can be obtained by using a distribution that is

centered as a point on the most likely value (Edwards, Lindman, & Savage, 1963); this

“oracle point prior” yields BF10 = 8.61, the same as the likelihood ratio from the middle

panel of Figure 1.

Other, non-standard prior choices are possible as well. In particular, one may use

“non-local” priors that are centered away from zero. Such priors can be selected according

to formal rules (Johnson, 2013), constructed from the outcome of previous experiments

(Verhagen & Wagenmakers, in press), or be based on subjective considerations (Dienes,

2008). A discussion of such priors would take us too far afield.

In sum, Mike’s data are ambiguous – only for the oracle point prior is the Bayes

factor higher than 3, and in all other cases the evidence is anecdotal or “not worth more

than a bare mention” (Jeffreys, 1961, Appendix B). It is important to stress that, even

though different specifications of H1 lead to different answers, these answers are generally

much closer to each other than to the answer one obtains when the existence of H1

entirely ignored. As argued by Berger and Delampady (1987, p. 330): “(...) formal use of

P-values should be abandoned. Almost anything will give a better indication of the

evidence provided by the data against H0.”

An in-depth discussion of Bayesian hypothesis testing is beyond the scope of this

chapter, but relevant details can be found in Rouder, Speckman, Sun, Morey, and Iverson

(2009), Rouder, Morey, Speckman, and Province (2012), Rouder and Morey (2012),
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Wetzels and Wagenmakers (2012), Wetzels et al. (2011).

Concluding Comments

By means of several examples, we have tried to demonstrate that the current

method for measuring empirical “success” is dangerously lenient. By ignoring the

alternative hypothesis, researchers routinely overestimate the evidence against the null

hypothesis. An additional factor, one we could not discuss for reasons of brevity, is the a

priori plausibility of H0 versus H1. It matters whether H1 is “plants grow better when

people water them regularly” or “plants grow better when people pray for them

regularly”. Equation 1 shows that the same demonstration we gave here regarding the

impact of the alternative distribution could have been given regarding prior plausibility.

In the Bayesian framework, the relative prior plausibility of two models is given by

the prior model odds, p(H1)/p(H0). The prior model odds reflect a researcher’s

skepticism, and they can be used to quantify Carl Sagan’s dictum “extraordinary claims

require extraordinary evidence”.4 Specifically, one starts with prior model odds

p(H1)/p(H0); these are then updated by means of the Bayes factor p(y | H1)/p(y | H0) to

yield posterior model odds p(H1 | y)/p(H0 | y), which represent the relative plausibility of

two models after seeing the data y. The final belief state, therefore, is a compromise

between prior skepticism and evidence provided by the data. Hence, implausible claims

require more evidence from the data to reach an acceptable level of belief.

Exactly how to quantify initial skepticism is a subjective endeavour, one that most

researchers engage in only implicitly. One exception is Lykken (1968), who probed

clinicians’ opinion about the hypothesis that people with eating disorders are relatively

prone to unconsciously believe in the “cloacal theory of birth” (i.e., oral impregnation and

anal parturition).5 Of course, outside academia the quantification of prior beliefs is quite

popular, in particular where it concerns betting on outcomes of sports competitions and
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election results (Silver, 2012). But the assessment of initial skepticism can be useful even

when it defies exact quantification. For instance, when recent experimental work initially

suggested that neutrinos can travel faster than the speed of light, Drew Baden –chairman

of the physics department at the University of Maryland– compared its plausibility to that

of finding a flying carpet. It is difficult to quantify exactly how likely one is to find a flying

carpet these days, but it is clear that this initial skepticism is sufficiently large to warrant

attention. Similar considerations hold for the existence of extra-sensory perception

(Wagenmakers et al., 2011) and the effectiveness of alternative medicine compared to

placebo.

A classical statistician may object that we do not know about prior plausibility, or

about how to specify a reasonable alternative hypothesis, and that these uncomfortable

concepts are therefore best swept under the rug. We believe the classical statistician is

wrong on both counts: in most cases, it is possible to say something about prior

plausibility and alternative hypotheses –or at least conduct a sensitivity analyses to

explore the impact of model assumptions on inference– and it is misleading to ignore key

concepts that matter.

But if we assume with the classical statistician that it is possible that a researcher

truly has no information on which to build prior expectations, the implications are

staggering. This would mean that the researcher has absolutely no predictions about the

phenomenon under study. Any data –regardless of how outlandish– would be equally

expected by this researcher. An effect size of 1, 000, 000 would be equally as surprising as

an effect size of 0.5. Raising all observations to the 10th power would yield an equally

plausible data set as the one observed. We cannot think of any phenomenon about which

so little is known. If such a phenomenon did exist, surely one should not test any

hypothesis about it, because the meaning of such hypotheses would be questionable. The

conditions under which a hypothesis test would be meaningful presuppose the ability to



Bayesian Hypothesis Testing 17

construct predictions, and hence a reasonable alternative.

In sum, the current crisis of confidence was brought about not only by questionable

research practices and related mischief; below the radar, a contributing factor has been

the p value statistical analyses that are routinely conducted and generally considered

“safe”. The logic that underlies p values, however, is fundamentally flawed as it only

considers what can be expected under the null hypothesis. To obtain a valid measure of

evidence, psychologists have no choice but to turn to methods that are based on a

concrete specification of the alternative hypothesis: this may feel uncomfortable at first,

but it is the price that needs to be paid for inference that is reliable, honest, and fair.

Glossary

Alternative hypothesis. The alternative hypothesis (H1 or Ha) refers to the

proposition that the effect of interest is present. In classical statistics, this hypothesis is

either ignored, or specified as a single point (e.g., δ = .25); in Bayesian statistics, the

alternative hypothesis is often composite, covering a range of plausible values (i.e.,

δ ∼ N(0, 1)).

Bayes factor. The Bayes factor (BF10) is an average likelihood ratio that quantifies

the extent to which the data change the prior model odds to the posterior model odds.

When BF10 = 10, the observed data are 10 times more likely under the alternative

hypothesis H1 than under the null hypothesis H0; when BF10 = 1/5 the data are 5 times

more likely under H0 than under H1.

Fisher’s disjunction. According to Fisher, a low p value indicates either that an

exceptionally rare event has occurred or that the null hypothesis is false.

Likelihood ratio. The likelihood ratio quantifies the relative plausibility of the

observed data y under a specific alternative hypothesis H1 versus the null hypothesis H0:

p(y | H1)/p(y | H0). The likelihood ratio assumes that the alternative hypothesis is



Bayesian Hypothesis Testing 18

specified by a single point; when the alternative hypothesis is composite, the likelihood

ratio turns into a Bayes factor.

Modus tollens. In deductive reasoning, the modus tollens –also known as denying

the consequent– is a logically valid syllogistic argument of the following form: “If P, then

Q (first premise). Not Q (second premise). Therefore, not P (conclusion).”

Null hypothesis. The null hypothesis (H0) refers to the proposition that the effect of

interest is absent.

p value. In null hypothesis significance testing, the p value is the probability of

obtaining a test statistic at least as extreme as the one that was observed, assuming that

the null hypothesis is true and the data were generated according to a known sampling

plan.
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Footnotes

1Of course, Mike should have tested more participants. We chose the present

numbers because it made Figure 1 more appealing graphically; however, our arguments

and examples work for both small and large samples sizes.

2A competing statistical paradigm was proposed by Neyman and Pearson. For

details on the confusion between the two paradigms see Berger (2003), Christensen (2005),

Hubbard and Bayarri (2003). Here we focus on the paradigm proposed by Fisher because

it is more closely connected to the everyday practice of experimental psychologists.

3The Cauchy distribution is a t distribution with one degree of freedom. Compared

to the normal distribution, the Cauchy distribution has fatter tails.

4Earlier such statements are due to David Hume and Pierre-Simon Laplace.

5The clinicians did not buy it: the prior probability for the hypothesis ranged from

10−6 to 0.13, and the median was 0.01.
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Prior BF10 BF01

Cauchy(0, r = 1) 1.45 0.69

Cauchy(0, r = .5) 1.84 0.54

Normal(0,1) 2.03 0.49

Oracle width prior 2.52 0.40

Oracle point prior 8.61 0.12

Table 1

Bayes factors for different priors. BF01 = 1/BF10.
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Figure Captions

Figure 1. A trio of p values, showing that the diagnosticity of a significant result hinges on

the specification of the alternative hypothesis. Top panels: a significant result that is

ambiguous; middle panels: a significant result that is moderately informative; bottom

panels: a significant result that is evidence in favor of the null hypothesis. The left column

shows the population distribution under H1, and the right column shows the two relevant

sampling distributions (i.e., one under H0, the other under H1) of the test statistic for the

difference between 25 participants viewing AUFP stimuli and 25 participants viewing

non-AUFP stimuli.

Figure 2. A boxing analogy of the p value. By considering only the state of boxer H0, the

Fisherian referee makes an irrational decision. Figure downloaded from Flickr, courtesy of

Dirk-Jan Hoek.
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