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Abstract5

Harold Jeffreys pioneered the development of default Bayes factor hypoth-

esis tests for standard statistical problems. Using Jeffreys’s Bayes factor

hypothesis tests, researchers can grade the decisiveness of the evidence

that the data provide for a point null hypothesis H0 versus a composite

alternative hypothesis H1. Consequently, Jeffreys’s tests are of considerable

theoretical and practical relevance for empirical researchers in general and

for experimental psychologists in particular. To highlight this relevance and

to facilitate the interpretation and use of Jeffreys’s Bayes factor tests we

focus on two common inferential scenarios: testing the nullity of a normal

mean (i.e., the Bayesian equivalent of the t-test) and testing the nullity of

a correlation. For both Bayes factor tests, we explain their development,

we extend them to one-sided problems, and we apply them to concrete

examples from experimental psychology.
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Consider the common scenario where a researcher entertains two competing hypotheses.7
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One, the null hypothesisH0, is implemented as a statistical model that stipulates the nullity of1

a parameter of interest (i.e., µ = 0); the other, the alternative hypothesis H1, is implemented2

as a statistical model that allows the parameter of interest to differ from zero. How should3

one quantify the relative support that the observed data provide for H0 versus H1? Harold4

Jeffreys argued that this is done by assigning prior mass to the point null hypothesis (or5

“general law”) H0, and then calculate the degree to which the data shift one’s prior beliefs6

about the relative plausibility of H0 versus H1. The factor by which the data shift one’s7

prior beliefs about the relative plausibility of two competing models is now widely known as8

the Bayes factor, and it is arguably the gold standard for Bayesian model comparison and9

hypothesis testing (e.g., Berger, 2006; Lewis & Raftery, 1997; O’Hagan & Forster, 2004).10

In his brilliant monograph “Theory of Probability”, Jeffreys introduced a series of de-11

fault Bayes factor tests for common statistical scenarios. Despite their considerable theoretical12

and practical appeal, however, these tests are hardly ever used in experimental psychology13

and other empirical disciplines. A notable exception concerns Jeffreys’s equivalent of the14

t-test, which has recently been promoted by Jeffrey Rouder, Richard Morey, and colleagues15

(e.g., Rouder, Speckman, Sun, Morey, & Iverson, 2009). One of the reasons for the relative16

obscurity of Jeffreys’s default tests may be that a thorough understanding of “Theory of17

Probability” requires not only an affinity with mathematics but also a willingness to decipher18

Jeffreys’s non-standard notation.19

In an attempt to make Jeffreys’s default Bayes factor tests accessible to a wider audience20

we explain the basic principles that drove their development and then focus on two popular21

inferential scenarios: testing the nullity of a normal mean (i.e., the Bayesian t-test) and22

testing the nullity of a correlation. We illustrate Jeffreys’s methodology using data sets from23

psychological studies. The paper is organized as follows: The first section provides some24

historical background, outlines Jeffreys’s principles for scientific inference, and shows how the25

Bayes factor is a natural consequence of those principles. We decided to include Jeffreys’s26

own words where appropriate, so as to give the reader an accurate impression of Jeffreys’s27

ideas as well as his compelling style of writing. The second section outlines the ideas behind28

the Bayesian counterpart for the t-test, and the third section reinforces these ideas with a29
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similar analysis for the Bayesian correlation test. For both the t-test and the correlation test,1

we also derive one-sided versions of Jeffreys’s original tests. The fourth section concludes2

with a summary and a discussion.3

Life and Work4

Sir Harold Jeffreys was born 1891 in County Durham, United Kingdom, and died 1989 in5

Cambridge. Jeffreys first earned broad academic recognition in geophysics when he discovered6

the earth’s internal structure (Bolt, 1982; Jeffreys, 1924). In 1946, Jeffreys was awarded the7

Plumian Chair of Astronomy, a position he held until 1958. After his “retirement” Jeffreys8

continued his research to complete a record-breaking 75 years of continuous academic service9

at any Oxbridge college, during which he was awarded medals by the geological, astronomical,10

meteorological, and statistical communities (Cook, 1990; Huzurbazar, 1991; Lindley, 1991;11

Swirles, 1991). His mathematical ability is on display in the book “Methods of Mathematical12

Physics”, which he wrote together with his wife (Jeffreys & Jeffreys, 1946).13

Our focus here is on the general philosophical framework for induction and statistical in-14

ference put forward by Jeffreys in his monographs “Scientific Inference” (Jeffreys, 1931; second15

edition 1955, third edition 1973) and “Theory of Probability” (henceforth ToP; first edition16

1939, second edition 1948, third edition 1961). An extended modern summary of ToP is pro-17

vided by Robert, Chopin, and Rousseau (2009). Jeffreys’s ToP rests on a principled philosophy18

of scientific learning (ToP, Chapter I). In ToP, Jeffreys outlines his famous transformation-19

invariant “Jeffreys’s priors” (ToP, Chapter III) and then proposes a series of default Bayes fac-20

tor tests to grade the support that observed data provide for a point null hypothesis H0 versus21

a composite H1 (ToP, Chapter V). A detailed summary of Jeffreys’s contributions to statistics22

is available online at www.economics.soton.ac.uk/staff/aldrich/jeffreysweb.htm.23

For several decades, Jeffreys was one of only few scientists who actively developed,24

used, and promoted Bayesian methods. In recognition of Jeffreys’s persistence in the face25

of relative isolation, E. T. Jaynes’s dedication of his own book, “Probability theory: The26

logic of science”, reads: “Dedicated to the memory of Sir Harold Jeffreys, who saw the truth27

and preserved it” (Jaynes, 2003). In 1980, the seminal work of Jeffreys was celebrated in28
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the 29-chapter book “Bayesian Analysis in Econometrics and Statistics: Essays in Honor of1

Harold Jeffreys” (e.g., Geisser, 1980; Good, 1980; Lindley, 1980; Zellner, 1980). In one of its2

chapters, Dennis Lindley discusses ToP and argues that “The Theory is a wonderfully rich3

book. Open it at almost any page, read carefully, and you will discover some pearl.” (Lindley,4

1980, p. 37).15

Despite discovering the internal structure of the earth and proposing a famous rule6

for developing transformation-invariant prior distributions, Jeffreys himself considered his7

greatest scientific achievement to be the development of the Bayesian hypothesis test by8

means of default Bayes factors (Senn, 2009). In what follows, we explain the rationale behind9

Jeffreys’s Bayes factors and demonstrate their use for two concrete tests.10

Jeffreys’s Perspective on Inference11

Jeffreys developed his Bayes factor hypothesis tests as a natural consequence of his12

perspective on statistical inference, a perspective guided by principles and convictions inspired13

by Karl Pearson’s classic book The Grammar of Science and by the work of W. E. Johnson14

and Dorothy Wrinch. Without any claim to completeness or objectivity, here we outline four15

of Jeffreys’s principles and convictions that we find particularly informative and relevant.16

Jeffreys’s first conviction was that scientific progress depends primarily on induction17

(i.e., learning from experience). For instance, he states “There is a solid mass of belief reached18

inductively, ranging from common experience and the meanings of words, to some of the most19

advanced laws of physics, on which there is general agreement among people that have studied20

the data.” (Jeffreys, 1955, p. 276) and, similarly: “When I taste the contents of a jar labelled21

‘raspberry jam’ I expect a definite sensation, inferred from previous instances. When a musical22

composer scores a bar he expects a definite set of sounds to follow when an orchestra plays23

it. Such inferences are not deductive, nor indeed are they made with certainty at all, though24

they are still widely supposed to be.” (Jeffreys, 1973, p. 1). The same sentiment is stated25

more forcefully in ToP: “(...) the fact that deductive logic provides no explanation of the26

1Lindley’s statement resonates with our own experience, as evi-
denced in Wagenmakers, Lee, Rouder, and Morey (2014), available at
http://www.ejwagenmakers.com/submitted/AnotherStatisticalParadox.pdf.
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choice of the simplest law is an absolute proof that deductive logic is grossly inadequate to1

cover scientific and practical requirements” (Jeffreys, 1961, p. 5).2

Jeffreys’s second conviction is that in order to formalize induction one requires a logic3

of partial belief: “The idea of a reasonable degree of belief intermediate between proof and4

disproof is fundamental. It is an extension of ordinary logic, which deals only with the extreme5

cases.” (Jeffreys, 1955, p. 275). This logic of partial belief, Jeffreys showed, needs to obey6

the rules of probability calculus in order to fulfill general desiderata of consistent reasoning7

–hence, degrees of belief can be thought of as probabilities (cf. Ramsey, 1926).8

Jeffreys’s third conviction, developed together with Dr. Dorothy Wrinch, is the sim-9

plicity postulate (Wrinch & Jeffreys, 1921), that is, the notion that scientific hypotheses can10

be assigned prior plausibility in accordance with their complexity, such that “the simpler laws11

have the greater prior probabilities” (e.g., Jeffreys, 1961, p. 47; see also Jeffreys, 1973, p. 38).12

In the case of testing a point null hypothesis, the simplicity postulate expresses itself through13

the recognition that the point null hypothesis represents a general law and, hence, requires14

a separate, non-zero prior probability, which contrasts with the treatment of an estimation15

problem. In his early work with Wrinch, Jeffreys argued that inductive reasoning demands16

that general laws are assigned non-zero prior probability (Wrinch & Jeffreys, 1923). This is17

explained clearly and concisely by Jeffreys himself:18

“My chief interest is in significance tests. This goes back to a remark in19

Pearson’s Grammar of Science and to a paper of 1918 by C. D. Broad. Broad20

used Laplace’s theory of sampling, which supposes that if we have a population21

of n members, r of which may have a property φ, and we do not know r, the22

prior probability of any particular value of r (0 to n) is 1/(n+ 1). Broad showed23

that on this assessment, if we take a sample of number m and find them all with24

φ, the posterior probability that all n are φs is (m + 1)/(n + 1). A general rule25

would never acquire a high probability until nearly the whole of the class had been26

inspected. We could never be reasonably sure that apple trees would always bear27

apples (if anything). The result is preposterous, and started the work of Wrinch28

and myself in 1919–1923. Our point was that giving prior probability 1/(n+ 1) to29
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a general law is that for n large we are already expressing strong confidence that1

no general law is true. The way out is obvious. To make it possible to get a high2

probability for a general law from a finite sample the prior probability must have3

at least some positive value independent of n.” Jeffreys (1980, p. 452)4

Jeffreys’s fourth conviction was that classical “Fisherian” p-values are inadequate for5

the purpose of hypothesis testing. In the preface to the first edition of ToP, Jeffreys outlines6

the core problem: “Modern statisticians have developed extensive mathematical techniques,7

but for the most part have rejected the notion of the probability of a hypothesis, and thereby8

deprived themselves of any way of saying precisely what they mean when they decide be-9

tween hypotheses” (Jeffreys, 1961, p. ix). Specifically, Jeffreys pointed out that the p-value10

significance test “(...) does not give the probability of the hypothesis; what it does give is11

a convenient, though rough, criterion of whether closer investigation is needed.” (Jeffreys,12

1973, p. 49). Thus, by selectively focusing on the adequacy of predictions under the null hy-13

pothesis —and by neglecting the adequacy of predictions under the alternative hypotheses—14

researchers may reach conclusions that are premature (see also the Gosset-Berkson critique,15

Berkson, 1938; Wagenmakers et al., in press):16

“Is it of the slightest use to reject a hypothesis until we have some idea of what17

to put in its place? If there is no clearly stated alternative, and the null hypothesis18

is rejected, we are simply left without any rule at all, whereas the null hypothesis,19

though not satisfactory, may at any rate show some sort of correspondence with20

the facts.” (Jeffreys, 1961, p. 390).21

Jeffreys also argued against the logical validity of p-values, famously pointing out that22

they depend on more extreme events that have not been observed: “What the use of P implies,23

therefore, is that a hypothesis that may be true may be rejected because it has not predicted24

observable results that have not occurred. This seems a remarkable procedure.” (Jeffreys,25

1961, p. 385). In a later paper, Jeffreys clarifies this statement: “I have always considered26

the arguments for the use of P absurd. They amount to saying that a hypothesis that may or27

may not be true is rejected because a greater departure from the trial value was improbable;28
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that is, that it has not predicted something that has not happened.” (Jeffreys, 1980, p. 453).1

In sum, Jeffreys was convinced that induction is an extended form of logic; that this2

“logic of partial beliefs” needs to treat degrees of belief as probabilities; that simple laws3

or hypotheses require separate, non-zero prior probabilities, and that a useful and logically4

consistent method of hypothesis testing need to be comparative, and needs to be based on5

the data at hand rather then on data that were never observed. These convictions coalesced6

in Jeffreys’s development of the Bayes factor, an attempt to provide a consistent method of7

model selection and hypothesis testing that remedies the weaknesses and limitations inherent8

to p-value statistical hypothesis testing.9

The Bayes Factor10

The concept of Bayes factors is entirely general; in particular, Bayes factors may be11

used to gauge the evidence for multiple models that are structurally very different. Jeffreys,12

however, was mostly concerned with the simple scenario featuring two nested models: a13

model M0 that instantiates a general law, as a point null hypothesis, and a model M114

that instantiates the negation of the point null hypothesis, relaxing the restriction imposed15

by the law. For instance, for the correlation test, M0 : ρ = 0 –the law says that the16

correlation is absent– andM1 is defined by specifying a prior distribution on ρ, for instance,17

M1 : ρ ∼ U [−1, 1]. How should one grade the evidence that the observed data d provide for18

M0 versusM1?19

From Bayes’ rule it follows that the posterior probability for modelM0 is given by:20

P (M0 | d) = P (d | M0)P (M0)
P (d) , (1)

and similarly forM1:21

P (M1 | d) = P (d | M1)P (M1)
P (d) . (2)
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The above two expressions can be combined so that the common term P (d) drops out,1

and this yields the key expression:2

P (M1 | d)
P (M0 | d)︸ ︷︷ ︸

Posterior odds

= P (d |M1)
P (d |M0)︸ ︷︷ ︸

BF10

P (M1)
P (M0)︸ ︷︷ ︸
Prior odds

. (3)

This equation has three crucial ingredients. First, the prior odds quantifies the relative3

plausibility of M0 and M1 before observing data d. Most researchers enter experiments4

with prior knowledge, prior experiences, and prior expectations, and these can in principle5

be used to determine the prior odds. Jeffreys preferred the assumption that both models are6

equally likely a priori, such that P (M0) = P (M1) = 1/2. This is consistent with the Wrinch-7

Jeffreys simplicity postulate in the sense that prior mass 1/2 is assigned to a single point (e.g.,8

M0 : ρ = 0, the general law), and the remaining 1/2 is spread out over the values that are9

allowed for the unrestricted parameter (e.g., M1 : ρ ∼ U [−1, 1]). In general then, the prior10

odds quantify a researcher’s initial skepticism about the hypotheses under test. The second11

ingredient is the posterior odds, which quantifies the relative plausibility ofM0 andM1 after12

having observed data d. The third ingredient is the Bayes factor (Jeffreys, 1935): the extent13

to which data d update the prior odds to the posterior odds. The Bayes factor quantifies the14

relative probability of the observed data under each of the two competing hypotheses. For15

instance, when BF10 = 9, the observed data d are 9 times more likely to have occurred under16

M1 than under M0; when BF10 = .20, the observed data d are 5 times more likely to have17

occurred underM0 than underM1.18

In what follows, we will focus on the Bayes factor as a measure of the change in relative19

belief brought about by the data. However, this does not mean that the prior odds are20

irrelevant or that they can safely be ignored. For instance, in the context of decision making21

it is evident that the prior odds remain important, for in order to select the action with22

the highest expected utility across a collection of uncertain events or states of the world,23

utilities need to be combined with posterior probabilities, and posterior probabilities depend24

on prior probabilities (e.g., Lindley, 1985). Prior odds are also important when either M025
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or M1 is highly implausible. Laplace famously said that “The weight of evidence for an1

extraordinary claim must be proportioned to its strangeness.”, an adage that Carl Sagan2

shortened to “extraordinary claims require extraordinary evidence.” This idea is consistent3

with Equation 3 in the sense that if, say,M1 is an extraordinary claim, the prior odds would4

be very much in favor of M0, and the Bayes factor –the evidence from the data– needs to5

be very strong in order in to overcome the initial skepticism. Finally, prior odds are also6

important in situations that feature multiple comparisons, such as in neuroimaging or genetic7

association studies (e.g., Stephens & Balding, 2009).8

A deeper consideration of Equation 3 reveals that the Bayes factor is defined as the ratio9

of weighted likelihoods, that is, likelihoods averaged over the parameter space and weighted10

by the prior distribution. The law of total probability implies that P (d | Mi) =
∫
P (d |11

θ,Mi)P (θ | Mi) dθ, where θ denotes the parameter vector of model Mi. For a comparison12

between simple point hypotheses, integration is not required and the Bayes factor reduces to13

a ratio of likelihoods. However, in many casesM0 has additional “nuisance” parameters, and14

in general the alternative hypothesisM1 is defined as a composite hypotheses, with a prior15

distribution over its parameters. These prior distributions πi(θ) = P (θ |Mi) act as weighting16

functions for the likelihood P (d | θ); as we will discuss below, one of Jeffreys’s goals was17

to create default Bayes factors by using prior distributions that obeyed a series of general18

desiderata.19

Equation 3 also shows that the Bayes factor differs from the p-value in a number of20

fundamental ways. First, the Bayes factor depends on the relative probability of the observed21

data d, and probabilities for unobserved, more extreme data are irrelevant. Second, the Bayes22

factor features a comparison between two models, M0 and M1, instead of focusing only on23

one of the models. Third, the Bayes factor quantifies the relative degree of support that the24

observed data provide forM0 versusM1, and does so in a continuous fashion. In Appendix B25

of ToP, Jeffreys proposed a series of categories for evidential strength, labeling Bayes factors26

larger than 10 as “strong” evidence, and Bayes factors lower than 3 as anecdotal or “not worth27

more than a bare mention”. Jeffreys (1961, pp. 256-257) describes a Bayes factor of 5.33 as28

“odds that would interest a gambler, but would be hardly worth more than a passing mention29
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in a scientific paper”. This remark is still relevant because data for which p-values are larger1

than .01 (i.e., “p < .05, reject the null hypothesis”) generally do not pass this threshold of2

evidence (Berger & Delampady, 1987; Edwards, Lindman, & Savage, 1963; Johnson, 2013;3

Sellke, Bayarri, & Berger, 2001; Wetzels et al., 2011).4

Jeffreys’s Programme for the Development of the Default Bayes Factor5

In the work of Jeffreys that we discuss here, the Bayes factor comparison involves two6

models, the null hypothesisM0 and the alternative hypothesisM1. Each modelMi specifies7

how the data d relate to its parameters θi in terms of a likelihood function L(θi | d,Mi) which8

is averaged with respect to a prior distribution πi(θi) to yield P (d |Mi).9

The role of the prior distributions is important. Subjective Bayesians argue that the10

prior distributions should be constructed so as to reflect one’s prior beliefs – beliefs that11

differ from one substantive application to the next, and from one researcher to the next.12

In contrast, Jeffreys constructed the prior distributions methodically, in order to respect13

general desiderata about the discriminability of the competing models. The prior distributions14

proposed by Jeffreys are therefore based partly on the likelihood functions, that is, on the15

models under comparison. Jeffreys’s goal was to develop a test that could be used to quantify16

evidence across a broad range of applications; substantive knowledge can be added but the17

tests proposed by Jeffreys can still be useful as a point of reference. In recognition of Jeffreys’s18

methodical approach to constructing prior distributions we will henceforth refer to the prior19

distributions π0 and π1 as weighting functions.20

Furthermore, M0 is nested under M1, meaning that the parameters present in M021

are also present inM1. Jeffreys’s general approach was to set translation-invariant weighting22

functions π0 on the common parameters. This already completes the specification of M023

and allows the calculation of its weighted likelihood P (d |M0). What is left is the specifica-24

tion of the weighting function for the additional parameter that is present only in M1 (i.e.,25

the parameter of interest). This specification requires special care, as priors that too wide26

inevitably reduce the weighted likelihood, resulting in a preference for H0 regardless of the27

observed data.28
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To determine the test-relevant weighting function over the additional parameter, Jef-1

freys used arguments from hypothetical data that were either completely uninformative or2

infinitely precise. Given uninformative data d, the weighting function π1(θ1) should be chosen3

such that BF10 = 1. Given infinitely precise data d that show an effect, the weighting func-4

tion π1(θ1) should be chosen such that BF10 =∞. Table 1 summarizes the Bayes factor tests5

developed by Jeffreys in Chapter V of ToP. In the following two sections we clarify Jeffreys’s6

reasoning by discussing the development of the default Bayes factors for two scenarios that7

are particularly relevant for experimental psychology: testing the nullity of a normal mean8

and the testing the nullity of a correlation coefficient.9

Table 1:: Default Bayes factor hypothesis tests proposed by Jeffreys in Chapter V of ToP.

Tests Pages
Binomial rate 256 – 257
Simple contingency 259 – 265
Consistency of two Poisson parameters 267 – 268
Whether the true value in the normal law is zero, σ unknown 268 – 274
Whether a true value is zero, σ known 274
Whether two true values are equal, standard errors known 278 – 280
Whether two location parameters are the same, standard errors not supposed equal 280 – 281
Whether a standard error has a suggested value σ0 281 – 283
Agreement of two estimated standard errors 283 – 285
Both the standard error and the location parameter 285 – 289
Comparison of a correlation coefficient with a suggested value 289 – 292
Comparison of correlations 293 – 295
The intraclass correlation coefficient 295 – 300
The normal law of error 314 –319
Independence in rare events 319 – 322

10

Jeffreys’s Bayes Factor for the Test of the Nullity of a Normal Mean:11

The Bayesian t-test12

In this section we first define the data and then associate these to the unknown param-13

eters within each model through their likelihood functions. Next we outline the desiderata on14

the weighting function for the test-relevant parameter. We discuss Jeffreys’s final choice and15
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apply the resulting default Bayes factor to an example data set on cheating and creativity.1

We develop the one-sided adaptation of Jeffreys’s test, after which we conclude the section2

on the t-test with some historical notes.3

Normal Data4

For the case at hand, experimental outcomes are assumed to follow a normal distribution5

characterized by the unknown population mean µ and standard deviation σ. Similarly, the6

observed data d from a normal distribution can be summarized by two numbers: the observed7

sample mean x̄ and the average sums of squares s2 = 1
n

∑n
i=1(xi − x̄)2; hence we write8

d = (x̄, s2). The main difference between the null modelM0 : µ = 0 and its relaxationM1 is9

reflected in the population effect size, which is defined as δ = µ
σ . However, as this effect size10

cannot be observed directly, the Fisherian statistician studies its imprint from the sampled11

version, namely, the t-statistic t = x̄
sν/
√
ν
, where sν refers to the sample standard deviation12

based on ν = n− 1 degrees of freedom.13

Likelihood Functions14

Weighted likelihood for M0. A model defines a likelihood which structurally relates15

how the observed data are linked to the unknown parameters. The point null hypothesis16

M0 posits that µ = 0, whereas the alternative hypothesis M1 relaxes the restriction on µ.17

Conditioned on the observations d = (x̄, s2), the likelihood functions ofM0 andM1 are given18

by19

L(σ | d,M0) = (2πσ2)−
n
2 exp

(
− n

2σ2

[
x̄2 − s2

])
, (4)

L(µ, σ | d,M1) = (2πσ2)−
n
2 exp

(
− n

2σ2

[
(x̄− µ)2 + s2

])
, (5)

where L(σ | d,M0) and L(µ, σ | d,M1) refer to the likelihood of M0 and M1 respec-20

tively. Note that L(σ | d,M0) is a function of σ alone, whereas L(µ, σ | d,M1) depends on21

two parameters, σ and µ.22
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To obtain the weighted likelihood underM0, we integrate out the dependence of σ from1

Eq. (4) as follows:2

P (d |M0) =
∫
L(σ | d,M0)π0(σ) dσ, (6)

where π0(σ) is a weighting function. Note that inference about σ cannot be used to3

discriminate the two models, since σ has the same interpretation as a scaling parameter in4

bothM0 andM1. The choice of π0(σ) is therefore irrelevant for the Bayes factor as long as5

we use the same weighting function in both models.6

As a default choice, Jeffreys set π0(σ) proportional to its reciprocal, that is, π0(σ) ∝ 1
σ

which also known as the translation-invariant distribution derived from Jeffreys’s rule (e.g.,

Ly, Verhagen, Grasman, & Wagenmakers, 2014). This choice for π0(σ) results in the following

weighted likelihood for modelM0:

P (d |M0) =


1

2|x̄| n=1, (7a)

Γ
(
n
2
)

2 (πns2
n)

n
2

(
1 + t2

ν

)−n
2

n > 1, (7b)

where t is the observed t-value and ν the degrees of freedom defined as before. Typically,7

only the right term
(
1 + t2

ν

)−n
2 of Eq. (7b) is reported, as the first term also appears in the8

marginal likelihood of M1 and hence cancels out in the Bayes factor. Hence, Eqn. (7a, 7a)9

specify the denominator of Jeffreys’s Bayes factor BF10.10

Weighted likelihood forM1. We now focus on the numerator of Jeffreys’s Bayes factor,11

P (d | M1). The only aspect that distinguishesM1 fromM0 is the treatment of the population12

mean µ, which underM1 is free to vary and therefore unknown, making the likelihood function13

Eq. (5) a function of both µ and σ.14

To relate the observed t-value to the population effect size δ withinM1, Jeffreys rewrote15

Eq. (5) in terms of the effect size δ and σ. The calculation of the weighted likelihood underM116

requires that we integrate out the dependence of both δ and σ from Eq. (5), that is, average the17
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likelihood Eq. (5) with respect to a weighting function π1(µ, σ) = π1(µ |σ)π1(σ) = π1(δ)π0(σ).1

By assigning the same weighting function to σ as was done inM0, we obtain:2

P (d |M1) = (2π)−
n
2

∫ ∞
0

σ−n−1
∫ ∞
−∞

exp
(
−n2

[( x̄
σ
− δ

)2
+
( s
σ

)2])
π1(δ) dδ dσ. (8)

The remaining task is to specify π1(δ), the weighting function for the test-relevant3

parameter.4

Desiderata on the Weighting Function for δ Based on Extreme Data5

As is shown below, Jeffreys proposed his weighting function π1(δ) based on desiderata6

obtained from hypothetical, extreme data.7

Predictive matching: Symmetric π1(δ). The first “extreme” case Jeffreys discusses is8

when n = 1; this automatically yields s2 = 0 regardless of the value of x̄. Jeffreys noted that9

a single datum cannot provide support forM1, as any deviation of x̄ from zero can also be10

attributed to our lack of knowledge of σ. Hence, nothing is learned from only one observation11

and consequently the Bayes factor should equal 1 whenever n = 1.12

To ensure that BF10 = 1 whenever n = 1, Jeffreys entered n = 1, thus, s2 = 0 into13

Eq. (8) and noted that P (d |M1) equals P (d |M0), Eq. (7a) whenever π1(δ) is taken to be14

symmetric around zero.15

Information consistency: Heavy-tailed π1(δ). The other extreme case Jeffreys studied is16

when the data are infinitely precise with n > 1 and a sample mean away from zero: x̄ 6= 0 and17

s2 = 0. Note that this implies an infinite observed effect size t = ∞, something that should18

produce infinite support in favor of M1 over M0, that is, BF10 = ∞. For infinitely precise19

data, the weighted likelihood under P (M0) is finite: P (M0 | d) = Γ(n2 )
2(nπx̄2)

n
2
forM0. To obtain20

BF10 = ∞ the weighted likelihood under M1 needs to be infinite. Jeffreys noted that this21

occurs whenever the test-relevant weighting function π1(δ) is taken to be heavy-tailed.22

Jeffreys’s choice: The standard Cauchy distribution. The Cauchy distribution with scale23

γ is the most well-known distribution to be both symmetric around zero and heavy-tailed:24
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π(δ ; γ) = 1

πγ

(
1 +

(
δ
γ

)2
) . (9)

Jeffreys suggested to use the simplest version, the standard Cauchy distribution with1

γ = 1, as the test-relevant weighting function π1(δ).2

Jeffreys’s Bayesian t-test. Jeffreys’s Bayes factor now follows from the integral in Eq. (8)3

with π1(δ) as in Eq. (9) divided by Eq. (7b). Jeffreys knew that this integral is hard to4

compute and went to great lengths to compute an approximation that makes his Bayesian t-5

test usable in practice. Fortunately, we can now take advantage of computer software that can6

numerically solve the aforementioned integral and we therefore omit Jeffreys’s approximation7

from further discussion. By a decomposition of a Cauchy distribution we obtain a Bayes8

factor of the following form:9

BF10 ; γ(n, t) =
γ
∫∞

0 (1 + ng)−
1
2
(
1 + t2

ν(1+ng)

)−n
2 (2π)−

1
2 g−

3
2 e
− γ

2
2g dg(

1 + t2

ν

)−n
2

, (10)

where g is an auxiliary variable that is integrated out numerically. Jeffreys’s Bayes10

factor is obtained when γ = 1. The Bayes factor BF10 ; γ=1(n, t) now awaits a user’s observed11

t-value, n number of observations.12

Example: The Bayesian Between-Subject t-Test13

To illustrate the default Bayesian t-test we extend Eq. (10) to a between-subjects design14

and apply the test to a psychological data set. The development above is easily generalized to15

a between-subject design in which observations are assumed to be drawn from two separate16

normal populations. The difference scores are then once again normally distributed and we17

can apply Eq. (10) with ν = n− 2 degrees of freedom.18

Example 1 (Does cheating enhance creativity?). Gino and Wiltermuth (2014, Experiment 2)19

reported that the act of cheating enhances creativity. This conclusion was based on five exper-20
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iments. Here we analyze the results from Experiment 2 in which, having been assigned either1

to a control condition or to a condition in which they were likely to cheat, participants were2

rewarded for correctly solving each of 20 math and logic multiple-choice problems. Next, par-3

ticipants’ creativity level was measured by having them complete 12 problems from the Remote4

Association Task (RAT; Mednick, 1962).5

The control group featured n1 = 48 participants who scored an average of x̄1 = 4.65 RAT6

items correctly with a sample standard deviation of sn1−1 = 2.72. The cheating group featured7

n2 = 51 participants who scored x̄2 = 6.20 RAT items correctly with sn2−1 = 2.98. These8

findings yield t(97) = 2.73 with p = .008. Jeffreys’s default Bayes factor yields BF10 ≈ 4.6,9

indicating that the data are 4.6 times more likely underM1 than underM0. With equal prior10

odds, the posterior probability forM0 remains a non-negligible 17%.11

For nested models, the Bayes factor can be obtained without explicit integration, using12

the Savage-Dickey density ratio test (e.g., Dickey & Lientz, 1970; Wagenmakers, Lodewyckx,13

Kuriyal, & Grasman, 2010; Marin & Robert, 2010). The Savage-Dickey test is based on the14

following identify:15

BF10 = π1(δ = 0)
π1(δ = 0 | d) . (11)16

One of the additional advantages of the Savage-Dickey test is that it allows the result of the17

test to be displayed visually, as the height of the prior versus the posterior weighting function18

at the point of test (i.e., δ = 0). Fig. 1 presents the results from Experiment 2 of Gino and19

Wiltermuth (2014). ♦20

In this example, both the Bayesian and Fisherian analysis gave the same qualitative21

result. Nevertheless, the Bayes factor is more conservative, and some researchers may be22

surprised that, for the same data, p = .008 and P (M0 | d) = .17. Indeed, there are many cases23

in which the Bayesian and Fisherian analyses disagree qualitatively as well as quantitatively24

(e.g., Wetzels et al., 2011).25

The One-Sided Extension of Jeffreys’s Bayes Factor26

Some reflection suggests that the authors’ hypothesis from Example 1 is more specific27

– the authors argued that cheating leads to more creativity, not less. To take into account28
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Figure 1. : Posterior and prior weighting functions on effect size for a two-sided default Bayes
factor analysis of Experiment 2 of Gino and Wiltermuth (2014). The Jeffreys default Bayes
factor of BF10 ; γ=1 ≈ 4.60 equals the ratio of the prior weighting function π1(δ) over the
posterior weighting function π1(δ | d) at δ = 0.

the directionality of the hypothesis we need a one-sided adaptation of Jeffreys’s Bayes factor1

BF10 ; γ=1. The comparison that is made is then between the model of no effectM0 and one2

denoted by M+ in which the effect size δ is assumed to be positive. We decompose BF+0 as3

follows:4

BF+0 = P (d |M+)
P (d |M1)︸ ︷︷ ︸

BF+1

P (d |M1)
P (d |M0)︸ ︷︷ ︸

BF10

, (12)

where BF+1 is the Bayes factor that compares the unconstrained model M1 to the5

positively restricted model M+ (Morey & Wagenmakers, 2014). The objective comparison6

between M+ and M1 is then to keep all aspects the same π+(σ) = π1(σ) = π0(σ) except7

for the distinguishing factor of δ being restricted to positive values within M+. For the test-8

relevant weighting function we restrict π1(δ) to positive values of δ, which by symmetry of the9

Cauchy distribution means that π+(δ) accounts doubly for the likelihood when δ is positive10

and nullifies it when δ is negative (Klugkist, Laudy, & Hoijtink, 2005).11
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Figure 2. : Posterior and prior weighting functions on effect size for a one-sided default Bayes
factor analysis of Experiment 2 of Gino and Wiltermuth (2014). The Jeffreys default Bayes
factor of BF+0 = 9.18 equals the ratio of the prior weighting function π1(δ) over the posterior
weighting function π1(δ | d) at δ = 0. The weighting function π+(δ) is zero for negative values
of δ. Furthermore, note that the weights for δ ≥ 0 are doubled compared to π1(δ) in Fig. 1.

Example 1 (One-Sided Test for the Gino and Wiltermuth Data, Continued). For the data1

from Gino and Wiltermuth (2014, Experiment 2) the one-sided adaptation of Jeffreys’s Bayes2

factor Eq. (10) yields BF+0 = 9.18. Because almost all of the posterior mass is consistent3

with the authors’ hypothesis, the one-sided Bayes factor is almost twice the two-sided Bayes4

factor. The result is visualized through the Savage-Dickey ratio in Fig. 2. ♦5

Discussion on the t-test6

Discussion on the updated weights. In this section we showcased Jeffreys’s philosophy in7

selecting the instrumental weighting functions for grading the support that the data provide8

forM0 versusM1. By construction, Jeffreys’s Bayes factor resulting from π1(σ) = π0(σ) ∝9

σ−1 and from δ ∼ C(0, 1) is predictively matched at n = 1 and information consistent. That10

is, it indicates no support for either model, BF01 = 1, whenever there is a single datum n = 111

and it indicates infinite support forM1 whenever the data are overwhelming (i.e., s2 = 0 and12

x̄ 6= 0, or equivalently, t =∞).13

In both models, the data yield updated weights for σ, which are typically not the same,14
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π0(σ | d) 6= π1(σ | d), due to the differences in Eq. (4) and Eq. (5) — even though they were1

given the same prior weights π1(σ) = π0(σ). Each updated weighting function πi(σ | d) should2

be interpreted as a posterior in estimating σ within their own context, the model Mi. The3

Bayes factor BF10 conveys which of these updated weights πi(σ | d) received more support4

from the data.5

On the other hand, M0 provides the same deterministic value of δ = 0 regardless6

of the observed data. The weighting function on δ was chosen based on between-model7

considerations with the purpose to infer its presence and not its value. This implies that8

π1(δ | d) updated from the standard Cauchy distribution might not necessarily be the best9

default result for estimating the value of δ, unless n is sufficiently large.10

In ToP, (Jeffreys, 1961, p. 245) introduced the concept of testing and the distinction11

with estimation, as follows:12

“In the problems of the last two chapters we were concerned with the estimation13

of the parameters in a law, the form of the law itself being given. We are now14

concerned with the more difficult question: in what circumstances do observations15

support a change of the form of the law itself? This question is really logically prior16

to the estimation of the parameters, since the estimation problem presupposes that17

the parameters are relevant.”18

Therefore, one may argue as follows. The estimation of parameters becomes important and19

informative only after the presence of the phenomenon has been established convincingly.20

This will generally happen only when n is not small. When n is not small, from a practical21

perspective, the choice between different sets of reasonable priors is inconsequential. Of22

course, “many problems that arise in practice are genuinely estimation problems.” Jeffreys23

(1961, p. 245) but the consideration of such problems is outside the scope of the present24

article.25

Historical note. It took several decades before Jeffreys’s Bayes factor was adopted26

by Zellner and Siow (1980), who used the multivariate Cauchy distribution to generalize27

the method to the linear regression framework. One practical drawback of their proposal28
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was the fact that the numerical integration required to calculate the Bayes factor becomes1

computationally demanding as the number of covariates grows.2

Liang, Paulo, Molina, Clyde, and Berger (2008) established a computationally effi-3

cient alternative to Zellner and Siow (1980) by first decomposing the multivariate Cauchy4

distribution into a mixture of gamma and normal distributions followed by computational5

simplifications introduced by Zellner (1986). As a result, only a single numerical integral6

needs to be performed regardless of the size of the model.7

The form of the numerator in Eq. (10) is in fact inspired by Liang et al. (2008) and8

introduced to psychology by Rouder et al. (2009) and Wetzels, Raaijmakers, Jakab, and9

Wagenmakers (2009). The combination π0(σ) ∝ σ−1 and δ ∼ C(0, 1) was dubbed the JZS-10

prior in honor of Jeffreys, Zellner and Siow; this is understandable in the framework of linear11

regression, although it should be noted that all ideas for the t-test were already present in12

the second edition of ToP (Jeffreys, 1948, pp. 242–248).13

Model selection consistency. In addition to predictive matching and information con-14

sistency, Liang et al. (2008) showed that Zellner and Siow’s (1980) generalization of Jeffreys’s15

work is also model selection consistent, which implies that as the sample size n increases16

indefinitely, the support that the data d provide for the correct data-generating model (i.e.,17

M0 or M1) grows without bound. Hence, Jeffreys’s default Bayes factor Eq. (10) leads to18

the correct decision whenever the sample size is sufficiently large.19

Other desirable properties on the weighting functions. The JZS-priors are not the only20

weighting functions that possess the properties mentioned above. In particular, Bayarri,21

Berger, Forte, and García-Donato (2012) formalized Jeffreys’s criteria for the construction of22

a default Bayes factor and defined four additional desiderata on the test-relevant weighting23

function, namely: intrinsic prior consistency, invariance criteria, measurement invariance and24

group invariance. Based on these criteria they derived a weighting function that is known25

as the robustness prior, which yields Bayes factors that have desirable properties similar to26

Jeffreys’s. An elaborate comparison is beyond the scope of this paper.27
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Jeffreys’s Bayes Factor for the Test of the Nullity of a Correlation1

The previous section showed that Jeffreys constructed the weighting functions for the2

Bayesian t-test based on a careful analysis of howM0 andM1 relate the observed data to the3

unknown parameters using their likelihood functions. We suspect that Jeffreys constructed4

the weighting functions for the Bayesian correlation test in a similar fashion. We also believe5

that Jeffreys forgot to mention that some of his intermediate calculations for the correlation6

test were (very good) approximations, resulting in a Bayes factor BFJ
10 that departs from7

his original intention. In what follows, we give the re-computed Jeffreys’s correlation Bayes8

factor that can be expressed in closed form, which we refer to as Jeffreys’s exact correlation9

Bayes factor.10

For the above reasons we divert from the narrative of Jeffreys (1961, Paragraph 5.5) and11

instead prefer to: (a) explain Jeffreys’s reasoning with a structure analogous to that of the12

previous section; and (b) give the exact results instead. The first subsection below introduces13

the data and the models involved in a correlation test. Next we specify the weighting functions14

on the common parameters, allowing us to compute the weighted likelihood for M0. Then15

we reconstruct the reasoning behind Jeffreys’s choice for the test-relevant weighting function16

on the parameter of interest ρ; with this weighting function in place we can calculate the17

weighted likelihood forM1, and, hence, the default Bayes factor. This default Bayes factor is18

then applied to a concrete data set. Next we adapt the exact Bayesian hypothesis correlation19

test for one-sided testing. We end with a short discussion, highlighting the main differences20

between the exact Bayes factor and Jeffreys’s approximate Bayes factor.21

Bivariate Normal Data22

The Pearson correlation coefficient quantifies the strength of a linear relation between23

a pair (X,Y ) of continuous, normally distributed random variables. To test the nullity of24

the population correlation it is helpful to summarize the data for X and Y separately in25

terms of their respective sample means and average sums of squares: x̄ = 1
n

∑n
i=1 xi, s

2 =26

1
n

∑n
i=1(xi− x̄)2 and ȳ = 1

n

∑n
i=1 yi, t

2 = 1
n

∑n
i=1(yi− ȳ)2, respectively. The sample correlation27

coefficient r then defines an observable measure of the linear relationship between X and Y :28
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r =
∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2∑n
i=1(yi − ȳ)2 =

∑n
i=1 xiyi − nx̄ȳ

nst
. (13)

This sample correlation coefficient r is an imperfect reflection of the unobservable pop-1

ulation correlation coefficient ρ. Hence, the data can be summarised by the five quantities2

d = (x̄, s2, ȳ, t2, r).3

The statistical modelsM0 andM1 both assume that the pair (X,Y ) follows a bivariate4

normal distribution, (X,Y ) ∼ N2(~µ,Σ), where ~µ = (µx, µy) is the vector of the population5

means and Σ a two-by-two covariance matrix given by:6

Σ =

 σ2 ρστ

ρστ τ2

 , (14)

where σ2, τ2 are the respective population variances of X and Y , and ρ denotes the7

population correlation coefficient defined as8

ρ = Cov(X,Y )
στ

= E(XY )− µxµy
στ

. (15)

Likelihood Functions9

Weighted likelihood forM0. The point null hypothesisM0 assumes that the data follow10

a bivariate normal distribution with ρ known and fixed at zero. Hence,M0 depends on four11

parameters which we abbreviate as θ0 = (µx, µy, σ, τ), while the alternative model M1 can12

be considered an extension of M0 with an additional parameter ρ, i.e., θ1 = (θ0, ρ). These13

two bivariate normal models relate the observed data to the parameters using the following14

two likelihood functions:15
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L(θ0 | d,M0) =
(
2πστ

)−n exp
(
− n

2
[( x̄− µx

σ

)2
+
( ȳ − µy

τ

)2])
× exp

(
− n

2
[( s
σ

)2
+
( t
τ

)2])
. (16)

L(θ1 | d,M1) =
(
2πστ

√
1− ρ2)−n exp

(
− n

2(1− ρ2)
[(x̄− µx)2

σ2 − 2ρ(x̄− µx)(ȳ − µy)
στ

+ (ȳ − µy)2

τ2

])
× exp

(
− n

2(1− ρ2)
[( s
σ

)2
− 2ρ

(rst
στ

)
+
( t
τ

)2])
. (17)

To obtain the weighted likelihood under M0 we have to integrate out the model pa-1

rameters θ0 = (µx, µy, σ, τ) from Eq. (16), that is:2

P (d |M0) =
∫ ∫ ∫ ∫

L(θ0 | d,M0)π(µx, µy, σ, τ) dµx dµy dσ dτ, (18)

where π0(θ0) = π0(µx, σ, µy, τ) is a weighting function for the common parameters θ0.3

Note that inference about these parameters cannot be used to discriminate M0 from M1,4

since the parameters µx, µy, σ, τ withinM0 have the same interpretation as the corresponding5

parameters in M1. The choice for π0(θ0) is therefore irrelevant for the Bayes factor as long6

as we use the same weighting function for the common parameters inM1.7

As a default choice, Jeffreys specified π0(θ0) as π0(µx, µy, σ, τ) = 1 ·1 · 1
σ

1
τ , which implies8

the assignment of translation-invariant distributions –derived from Jeffreys’s rule– for each9

of the parameters independently (Ly et al., 2014). With this choice for π0(θ0) we obtain the10

following weighted likelihood of modelM0:11

P (d |M0) = 2−2n
1−2n

2 π1−n(st)1−n
[
Γ
(
n− 1

2

) ]2
. (19)

Note that the weighted likelihood does not depend on the sample correlation coefficient12

r.13
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Weighted likelihood for M1. The only aspect that distinguishes M0 from M1 is the1

treatment of the population correlation ρ, which is free to vary and, thus, unknown in M1.2

Hence, to compute the weighted likelihood for M1 we have to integrate out both the four3

common parameters θ0 and ρ from Eq. (17) with respect to a weighting function π1(θ1). Since4

ρ does not change with the common parameters µx, µy, σ, τ , Jeffreys decided on a weighting5

function π1 that can be factored into two independent components π1(θ0, ρ) = π1(θ0)π1(ρ).6

With π1(θ0) = π0(θ0) we obtain the following expression for the weighted likelihood ofM1:7

P (d |M1) = P (d |M0)
∫ 1

−1
h(n, r | ρ)π1(ρ)dρ, (20)

where h is a function of n, r, ρ that can be written as h = A+B, where A is an even and8

B an odd function of ρ, see Eq. (22) and Eq. (24) below. The fact that P (d |M0) occurs as a9

component in P (d |M1) implies that the common parameters are not only treated similarly10

as inM0, but that their similar treatment also leads to the same evidential value.11

The Bayes factor, therefore, simplifies to12

BF10 = P (d |M1)
P (d |M0) =

P (d |M0)
∫ 1
−1 h(n, r | ρ)π1(ρ)dρ
P (d |M0) =

∫ 1

−1
h(n, r | ρ)π1(ρ)dρ. (21)

Note that whereas P (d |M0) does not depend on ρ or the statistic r (see Eq. (19)), the13

function h does not depend on the statistics x̄, s2, ȳ, t2 that are associated with the common14

parameters. Thus, the evidence for M1 over M0 resides within n, r alone and is quantified15

by integrating ρ out of h(n, r | ρ) with respect to a weighting function π1(ρ). The desirable16

properties of π1(ρ) can be derived from the two functions that together constitute h. The17

function A that is relevant for the comparisonM1 versusM0 is specified as18

A(n, r | ρ) = (1− ρ2)
n−1

2 2F1

(
n− 1

2 ,
n− 1

2 ; 1
2 ; (rρ)2

)
, (22)
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where 2F1 is Gauss’ hypergeometric function (Oberhettinger, 1972, section 15) with two1

upper parameters and one lower parameter, generalizing the exponential function as follows2

(Gradshteyn & Ryzhik, 2007, p 9.114):3

2F1 (a, b ; c ; z) = 1 + a · b
γ · 1z + a(a+ 1)b(b+ 1)

c(c+ 1) · 1 · 2 z2 + a(a+ 1)(a+ 2)b(b+ 1)(b+ 2)
c(c+ 1)(c+ 2) · 1 · 2 · 3 z3 + . . .

(23)

Observe that A is a symmetric function of ρ when n, r are given. The second function4

B is relevant for the one-sided test and is given by5

B(n, r | ρ) = 1
2rρ

 Γ
(
n
2
)

Γ
(
n+1

2

)
2

(1− ρ2)
n−1

2 (24)

×
[(

1− 2n(rρ)2)
2F1

(
n

2 ,
n

2 ; 1
2 ; (rρ)2

)
−
(
1− (rρ)2)

2F1

(
n

2 ,
n

2 ; −1
2 ; (rρ)2

)]
,

which is an odd function of ρ when n, r are given. Thus, the function h that mediates6

inference about the presence of ρ from n, r is given by h(n, r | ρ) = A(n, r | ρ) + B(n, r | ρ).7

Examples of the functions A and B are shown in Fig. 3.8

Selecting the Weights on the Population Correlation9

As a default weighting function for ρ, Jeffreys chose the uniform distribution, that is,10

π1(ρ) = U [−1, 1]. In this subsection we elaborate on what we suspect to be Jeffreys’s reasons11

for this choice.12

Predictive matching: A proper and symmetric π1(ρ). Note that we cannot infer the13

correlation of a bivariate normal distribution whenever we have only a single data pair (x, y);14

r is undefined when n = 1. Furthermore, when n = 2 we automatically get r = 1 or r = −1.15

As such, nothing is learned up to n = 2 and we therefore require that, for these cases, BF10 = 116

or
∫
h(n, r | ρ)π1(ρ)dρ = 1, see Eq. (21).17

Using n = 1 we see that h(1, r | ρ) = 1 for every ρ and r from which we conclude that18
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Figure 3. : A(n, r | ρ) is an even function of ρ, and B(n, r | ρ) is an odd function of ρ. Together,
A and B determine the function h from Eq. (21): h(n, r | ρ) = A(n, r | ρ) + B(n, r | ρ). For
this illustration, we used n = 46 and r = 0.39 based on the example data discussed below.

we require π1(ρ) to integrate to one. Similarly, using n = 2 we obtain A(2, r | ρ) = 1 at r = 11

and r = −1; also, recall that B(2, r | ρ) is an odd function of ρ regardless of the value of r, see2

Fig. 3. Thus, with π1(ρ) a proper weighting function, we obtain
∫ 1
−1A(2, r | ρ)π1(ρ)dρ = 1,3

which implies that
∫ 1
−1B(n, r | ρ)π1(ρ)dρ = 0. This occurs whenever π1(ρ) is symmetric4

around zero.5

The symmetric beta distribution and Jeffreys’s choice: The uniform distribution. Jef-6

freys proposed the uniform distribution on ρ after rejecting the translation-invariant distri-7

bution because it is inadequate to testM0 : ρ = 1 orM0 : ρ = −1 (Jeffreys, 1961, p 290).28

The uniform distribution is a member of the so-called symmetric beta distributions9

π1(ρ ; α) = 21−2α

B(α, α)(1− ρ2)α−1, (25)

where B(α, α) is a beta function, see Appendix A for details. Each α > 0 yields a can-10

didate weighting function. In particular, Eq. (25) with α = 1 yields the uniform distribution11

2Robert et al. (2009) already noted that such a test is rather uncommon as we are typically interested in
the point null hypothesis M0 : ρ = 0. Our reason to reject the translation-invariant distribution on ρ stems
from the fact that it cannot be normalized on (−1, 1).
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of ρ on (−1, 1). Furthermore, γ = 1
α can be thought of as a scale parameter as in Eq. (9).1

Jeffreys’s exact Bayesian correlation test. Jeffreys’s Bayes factor now follows from2

the integral in Eq. (21) with π1(ρ) as in Eq. (25), which Jeffreys did not solve explicitly.3

Nevertheless, a closed form expression for this integral exists and is given by4

BF10 ;α(n, r) =
∫ 1

−1
h(n, r | ρ)π1(ρ ; α)dρ

=
∫ 1

−1
A(n, r | ρ)π(ρ ; α)dρ+

∫ 1

−1
B(n, r | ρ)π(ρ ; α)dρ︸ ︷︷ ︸

0

= 21−2α√π
B(α, α)

Γ
(
n+2α−1

2

)
Γ
(
n+2α

2

) 2F1

(
n− 1

2 ,
n− 1

2 ; n+ 2α
2 ; r2

)
. (26)

Jeffreys’s exact correlation Bayes factor BF10 ; γ=1(n, r) now awaits a user’s observed5

r-value and the number of sample pairs n.6

Model selection consistency. To show that Jeffreys’s correlation Bayes factor is model7

selection consistent, we use the sampling distribution of the maximum likelihood estimate8

(MLE). As r is the MLE we know that it is asymptotically normal with mean ρ and variance9

1
n(1−ρ2)2 , where ρ is the true value. In particular, when the data are generated under M0,10

thus, ρ = 0, we know that r ∼ N
(
0, 1

n

)
when n is large. In order to show that the support for11

a trueM0 grows without bound as the number of data points n increases, the Bayes factor12

BF10 ;α(n, r) needs to approach zero as n increases.13

We exploit the smoothness of BF10 ;α(n, r) by Taylor expanding it up to third order14

in r. By noting that the leading term of the Taylor expansion BF10 ;α(n, 0) has a factor15

Γ(n+2α−1
2 )

Γ(n+2α
2 ) we conclude that it converges to zero as n grows. The proof that the Bayes factor16

BF10 ;α is also model selection consistent under M1 follows a similar approach by a Taylor17

approximation of second order and consequently concluding that BF10 ;α(n, r) diverges to ∞18

as n grows indefinitely.19



JEFFREYS’S HYPOTHESIS TESTS IN PSYCHOLOGY 28

0.90 1.00 1.10 1.20

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Presidential Height Ratio

R
e
la

ti
ve

 S
u
p
p
o
rt

 f
o
r 

P
re

s
id

e
n
t

r = .39

Figure 4. : The data from n = 46 US presidential elections, showing the proportion of the
popular vote for the president versus his relative height advantage against the closest com-
petitor. The sample correlation equals r = .39, and, assuming an unrealistic sampling plan,
the p-value equals .007. Jeffreys’s default two-sided Bayes factor equals BF10 = 6.33, and the
corresponding one-sided Bayes factor equals BF+0 = 11.87. See text for details.

Example: The Bayesian Correlation Test1

We now apply Jeffreys’s default Bayesian correlation test to a data set analyzed earlier2

by Stulp, Buunk, Verhulst, and Pollet (2013).3

Example 2 (Do taller electoral candidates attract more votes?). Stulp et al. (2013) studied4

whether there exists a relation between the height of electoral candidates and their popularity5

among voters. Based on the data from n = 46 US presidential elections, Stulp et al. (2013)6

reported a positive linear correlation of r = .39 between X, the relative height of US presidents7

compared to their opponents, and Y , the proportion of the popular vote. A frequentist analysis8

yielded p = .007. Fig. 4 displays the data. Based in part on these results, Stulp et al. (2013,9

p. 159) concluded that “height is indeed an important factor in the US presidential elections”,10

and “The advantage of taller candidates is potentially explained by perceptions associated11

with height: taller presidents are rated by experts as ‘greater’, and having more leadership12

and communication skills. We conclude that height is an important characteristic in choosing13

and evaluating political leaders.”14
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Figure 5. : Posterior and prior weighting functions on the population correlation coefficient ρ
for a two-sided default Bayes factor analysis of the height-popularity relation in US presidents
Stulp et al. (2013). The Jeffreys default Bayes factor of BF10 ;α=1 = 6.33 equals the ratio of
the prior weighting function π1(ρ = 0) over the posterior weighting function π1(ρ = 0 | d) at
ρ = 0.

Before turning to the Bayes factor analysis, note that the calculation of the p-value is1

intrinsically tied to probability density function of the data, which in turn depends on the2

sampling plan. The sampling plan in this example is unknown, as the the data are given3

to us by external forces, one election result at a time, until the time when the US decides4

on a different form of government or until it ceases to exist altogether. Hence, when nature5

provides the data and the sampling plan is unknown, the p-value is unknown as well (Berger6

& Berry, 1988; Lindley, 1993).7

In contrast to the p-value, the Bayes factor does not depend on the sampling plan (i.e.,8

the intentions with which the data have been collected) as it conditions on the observed data9

and only uses that part of the modeled relationship where the parameters and data interact10

(Berger & Wolpert, 1988). For the Stulp et al. (2013) election data Jeffreys’s exact correlation11

Bayes factor Eq. (26) yields BF10 ;α=1 = 6.33, indicating that the observed data are 6.33 times12

more likely under M1 than under M0. This result is visualized in Fig. 5 using the Savage-13

Dickey density ratio test. With equal prior odds, the posterior probability for M0 remains a14

non-negligible 14%.15
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Figure 6. : Development of Jeffreys’s default two-sided correlation Bayes factor for the presi-
dential election data reported in Stulp et al. (2013). The category labels on the right Y -axis
are inspired by the classification scheme presented by Jeffreys (1961, Appendix B).

The fact that the Bayes factor is independent of the intention with which the data have1

been collected is of considerable practical relevance. Not only does this independence allow2

researchers to interpret Bayes factors for data sets collected without a well-defined sampling3

plan, it also means that researchers may monitor the Bayes factor as the data come in.4

As pointed out by (Edwards et al., 1963, p. 193), from a Bayesian perspective “(...) the5

rules governing when data collection stops are irrelevant to data interpretation. It is entirely6

appropriate to collect data until a point has been proven or disproven, or until the data collector7

runs out of time, money, or patience.” (for a recent discussion see Sanborn & Hills, 2014;8

Rouder, 2014). In Bayesian inference, the sequential analysis of experimental data requires9

no correction or adjustment (e.g., Andraszewicz et al., in press; Berger & Mortera, 1999;10

Wagenmakers, 2007). For the example of the US presidents, the development of the Bayesian11

factor is shown in Eq. (6). ♦12
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The One-Sided Extension of Jeffreys’s Exact Correlation Bayes Factor1

Whereas the function A fully determines the two-sided Bayes factor BF10 ;α(n, r), the2

function B takes on a prominent role when we compare the null hypothesisM0 against the3

one-sided alternative M+ with ρ > 0.4

To extend Jeffreys’s exact correlation Bayes factor to a one-sided version, we retain the5

weighting function on the common parameters θ0. For the test-relevant weighting function6

π+(ρ |α) we restrict ρ to non-negative values, which due to symmetry of π1(ρ |α) is specified7

as8

π+(ρ |α) =


2π1(ρ |α) for 0 ≤ ρ ≤ 1,

0 otherwise.
(27)

Recall that A is an even function of ρ; combined with the doubling of the weighting9

function for ρ this leads to a one-sided Bayes factor that can be decomposed as10

BF+0 ;α(n, r) = BF10 ;α(n, r)︸ ︷︷ ︸∫ 1
0 A(n,r | ρ)π+(ρ |α)dρ

+ C+0 ;α(n, r)︸ ︷︷ ︸∫ 1
0 B(n,r | ρ)π+(ρ ;α)dρ

. (28)

The function C+0 ;α(n, r) can be written as11
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C+0 ;α(n, r) = −21−2αr

(n+ 2α− 1)(n+ 2α+ 1)B(α, α)

 Γ
(
n
2
)

Γ
(
n+1

2

)
2

(29)

×
[
n2r2

3F2

(
1, n+ 2

2 ,
n+ 2

2 ; 1
2 ,
n+ 2α+ 3

2 ; r2
)

+ 2n3r2
3F2

(
1, n+ 2

2 ,
n+ 2

2 ; 3
2 ,
n+ 2α+ 3

2 ; r2
)

−
(
n2(n+ 2α+ 1)

)
3F2

(
1, n+ 2

2 ,
n+ 2

2 ; 3
2 ,
n+ 2α+ 1

2 ; r2
)

+ 2n2 − 2α(1− 2n) + n− 1
]
,

where 3F2 is a generalized hypergeometric function (Gradshteyn & Ryzhik, 2007, Sec-1

tion 9.14) with three upper and two lower parameters.2

The function C+0 ;α(n, r) is positive whenever r is positive, since B as a function of ρ is3

then positive on the interval (0, 1); consequently, for positive values of r the restricted, one-4

sided alternative hypothesis M+ is supported more than the unrestricted, two-sided hypoth-5

esis M1, that is, BF+0 ;α(n, r) > BF10 ;α(n, r). On the other hand, C+0 ;α(n, r) is negative6

whenever r is negative; for such cases, BF+0 ;α(n, r) < BF10 ;α(n, r).7

Example 2 (One-Sided Correlation Test for the US President Data, Continued). As shown8

in Fig. 7, for the Stulp et al. (2013) data the one-sided Jeffreys’s exact correlation Bayes9

factor Eq. (28) yields BF+0 ;α=1 = 11.87, indicating that the observed data are 11.87 times10

more likely under M+ than under M0. Because almost all posterior mass obeys the order-11

restriction, BF+0 ≈ 2× BF10 – its theoretical maximum. ♦12

13

Using the same arguments as above, we can define the Bayes factor for a test between14

M− and M0, which is in fact given by BF−0 ;α(n, r) = BF+0 ;α(n,−r) due to the fact that15

B is an odd function of ρ. In effect, this implies that BF+0 ;α(n, r) + BF−0 ;α(n, r) = 2 ×16

BF10 ;α(n, r), where the factor of two follows from symmetry of π1(ρ ; α) in the definition of17

π+(ρ ; α). Hence, only if there is evidence for the presence of ρ, that is BF10 ;α(n, r) > 1,18

can this be spread out over the mutually exclusive models M+ or M− with a factor of two to19
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Figure 7. : Posterior and prior weighting functions on the population correlation coefficient ρ
for a one-sided default Bayes factor analysis of the height-popularity relation in US presidents
Stulp et al. (2013). The Jeffreys default Bayes factor of BF+0 ;α=1 = 11.87 equals the ratio
of the prior weighting function π+(ρ) over the posterior weighting function π+(ρ | d) at ρ = 0.
The weighting function π+(ρ) is zero for negative values of ρ. Furthermore, note that the
weights for ρ ≥ 0 are doubled compared to π1(ρ) in Fig. 5.

reward the more specific theory. Additional information on the coherence of the Bayes factor1

for order restrictions is available elsewhere (e.g., Mulder, in press).2

Discussion on the Correlation Test3

Comparison between the exact correlation Bayes factor and Jeffreys’s approximate4

Bayes factor. The previous analysis cannot be found in Jeffreys (1961) as Jeffreys did not5

derive the functions A and B explicitly. In particular, Jeffreys (1961, Eqn. (8, 9), p. 291)6

claimed that the integral of the likelihood Eq. (17) with respect to the translation-invariant7

parameters π0(θ0) yields8

hJ(n, r | ρ) = (1− ρ2)
n−1

2

(1− rρ)
2n−3

2
, (30)

which in fact approximates the true function h = A + B very well for modest values9

of |r| (cf. Jeffreys, 1961, p. 175) — this is illustrated in Fig. 8 which plots the error h− hJ .10
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Figure 8. : Error of approximation between the exact function h and Jeffreys’s approximation
hJ . The left panel shows that for a modest sample correlation (i.e., r = .39, as in the example
on the height of US presidents) Jeffreys’s approximation is quite accurate; moreover, the error
decreases as n grows, and the curve of n = 10 overlaps with that of n = 20. However, the
right panel shows that for a sample correlation of r = .70 the error increases with n, but
only for some values of ρ. Furthermore, note that Jeffreys’s approximation hJ does not yield
hJ(n = 1, r) = 1 for every possible r.

Specifically, the left panel of Fig. 8 shows that when r = .39, as in the example on the height1

of US presidents, there is virtually no error when n = 10. The right panel of Fig. 8, however,2

shows that when r = .70, the error increases with n, but only for values of ρ from about .3 to3

about .95. From Jeffreys’s approximation hJ one can define Jeffreys’s integrated Bayes factor4

(Boekel et al., in press; Wagenmakers, Verhagen, & Ly, 2014)3:5

BFJ,I
10 (n, r) = 1

2

∫ 1

−1
hJ(n, r, ρ)dρ

=
√
π

2
Γ
(
n+1

2

)
Γ
(
n+2

2

)2F1

(2n− 3
4 ,

2n− 1
4 ; n+ 2

2 ; r2
)
. (31)

Jeffreys (1961, p. 175) noticed the resulting hypergeometric function, but as these6

functions were hard to compute, Jeffreys went on to derive a practical approximation for the7

users of his Bayes factor. The final Bayes factor that Jeffreys recommended for the comparison8

3The latter manuscript is available online at http://www.ejwagenmakers.com/submitted/BayesianBathingHabits.pdf.
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M1 versusM0 is therefore an approximation of an approximation and given as1

BFJ
10(n, r) =

√
π

2n− 3(1− r2)
n−4

2 . (32)

For the US presidents data from Example 2 all three Bayes factors yield virtually the2

same evidence (i.e, BF10 ;α=1(n = 46, r = .39) = 6.331, BFJ,I
10 (n = 46, r = .39) = 6.329, and3

BFJ
10(n = 46, r = .39) = 6.379). Table 2 shows that the three Bayes factors generally produce4

similar outcomes, even for large values of r (cf. Robert et al., 2009). Jeffreys’s approximation5

of an approximation turns out to be remarkably accurate, especially because there is rarely6

the need to determine the Bayes factor exactly. Jeffreys (1961, p. 432) remarks:7

In most of our problems we have asymptotic approximations to K [i.e., BF01]8

when the number of observations is large. We do not need K with much accuracy.9

Its importance is that if K > 1 the null hypothesis is supported by the evidence;10

if K is much less than 1 the null hypothesis may be rejected. But K is not a11

physical magnitude. Its function is to grade the decisiveness of the evidence. It12

makes little difference to the null hypothesis whether the odds are 10 to 1 or 10013

to 1 against it, and in practice no difference at all whether they are 104 or 1010 to14

1 against it. In any case whatever alternative is most strongly supported will be15

set up as the hypothesis for use until further notice.16

Table 2:: A comparison of Jeffreys’s exact Bayes factor (i.e., BF10 ;α=1) to Jeffreys’s approx-
imate integrated Bayes factor (i.e., BFJ,I

10 ) and to Jeffreys approximation of the approximate
integrated Bayes factor (i.e., BFJ

10) reveals the high accuracy of the approximations, even for
large values of r.

n BF10 ;α=1(n, .7) BFJ,I
10 (n, .7) BFJ

10(n, .7) BF10 ;α=1(n, .9) BFJ, I
10 (n, .9) BFJ

10(n, .9)
5 1.1 1.1 0.9 2.8 2.8 1.5
10 3.6 3.6 3.2 84.6 83.7 62.7
20 67.5 67.2 63.7 197,753.0 196,698.0 171,571.5

17



JEFFREYS’S HYPOTHESIS TESTS IN PSYCHOLOGY 36

Hence, the main advantage of having obtained the exact Bayes factor based on the true1

function h may be that it justifies Jeffreys’s approximation BFJ
10(n, r). The true function2

h also provides insight in the one-sided version of Jeffreys’s test, and it provides a clearer3

narrative regarding Jeffreys’s motivation in model selection and hypothesis testing in general.4

Information consistency and model selection consistency revisited. As the sample cor-5

relation has ν = n− 2 degrees of freedom, we require that the Bayes factor diverts to infinity6

whenever r = 1 and n = 3; however, with α = 1 we have BF10 ;α=1(n = 3, r = 1) = 2 from7

which it follows that Jeffreys’s choice does not lead to a Bayes factor that is information con-8

sistent. An analysis of the Bayes factor Eq. (26) with r = 1 and n = 3 reveals that the Bayes9

factor diverts to infinity only when α ≤ 0.5. We therefore tentatively suggest that the Bayes10

factor with α = 0.5 may be better calibrated for unambiguous data. In practice, however, we11

never encounter unambiguous data and a subjective calibration might be more realistic. We12

therefore chose not to specify a particular value for α in the Bayes factor Eq. (26), although13

both α = 0.5 and α = 1 may serve as good benchmarks.14

Conclusion15

We hope to have demonstrated that the Bayes factors proposed by Harold Jeffreys have16

a solid theoretical basis, and, moreover, that they can be used in empirical practice to answer17

one particularly pressing question: what is the degree to which the data support either the18

null hypothesisM0 or the alternative hypothesisM1? As stated by Jeffreys (1961, p. 302):19

“In induction there is no harm in being occasionally wrong; it is inevitable20

that we shall be. But there is harm in stating results in such a form that they do21

not represent the evidence available at the time when they are stated, or make it22

impossible for future workers to make the best use of that evidence.”23

It is not clear to us what inferential procedures other than the Bayes factor are able24

to represent evidence for M0 versus M1. After all, the Bayes factor follows directly from25

probability theory, and this ensures that is obeys fundamental principles of coherence and26

common sense (e.g., Wagenmakers, Lee, et al., 2014).27
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It needs to be acknowledged that the Bayes factor has been subjected to numerous1

critiques. Here we discuss two. First, one may object that the test-relevant weighting function2

(i.e., the prior distribution on the parameter of interest) has an overly large influence on the3

Bayes factor (Liu & Aitkin, 2008). In particular, uninformative, overly wide priors result4

in an undue preference for M0, a fact that Jeffreys recognized at an early stage. The most5

principled response to this critique is that the selection of appropriate weighting functions or6

priors is an inherent part of model specification. Indeed, the prior offers an opportunity for7

the implementation of substantively different model (Vanpaemel, 2010). In this manuscript,8

we showcased this ability when we adjusted the prior to implement a directional, one-sided9

alternative hypothesis. In general, the fact that different priors result in different Bayes10

factors should not come as a surprise. As stated by Jeffreys (1961, p. x):11

“The most beneficial result that I can hope for as a consequence of this work12

is that more attention will be paid to the precise statement of the alternatives13

involved in the questions asked. It is sometimes considered a paradox that the14

answer depends not only on the observations but on the question; it should be a15

platitude.”16

The second critique is that in practice, all models are wrong. At first glance this17

appears not to be a problem, as the Bayes factor quantifies the support forM0 versusM1,18

regardless of whether these models are correct. However, it is important to realize that the19

Bayes factor is a relative measure of support. The fact that BF10 = 100, 000 indicates that20

M1 receives much more support from the data than doesM0, but this does not mean that21

M1 is any good in an absolute sense (e.g., Andraszewicz et al., in press; Anscombe, 1973). In22

addition, it has recently been suggested that when both models are misspecified, the Bayes23

factor may perform poorly in the sense that it is too slow to select the best model (van Erven,24

Grünwald, & de Rooij, 2012). However, the Bayes factor does have a predictive interpretation25

that does not depend on one of the model being true (Wagenmakers, Grünwald, & Steyvers,26

2006); similarly, the model preferred by the Bayes factor will be closest (with respect to the27

Kullback-Leibler divergence) to the true data-generating model (Berger, 1985; Jeffreys, 1980).28

More work on this topic is desired and expected.29
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In mathematical psychology, the Bayes factor is a relatively popular method of model1

selection, as it automatically balances the tension between parsimony and goodness-of-fit,2

thereby safeguarding the researcher against overfitting the data and preferring models that are3

good at describing the obtained data, but poor at generalizing and prediction (Myung, Forster,4

& Browne, 2000; Myung & Pitt, 1997; Wagenmakers & Waldorp, 2006). Nevertheless, with5

the recent exception of the Bayes factor t-test, the Bayes factors proposed by Jeffreys (1961)6

have not received much attention, neither by statisticians nor mathematical psychologists.7

One of the reasons for this unfortunate fact is that Jeffreys notation is more accustomed8

to philosophers of logic (Geisser, 1980). In order to make Jeffreys’s work somewhat more9

accessible, Appendix B provides a table with a modern-day translation of Jeffreys’s notation.10

In addition, any scholar new to the work of Jeffreys is recommended to first read the extended11

modern summary by Robert et al. (2009).12

We would like to stress that a Jeffreys Bayes factor is not a mere ratio of likelihood13

functions averaged with respect to a subjective weighting function πi(θi) obtained from a14

within-model perspective. Jeffreys’s development of the Bayes factor resembles an experi-15

mental design for which one studies where the likelihood functions overlap, how they differ,16

and in what way the difference can be apparent from the data. These consideration then yield17

weighting functions from which a Bayes factor needs to be computed. The computations are18

typically hard to perform and might not yield closed form results. These computational is-19

sues were a major obstacle for the Bayesian community, however, Jeffreys understood that20

closed form solutions are not always necessary for good inference; moreover, he was able to21

derive approximate Bayes factors, allowing his exposition of Bayesian inductive reasoning to22

transcend from a philosophical debate into practical tools for scientific scrutiny.23

Modern-day statisticians and mathematical psychologists may lack Jeffreys’s talent to24

develop default Bayes factors, but we are fortunate enough to live in a time in which computer-25

driven sampling methods known as Markov chain Monte Carlo (MCMC: e.g., Gamerman &26

Lopes, 2006; Gilks, Richardson, & Spiegelhalter, 1996) are widely available. This removes27

the computational obstacles one needs to resolve after the weighting functions are specified.28

These tools makes Jeffreys’s method of testing more attainable than ever before.29



JEFFREYS’S HYPOTHESIS TESTS IN PSYCHOLOGY 39

References1

Andraszewicz, S., Scheibehenne, B., Rieskamp, J., Grasman, R. P. P. P., Verhagen, A. J., & Wa-2

genmakers, E.-J. (in press). An introduction to Bayesian hypothesis testing for management3

research. Journal of Management.4

Anscombe, F. J. (1973). Graphs in statistical analysis. The American Statistician, 27 (1), 17–21.5

Bayarri, M., Berger, J., Forte, A., & García-Donato, G. (2012). Criteria for Bayesian model choice6

with application to variable selection. The Annals of statistics, 40 (3), 1550–1577.7

Berger, J. O. (1985). Statistical decision theory and Bayesian analysis. Springer Verlag.8

Berger, J. O. (2006). Bayes factors. In S. Kotz, N. Balakrishnan, C. Read, B. Vidakovic, & N. L. John-9

son (Eds.), Encyclopedia of statistical sciences, vol. 1 (2nd ed.) (pp. 378–386). Hoboken, NJ:10

Wiley.11

Berger, J. O., & Berry, D. A. (1988). Statistical analysis and the illusion of objectivity. American12

Scientist, 76 , 159–165.13

Berger, J. O., & Delampady, M. (1987). Testing precise hypotheses. Statistical Science, 2 , 317–352.14

Berger, J. O., & Mortera, J. (1999). Default Bayes factors for nonnested hypothesis testing. Journal15

of the American Statistical Association, 94 , 542–554.16

Berger, J. O., & Wolpert, R. L. (1988). The likelihood principle (2nd ed.). Hayward (CA): Institute17

of Mathematical Statistics.18

Berkson, J. (1938). Some difficulties of interpretation encountered in the application of the chi-square19

test. Journal of the American Statistical Association, 33 , 526–536.20

Boekel, W., Wagenmakers, E.-J., Belay, L., Verhagen, A. J., Brown, S. D., & Forstmann, B. (in press).21

A purely confirmatory replication study of structural brain-behavior correlations. Cortex.22

Bolt, B. (1982). The constitution of the core: seismological evidence. Philosophical Transactions of23

the Royal Society of London. Series A, Mathematical and Physical Sciences, 306 (1492), 11–20.24

Cook, A. (1990). Sir Harold Jeffreys. 2 April 1891-18 March 1989. Biographical Memoirs of Fellows25

of the Royal Society, 36 , 302–333.26

Dickey, J. M., & Lientz, B. P. (1970). The weighted likelihood ratio, sharp hypotheses about chances,27

the order of a Markov chain. The Annals of Mathematical Statistics, 41 , 214–226.28

Edwards, W., Lindman, H., & Savage, L. J. (1963). Bayesian statistical inference for psychological29

research. Psychological Review, 70 , 193–242.30

Gamerman, D., & Lopes, H. F. (2006). Markov chain Monte Carlo: Stochastic simulation for Bayesian31

inference. Boca Raton, FL: Chapman & Hall/CRC.32



JEFFREYS’S HYPOTHESIS TESTS IN PSYCHOLOGY 40

Geisser, S. (1980). The contributions of Sir Harold Jeffreys to Bayesian inference. In A. Zellner &1

B. Kadane Joseph (Eds.), Bayesian analysis in econometrics and statistics: Essays in honor of2

Harold Jeffreys (pp. 13–20). Amsterdam: North-Holland.3

Gilks, W. R., Richardson, S., & Spiegelhalter, D. J. (Eds.). (1996). Markov chain Monte Carlo in4

practice. Boca Raton (FL): Chapman & Hall/CRC.5

Gino, F., & Wiltermuth, S. S. (2014). Evil genius? How dishonesty can lead to greater creativity.6

Psychological Science, 4 , 973-981.7

Good, I. J. (1980). The contributions of Jeffreys to Bayesian statistics. In A. Zellner (Ed.), Bayesian8

analysis in econometrics and statistics: Essays in honor of Harold Jeffreys (pp. 21–34). Ams-9

terdam, The Netherlands: North-Holland Publishing Company.10

Gradshteyn, I. S., & Ryzhik, I. M. (2007). Table of integrals, series, and products (7th ed.; A. Jeffrey11

& D. Zwillinger, Eds.). Academic Press.12

Huzurbazar, V. S. (1991). Sir Harold Jeffreys: Recollections of a student. Chance, 4 (2), 18–21.13

Jaynes, E. T. (2003). Probability theory: The logic of science. Cambridge: Cambridge University14

Press.15

Jeffreys, H. (1924). The earth, its origin, history and physical constitution. Cambridge University16

Press.17

Jeffreys, H. (1931). Scientific inference. Cambridge University Press.18

Jeffreys, H. (1935). Some tests of significance, treated by the theory of probability. In Proceedings of19

the Cambridge philosophical society (Vol. 31, pp. 203–222).20

Jeffreys, H. (1948). Theory of probability (2nd ed.). Oxford, UK: Oxford University Press.21

Jeffreys, H. (1955). The present position in probability theory. The British Journal for the Philosophy22

of Science, 5 , 275–289.23

Jeffreys, H. (1961). Theory of probability (3rd ed.). Oxford, UK: Oxford University Press.24

Jeffreys, H. (1973). Scientific inference (3rd ed.). Cambridge, UK: Cambridge University Press.25

Jeffreys, H. (1980). Some general points in probability theory. In A. Zellner & B. Kadane Joseph26

(Eds.), Bayesian analysis in econometrics and statistics: Essays in honor of Harold Jeffreys27

(pp. 451–453). Amsterdam: North-Holland.28

Jeffreys, H., & Jeffreys, B. S. (1946). Methods of mathematical physics. Cambridge, UK: Cambridge29

University Press.30

Johnson, V. E. (2013). Revised standards for statistical evidence. Proceedings of the National Academy31

of Sciences of the United States of America, 110 , 19313–19317.32

Klugkist, I., Laudy, O., & Hoijtink, H. (2005). Inequality constrained analysis of variance: A Bayesian33



JEFFREYS’S HYPOTHESIS TESTS IN PSYCHOLOGY 41

approach. Psychological Methods, 10 , 477–493.1

Lewis, S. M., & Raftery, A. E. (1997). Estimating Bayes factors via posterior simulation with the2

Laplace–Metropolis estimator. Journal of the American Statistical Association, 92 , 648–655.3

Liang, F., Paulo, R., Molina, G., Clyde, M. A., & Berger, J. O. (2008). Mixtures of g priors for4

Bayesian variable selection. Journal of the American Statistical Association, 103 (481).5

Lindley, D. V. (1980). Jeffreys’s contribution to modern statistical thought. In A. Zellner (Ed.),6

Bayesian analysis in econometrics and statistics: Essays in honor of Harold Jeffreys (pp. 35–7

39). Amsterdam, The Netherlands: North-Holland Publishing Company.8

Lindley, D. V. (1985). Making decisions (2nd ed.). London: Wiley.9

Lindley, D. V. (1991). Sir Harold Jeffreys. Chance, 4 (2), 10–14, 21.10

Lindley, D. V. (1993). The analysis of experimental data: The appreciation of tea and wine. Teaching11

Statistics, 15 , 22–25.12

Liu, C. C., & Aitkin, M. (2008). Bayes factors: Prior sensitivity and model generalizability. Journal13

of Mathematical Psychology, 52 , 362–375.14

Ly, A., Verhagen, A., Grasman, R., & Wagenmakers, E.-J. (2014). A tutorial on Fisher information.15

Manuscript submitted for publication at the Journal of Mathematical Psychology.16

Marin, J.-M., & Robert, C. P. (2010). On resolving the savage–dickey paradox. Electronic Journal of17

Statistics, 4 , 643–654.18

Mednick, S. (1962). The associative basis of the creative process. Psychological Review, 69 (3),19

220–232.20

Morey, R. D., & Wagenmakers, E.-J. (2014). Simple relation between Bayesian order-restricted and21

point-null hypothesis tests. Statistics and Probability Letters, 92 , 121–124.22

Mulder, J. (in press). Prior adjusted default Bayes factors for testing (in)equality constrained hy-23

potheses. Journal of Mathematical Psychology.24

Myung, I. J., Forster, M. R., & Browne, M. W. (2000). Model selection [Special issue]. Journal of25

Mathematical Psychology, 44 (1–2).26

Myung, I. J., & Pitt, M. A. (1997). Applying Occam’s razor in modeling cognition: A Bayesian27

approach. Psychonomic Bulletin & Review, 4 , 79–95.28

Oberhettinger, F. (1972). Hypergeometric functions. In M. Abramowitz & I. A. Stegun (Eds.),29

Handbook of mathematical functions with formulas, graphs, and mathematical tables (pp. 555–30

566). New York: Dover Publications.31

O’Hagan, A., & Forster, J. (2004). Kendall’s advanced theory of statistics vol. 2B: Bayesian inference32

(2nd ed.). London: Arnold.33



JEFFREYS’S HYPOTHESIS TESTS IN PSYCHOLOGY 42

Ramsey, F. P. (1926). Truth and probability. In R. B. Braithwaite (Ed.), The foundations of mathe-1

matics and other logical essays (pp. 156–198). London: Kegan Paul.2

Robert, C. P., Chopin, N., & Rousseau, J. (2009). Harold Jeffreys’s Theory of Probability revisited.3

Statistical Science, 141–172.4

Rouder, J. N. (2014). Optional stopping: No problem for Bayesians. Psychonomic Bulletin & Review,5

21 , 301–308.6

Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). Bayesian t tests for7

accepting and rejecting the null hypothesis. Psychonomic Bulletin & Review, 16 (2), 225–237.8

Sanborn, A. N., & Hills, T. T. (2014). The frequentist implications of optional stopping on Bayesian9

hypothesis tests. Psychonomic Bulletin & Review, 21 , 283–300.10

Sellke, T., Bayarri, M. J., & Berger, J. O. (2001). Calibration of p values for testing precise null11

hypotheses. The American Statistician, 55 , 62–71.12

Senn, S. (2009). Comment. Statistical Science, 24 (2), 185–186.13

Stephens, M., & Balding, D. J. (2009). Bayesian statistical methods for genetic association studies.14

Nature Reviews Genetics, 10 , 681–690.15

Stulp, G., Buunk, A. P., Verhulst, S., & Pollet, T. V. (2013). Tall claims? Sense and nonsense about16

the importance of height of US presidents. The Leadership Quarterly, 24 (1), 159–171.17

Swirles, B. (1991). Harold Jeffreys: Some reminiscences. Chance, 4 (2), 22–23, 26.18

van Erven, T., Grünwald, P., & de Rooij, S. (2012). Catching up faster by switching sooner: A pre-19

dictive approach to adaptive estimation with an application to the AIC–BIC dilemma. Journal20

of the Royal Statistical Society B, 74 , 361–417.21

Vanpaemel, W. (2010). Prior sensitivity in theory testing: An apologia for the Bayes factor. Journal22

of Mathematical Psychology, 54 , 491–498.23

Wagenmakers, E.-J. (2007). A practical solution to the pervasive problems of p values. Psychonomic24

Bulletin & Review, 14 , 779–804.25

Wagenmakers, E.-J., Grünwald, P., & Steyvers, M. (2006). Accumulative prediction error and the26

selection of time series models. Journal of Mathematical Psychology, 50 , 149–166.27

Wagenmakers, E.-J., Lee, M. D., Rouder, J. N., & Morey, R. D. (2014). Another statistical paradox,28

or why intervals cannot be used for model comparison. Manuscript submitted for publication.29

Wagenmakers, E.-J., Lodewyckx, T., Kuriyal, H., & Grasman, R. (2010). Bayesian hypothesis testing30

for psychologists: A tutorial on the Savage–Dickey method. Cognitive Psychology, 60 , 158–189.31

Wagenmakers, E.-J., Verhagen, A. J., & Ly, A. (2014). How to quantify the evidence for the absence32

of a correlation. Manuscript submitted for publication.33



JEFFREYS’S HYPOTHESIS TESTS IN PSYCHOLOGY 43

Wagenmakers, E.-J., Verhagen, A. J., Ly, A., Matzke, D., Steingroever, H., Rouder, J. N., & Morey,1

R. D. (in press). The need for Bayesian hypothesis testing in psychological science. In2

S. O. Lilienfeld & I. Waldman (Eds.), Psychological science under scrutiny: Recent challenges3

and proposed solutions (pp. ??–??). ??: John Wiley and Sons.4

Wagenmakers, E.-J., & Waldorp, L. (2006). Model selection: Theoretical developments and applica-5

tions [Special issue]. Journal of Mathematical Psychology, 50 (2).6

Wetzels, R., Matzke, D., Lee, M. D., Rouder, J. N., Iverson, G. J., & Wagenmakers, E.-J. (2011).7

Statistical evidence in experimental psychology: An empirical comparison using 855 t tests.8

Perspectives on Psychological Science, 6 , 291–298.9

Wetzels, R., Raaijmakers, J. G., Jakab, E., & Wagenmakers, E.-J. (2009). How to quantify support10

for and against the null hypothesis: A flexible WinBUGS implementation of a default Bayesian11

t test. Psychonomic Bulletin & Review, 16 (4), 752–760.12

Wrinch, D., & Jeffreys, H. (1921). On certain fundamental principles of scientific inquiry. Philosophical13

Magazine, 42 , 369–390.14

Wrinch, D., & Jeffreys, H. (1923). On certain fundamental principles of scientific inquiry. Philosophical15

Magazine, 45 , 368–374.16

Zellner, A. (1980). Introduction. In A. Zellner (Ed.), Bayesian analysis in econometrics and statistics:17

Essays in honor of Harold Jeffreys (pp. 1–10). Amsterdam, The Netherlands: North-Holland18

Publishing Company.19

Zellner, A. (1986). On assessing prior distributions and Bayesian regression analysis with g-prior20

distributions. Bayesian inference and decision techniques: Essays in Honor of Bruno De Finetti,21

6 , 233–243.22

Zellner, A., & Siow, A. (1980). Posterior odds ratios for selected regression hypotheses. In M. Bernardo23

Jose, H. DeGroot Morris, V. Lindley Dennis, & F. Smith Adrian (Eds.), Bayesian statistics:24

Proceedings of the first international meeting held in Valencia (Vol. 1, pp. 585–603). Springer.25

Appendix A

The Shifted Beta Density

26

By the change of variable formula, we obtain the shifted beta density of ρ on (−1, 1)27

with parameters α, β > 028
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1
2B(α, β)

(
ρ+ 1

2

)α−1 (1− ρ
2

)β−1
, (33)

where B(α, β) = Γ(α)Γ(β)
Γ(α+β) is the beta function that generalizes

(n
k

)
to real numbers. By1

setting β = α this yields the symmetric beta density of ρ on (−1, 1) with parameters α > 02

2−2α+1

B(α, α)(1− ρ2)α−1. (34)

Appendix B

Translation of Jeffreys’s Notation in ToP

3

Table B1:: Translation of the notation introduced by Jeffreys (1961, pp. 245–251).

Jeffreys’s notation Modern notation Interpretation
q M0 Null hypothesis or null model
q′ M1 Alternative hypothesis or alternative model
H Background information (mnemonic: “history”)
P (q |H) P (M0) Prior probability of the null model∫
f(α)dα

∫
π(θ)dθ Prior density on the parameter θ

P (q′dα |H) P (M1, θ) Probability of the alternative model and its parameter
P (dα | qH) π0(θ0) Prior density on the parameter withinM0
P (dα | q′αH) π1(θ1) Prior density on the parameter withinM1
P (q | aH) π0(θ0 |x) Posterior density on the parameter withinM0
P (q′dα | aH) π1(θ1 |x) Posterior density on the parameter withinM1
K BF01 The Bayes factor in favor of the null over the alternative
α′, β θ0 = α, θ1 =

(α′
β

)
“Alternative” parameter θ1 =

(function of the old parameter
new parameter

)
gααdα′2 + gβ,βdβ2 I(~θ) Fisher information matrix
P (dαdβ | qαH) π0(θ0) Prior density on the parameter withinM0
P (dαdβ | q′α′βH) π1(θ1) Prior density on the parameter withinM1
P (q | abH) π0(θ0 |x) Posterior density on the parameter withinM0
P (q′ | abH) π1(θ1 |x) Posterior density on the parameter withinM1
f(β, α′) π1(β |α′) Prior of the new given the old prior withinM1

4


