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Abstract5

The concept of Fisher information plays a crucial role in many statistical

applications that are of key importance to mathematical psychologists.

Here we explain Fisher information by illustrating its use across three

different statistical paradigms: first, in the frequentist paradigm, Fisher

information is used to determine the sample size with which we design an

experiment; second, in the Bayesian paradigm, Fisher information is used

to define a default parameter prior; finally, in the minimum description

length paradigm, Fisher information is used to measure model complexity.

Each application is illustrated with simple examples.
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6

Mathematical psychologists develop and apply statistical models in order to describe7

human behavior and understand latent psychological processes. Examples include Stevens’8

law of psychophysics that describes the relation between the objective physical intensity of a9

stimulus and its subjectively experienced intensity (Stevens, 1957); Ratcliff’s diffusion model10
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of decision making that quantifies the different processes that drive behavior in speeded1

response time tasks (Ratcliff, 1978); multinomial processing tree models that decompose2

performance in memory tasks into the contribution of separate latent mechanisms (Batchelder3

& Riefer, 1980; Chechile, 1973), and so on and so forth.4

When applying their models to data, mathematical psychologists may operate from5

within different statistical paradigms and focus on different substantive questions. For in-6

stance, working within the classical or frequentist paradigm a researcher may wish to decide7

upon the number of trials to be presented to a participant in order to estimate the partic-8

ipant’s latent abilities. Working within the Bayesian paradigm a researchers may wish to9

know how to determine a suitable default prior on the model parameters. Working within the10

minimum description length (MDL) paradigm a researcher may wish to compare rival models11

and quantify their complexity. Despite the diversity of these paradigms and purposes, they12

are connected through the concept of Fisher information.13

Fisher information plays a pivotal role throughout statistical modeling, but an accessi-14

ble introduction for mathematical psychologists is lacking. The goal of this tutorial is to fill15

this gap and illustrate the use of Fisher information in the three statistical paradigms men-16

tioned above: frequentist, Bayesian, and MDL. This work builds directly upon the Journal17

of Mathematical Psychology tutorial article by Myung (2003) on maximum likelihood estima-18

tion. The intended target group for this tutorial are graduate students and researchers with19

an affinity for cognitive modeling and mathematical statistics.20

The outline of this article is as follows: To keep this tutorial self-contained, we start21

by establishing the standard notations for probabilistic modeling and introduce two running22

examples featuring the Bernoulli distribution and the normal distribution. The next section23

provides the definition of Fisher information and shows how it can be calculated in general.24

The next three sections exemplify the use of Fisher information for different purposes. Sec-25

tion 1 shows how Fisher information can be used to determine the desired sample size for26

an experiment; Section 2 shows how Fisher information can be used to define a default prior27

on model parameters, and Section 3 shows how Fisher information can be used to measure28

model complexity.29
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Basic Concepts1

For concreteness, consider an experiment comprised of n trials of equal difficulty. The2

goal of the experiment is to determine a participant’s ability to identify particular species of3

animals. On each trial, the participant is presented with a picture of an animal on a computer4

screen and is asked to identify the species. On each trial, the participant can either respond5

correctly or in error. We assume that if the participant does not recognize the species, the6

probability of guessing the correct answer is close to zero.7

Notation Let n denote the planned number of trials in an experiment and let ~X =8

(X1, . . . , Xn) denote a future trial sequence that will be presented to a participant. More9

generally, we call ~X a random variable as we are uncertain about its outcomes. In a typical10

experimental set up, we design each trial Xi to be a replication of a prototypical trial, which11

we denote by X. The prototypical trial in our running example can take on two outcomes12

x, and we write x = 1 when the participant responded correctly, and x = 0 otherwise. Simi-13

larly, we denote ~x = (x1, x2, . . . , xn) for an outcome of the n-trial sequence ~X. For example,14

after a participant completed the experiment with n = 10 trials, one possible outcome is15

~x = (1, 0, 0, 0, 0, 0, 0, 1, 0, 0), implying that the participant responded correctly only on the16

first and the eighth trial. In order to model the chance with which this outcome occurs we17

construct a probabilistic model: the Bernoulli model.18

Example 1 (The Bernoulli model). To model the behavior of the participant, we first con-19

struct a model for all possible outcomes of the prototypical trial X, assuming all such outcomes20

are caused by the participant’s general “species recognition ability”, which we denote by θ. This21

latent ability θ relates to the possible outcomes as follows:22

f(x | θ) = P (X = x) = θx(1− θ)1−x, where x = 0 or x = 1. (1)

We call this relation a probability density function (pdf).1 The pdf allows us to deduce the23

1Formally, Eq. (1) defines a probability mass function, as X takes on discrete values; for brevity we do not
distinguish between the two here.
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chances with which an outcome occurs when the latent ability is known. Hence, if θ = 1 the1

participant always correctly recognizes the animal species, as the chance of a correct response2

is 1. Conversely, if θ = 0 the participant never correctly recognizes the animal species, as3

the chance of a correct response is 0. In reality, a participant’s latent ability is likely to fall4

somewhere in between these two extremes, θ ∈ (0, 1). The relation Eq. (1) describes how a5

participant’s true latent ability θ “causes” the behavioral outcomes ~x. This particular relation6

is known as the Bernoulli model, denoted X ∼ Ber(θ). As the full trial sequence ~X consists7

of n independent and identically distributed (i.i.d.) replications of X we can extrapolate a pdf8

for the vector-valued outcomes ~x by taking n products of Eq. (1):9

f(~x | θ) = θx1(1− θ)1−x1︸ ︷︷ ︸
X1∼Ber(θ)

· . . . · θxn(1− θ)1−xn︸ ︷︷ ︸
Xn∼Ber(θ)

= θΣn
i=1xi(1− θ)n−Σn

i=1xi . (2)

Note that with n = 10 we have 210 = 1024 possible outcomes ~x for the experiment ~X.10

Typically, we do not report the raw outcome series ~x but only the number of successful11

responses y. We can view y as an outcome of the summary statistic Y =
∑n
i=1Xi. A statistic12

is by definition a function of possible outcomes and it therefore inherits the random mechanism13

of ~x, in this case a participant’s latent ability θ. The pdf that Y inherits from Eq. (2) is called14

a binomial distribution Y ∼ Bin(θ, n = 10). For example, when θ = 0.4 the chances of the15

outcomes are then given by16

P (Y = y) = f(y |n = 10, θ = 0.4) = 10!
y!(10− y)! (0.4)y(0.6)10−y for y = 0, 1, . . . , 10. (3)

Note that Y can only take on 11 values compared to the 210 = 1024 outcomes of ~X, a17

compression rate of almost a hundred, due to the fact that Y ignores the order within ~x,18

compare Eq. (2) with Eq. (4). Fig. 1 shows the chances corresponding to the outcomes of Y19

with θ = 0.4.20

Fig. 1 emphasizes the nature of probabilistic modeling as no possible outcome is entirely21
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Figure 1. The chances of observing a particular number of successes in a binomial experiment with
n = 10 and θ = 0.4. The area under the bars sum to one. Note that, when a participant’s latent
ability is truly θ = 0.4 an outcome of Y = 0 is still possible with chance P (Y = 0 | θ = 0.4) = 0.006.

excluded. In particular, even when a participant’s latent ability is truly θ = 0.4 there is1

a slim chance, P (Y = 0 | θ = 0.4) = 0.006, that she will respond incorrectly on all trials.2

More generally, any number of trials n and latent ability θ between zero and one would yield3

outcomes of Y with the following probabilities:4

f(y |n, θ) = n!
y!(n− y)!θ

y(1− θ)n−y for y = 0, 1, . . . , n, for all θ ∈ (0, 1). (4)

Equivalently, we say that the number of successes is modeled according to a binomial model,5

which we denote by Y ∼ Bin(θ, n). Moreover, this interpretation of Eq. (4) is in line with the6

idea that any outcome y is generated from the latent ability θ; schematically, θ Bin(θ,n)=⇒ y. ♦7

Likelihood In practice, we only observe data and do not know θ. To infer something about8

a participant’s latent ability θ, we invert the data generating process by exchanging the roles9

of y and θ within a pdf. For example, when a participant responded correctly on seven out10

of ten trials, we plug this information into Eq. (4) and consider it as a function of possible11

latent abilities θ:12
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Figure 2. The likelihood function based on observing seven y = 7 out of ten n = 10 correct responses
in a binomial experiment. The MLE equals y/n = 0.7. Note that the likelihood function is a continuous
function of the parameter θ, whereas the observed data are discrete.

L(θ |n = 10, y = 7) = 10!
7!3!θ

7(1− θ)3. (5)

This function is shown in Fig. 2. To distinguish Eq. (5) from a pdf, we call it a likelihood1

function. Fisher used the likelihood function to develop his general purpose method of maxi-2

mum likelihood estimation (Fisher, 1912; Fisher, 1922; Fisher, 1925; Myung, 2003). The idea3

is to use the modeled relation f(~x | θ) to “reverse engineer” the most likely value of θ that4

could have been responsible for the observed data. It can be easily shown that the maxi-5

mum likelihood estimator (i.e., MLE) for the Bernoulli model is given by the sample mean6

θ̂ = 1
n

∑n
i=1Xi.7

Example 2 (The n-trial Normal Model). Pre-experimental: As a second example we8

consider the normal model, which forms the building block for common models in psychology9

(e.g., t-tests, ANOVA, and linear regression). In this model, the trial sequence ~X consists of10

n replications of a prototypical random variable X with a pdf given by11

f(x |µ, σ) = 1√
2πσ2

exp
(
−x− µ2σ2

2)
, (6)
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where the parameter vector consists of the population mean and the population variance ~θ =1

(µ, σ2). To extrapolate the pdf for the n-trial experiment ~X we exploit the i.i.d. assumption2

by taking n products of Eq. (6), which yields:3

f(~x | ~θ) = (2πσ2)−
n
2 exp

(
− 1

2σ2

n∑
i=1

(xi − µ)2
)
. (7)

We then say that the possible outcomes follow a normal distribution, X ∼ N (µ, σ2).24

Inference: To invert the generating model we simply plug the observed data ~x the5

relation into Eq. (7) and the resulting likelihood function then consists of a two-dimensional6

surface spanned by both µ and σ2. Maximizing the likelihood is equivalent to maximizing the7

natural logarithm of the likelihood function, i.e., log f(~x | ~θ), a function shown in Fig. 3 for8

fictitious data.9

For the normal model, the MLE consists of a pair µ̂, σ̂2: the sample mean µ̂ = X̄ = 1
nXi10

and σ̂2 = 1
n

∑n
i=1(Xi − X̄)2. See the online appendix for a derivation. ♦11

In Section 1 we will show how Fisher information is related to the performance of12

the aforementioned maximum likelihood estimators. First, however, we introduce the general13

definition of Fisher information and show how it can be computed for the two models discussed14

above.15

Fisher Information16

Definition of Fisher Information The (unit) Fisher information is a measure for the17

amount of information that is expected within the prototypical trial X about the parameter18

of interest θ. It is defined as the variance of the so-called score function, i.e., the derivative19

of the log-likelihood function with respect to the parameter,20

2This is a slight abuse of notation; however, we believe the meaning is well understood, as we assume that
the random variable ~X = X1, . . . , Xn consists of n i.i.d. copies of a prototypical trial X.
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Figure 3. Log-likelihood function for 100 simulated normally distributed observations ~x. The log-
likelihood is a surface spanned by the two parameters µ and σ2. On the x-axis is the population mean,
and on the y-axis is the population standard deviation. The MLE

(
µ̂
σ̂

)
=
(2.32

2.68
)
corresponds to the

projection of the highest point on the log-likelihood surface onto the parameter space.

I(θ) = Var
( d

dθ log f(X | θ)︸ ︷︷ ︸
Score function

)
or as I(θ) = −E

(
d2

dθ2 log f(X | θ)
)
, (8)

under additional (mild) regularity conditions. To calculate I(θ) we keep θ fixed and take the1

expectation with respect to all possible outcomes x:2

I(θ) = −E
(

d2

dθ2 log f(X | θ)
)

= −
∫
X

( d2

dθ2 log f(x | θ)
)
f(x | θ) dx, (9)

where X denotes the outcome space of X. When X is discrete, we replace the integral by a3

summation, see Eq. (10) below.4

Example 1 (Fisher Information in the Bernoulli Model, Continued). To calculate the infor-5

mation of a Bernoulli distribution, we take Eq. (1) and plug this into Eq. (9) which yields:6
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Figure 4. The Fisher information as a function of θ within the Bernoulli model. As θ reaches zero or
one the expected information goes to infinity. When θ = 1 the outcomes will always be 1, therefore
clearly conveying this information within the data.

I(θ) = −
1∑

x=0

d2

dθ2 logP (X = x)P (X = x) = −
(
− 1
θ2 θ −

1
(1− θ)2 (1− θ)

)
= 1
θ(1− θ) . (10)

Hence, when a participant’s true latent ability is θ∗ the expected information about her ability1

is then given by I(θ∗) = 1
θ∗(1−θ∗) for a prototypical trial, for instance, I(0.5) = 4 when2

θ∗ = 0.5. Thus, the Fisher information contains two aspects of the model: (1) the sensitivity3

of the relationship f(x | θ) with respect to the parameter θ expressed by the score function at4

the true value θ∗, and (2) how this sensitivity at θ∗ varies over (all possible) outcomes x a5

model can generate according to f(x | θ∗). This dependence on the true parameter value θ∗ is6

shown in Fig. 4.7

As the full trial sequence ~X consists of n i.i.d. replications of the prototypical X we8

formally refer to Eq. (8) as the unit Fisher information. To extrapolate the information about9

θ within n trials we simply multiply the unit information by n, In(θ) = nI(θ). For the 10-10

trial Bernoulli model, this means In(θ) = 10
θ(1−θ) . This connection can be formally shown by11

exploiting the i.i.d. assumption and by computing the integral Eq. (8) with the pdf Eq. (2)12

instead.13

Furthermore, we can also use Eq. (8) to calculate the Fisher information about θ con-14
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tained in the summary statistic Y for which we also get IY (θ) = 10
θ(1−θ) = In(θ). This means1

that no information is lost when we infer θ from the summary statistic Y rather than from2

the full trial sequence ~X. ♦3

Unit Fisher Information Within an Observed Sample The expected (unit) Fisher4

information as defined in Eq. (8) is an weighted average over all the possible outcomes of X.5

We might, however, be interested in the observed (unit) Fisher information within an observed6

sample ~x instead. We then replace the expectation in Eq. (9) by its empirical version7

IObs(θ) = − 1
n

n∑
i=1

d2

dθ2 log f(xi | θ). (11)

For example, if we observed 7 successes out of 10 Bernoulli trials we have:8

IObs(θ) = 1
10

10∑
i=1

xi
θ2 + n− xi

(1− θ)2 = 1
10

( 7
θ2 + 3

(1− θ)2

)
. (12)

If the data are truly governed by θ∗ = 0.7, we would indeed expect to see 10θ∗ = 7 successes9

and 10(1− θ∗) = 3 failures and the observed and expected Fisher information then coincide:10

IObs(θ∗) = 1
10

( 10θ∗

(θ∗)2 + 10(1− θ∗)
(1− θ∗)2

)
= 10

10

(
θ∗

(θ∗)2 + (1− θ∗)
(1− θ∗)2

)
= 1
θ∗(1− θ∗) = I(θ∗). (13)

On the other hand, if θ∗ = 0.15 the probability of seeing 7 out of 10 heads is about .01 and we11

then see that there is a big discrepancy between expected and observed Fisher information,12

I(0.15) ≈ 8 versus IObs(0.15) = 31.5 respectively. This might imply that the hypothesis13

θ∗ = 0.15 was wrong to begin with.14

In more realistic cases, we do not know θ∗ and to calculate the observed Fisher infor-15

mation we replace θ∗ by the MLE, which yields IObs(θ̂). For the examples we discuss this16

coincides with plugging in the MLE into the expected Fisher information, i.e., I(θ̂) = IObs(θ̂).317

3This equality holds for distributions that belong to the so-called exponential family, see Huzurbazar (1949).
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Example 2 (Fisher Information in the Normal Model, Continued). When there are multiple1

parameters of interest, say ~θ = (θ1, . . . , θd), the Fisher information turns into a d× d matrix.2

The i, j-th element of this matrix is then given by3

I(~θ)i,j = Cov
(
∂

∂θi
log f(X | ~θ), ∂

∂θj
log f(X | ~θ)

)
or I(~θ)i,j = −E

(
∂2

∂θi∂θj
log f(X | ~θ)

)
,

(14)

under additional (mild) regularity conditions. For example, when X is normally distributed4

with both ~θ =
( µ
σ2
)
unknown, the unit Fisher information matrix I(~θ) turns into a 2×2 matrix,5

consisting of expectations of partial derivatives:6

I(~θ) = −E

 ∂2

∂µ∂µ log f(x |µ, σ2) ∂2

∂µ∂σ2 log f(x |µ, σ2)
∂2

∂σ2∂µ log f(x |µ, σ2) ∂2

∂σ2∂σ2 log f(x |µ, σ2)

 =

 1
σ2 0

0 1
2σ4

 , (15)

see the online appendix for a derivation. The off-diagonal elements are in general not zero,7

unless the pdfs are symmetric around its location µ. When the data are modeled as n i.i.d.8

normal distributions, the expected Fisher information within ~X is then given by In(~θ) = nI(~θ).9

As in the Bernoulli model, the observed (unit) Fisher information can be calculated by plugging10

the MLE σ̂ into its expected version Eq. (15). ♦11

In this section we showed how to calculate the Fisher information, a measure for the12

expected amount of information within the trial sequence ~X about the parameter of interest13

θ. We now highlight the role of Fisher information in three different statistical paradigms: in14

the frequentist paradigm, Fisher information is used to determine the sample size with which15

we design an experiment; in the Bayesian paradigm, Fisher information is used to determine16

a default prior; and in the minimum description length paradigm, Fisher information is used17

to measure model complexity.18
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1. Using Fisher Information to Determine Sample Size1

Introduction As mentioned above, a statistical model for a psychological process can be2

thought of as a particular mapping f between an individual’s latent properties θ and that3

individual’s possible behavior, i.e., the outcomes ~x, schematically: θ f(~x | θ)=⇒ ~x. Consequently,4

when we know an individual’s latent ability θ, we then know the chances with which all5

possible outcomes ~x occur (see the discussion below Eq. (4)).6

In practice, however, we only observe a single outcome ~x of size n and have to infer θ7

instead. We write θ∗ for the true value of the parameter θ that uses the relationship f(~x | θ)8

to generate data ~x. The goal of classical or frequentist point-estimation is to provide an9

educated guess of the true value θ∗ by applying an estimator (i.e., a function), T = t( ~X), to10

an anticipated outcome ~x.11

In this section we discuss how Fisher information can be used to determine the (asymp-12

totically) least number of trials n that needs to be presented to a participant such that an esti-13

mator yields estimates at a certain level of accuracy. As n is decided upon pre-experimentally,14

we are uncertain of the outcomes of T . The randomness within T is inherited from the data15

that are assumed to be governed by f(~x | θ) and the participant’s true latent ability θ∗. Fur-16

thermore, we call an observed outcome of T an estimate, which we denote as t(~x).17

For instance, in Example 1 we infer a participant’s latent ability θ using the mean18

estimator X̄ = 1
n

∑n
i=1Xi and write x̄ for the sample mean, an outcome of X̄. As Example 119

concerns an experiment we have to choose the number of trials n we plan to present to a20

participant.21

Below we first show how n can be determined by the following scheme: (i) choose an22

estimator on which to base our inference, (ii) check whether this estimator is consistent, (iii)23

derive its sampling distribution, and (iv) derive n based on the sampling distribution for a24

certain target level of accuracy. We then apply this scheme to the normal model and show25

how it can be simplified by using the MLE in conjunction with the Fisher information.26

Measuring the Performance of an Estimator: Consistency, Sampling Distribu-27

tions, and Sample Size Determination Step (i): Choose an estimator When the28
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trial sequence ~X is assumed to be distributed according to the Bernoulli model, X ∼ Ber(θ),1

as in the animal discrimination task, we typically infer θ using the mean estimator X̄ =2

1
n

∑n
i=1Xi. Step (ii): Assess consistency The general belief is that the mean estima-3

tor is consistent, meaning that it is expected to extract more information about θ from an4

anticipated sample ~x as the number of trials n increases. This qualitative behavior can be de-5

duced by studying the (asymptotic) mean and variance of the estimator, as the next example6

illustrates.7

Example 1 (Consistent Estimation within the Bernoulli Model, Continued). Use θ∗ to denote8

a participant’s unknown true latent ability, which we plan to estimate with the mean estimator9

X̄. To study the expected behavior of a generic estimator T on the anticipated data, we average10

its possible outcomes across the sample space, resulting in the mean of the estimator: E(T ).11

To do so for T = X̄, we use the linearity of the expectation and the i.i.d. assumption to12

express E(X̄) in terms of the mean of the prototypical trial X:13

E(X̄) =E 1
n

n∑
i=1

Xi = 1
n

n∑
i=1

E(Xi)
i.i.d.= n

n
E(X) (16)

=
1∑

x=0
xf(x | θ∗) Eq. (1)= 1θ∗ + 0(1− θ∗) = θ∗. (17)

This implies that the mean estimator E(X̄) is unbiased; however, to prove that X̄ is consistent14

we also need to show that the anticipated outcomes of the estimator to concentrate near θ∗ as15

n increases.16

To this end we need to study the variance of T . In particular, to calculate Var(X̄) we17

once again exploit the i.i.d. assumption and the fact that the variance of the prototypical X18

is given by Var(X) = θ∗(1− θ∗):19

Var(X̄) =Var
(

1
n

n∑
i=1

Xi

)
= 1
n2

n∑
i=1

Var(Xi)
i.i.d.= nVar(X)

n2 = θ∗(1− θ∗)
n

. (18)

Thus, the variance of X̄ shrinks to zero as the number of trials n grows indefinitely. This20
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implies that the chance that X̄ yield an estimate close to the true value goes to one and we1

therefore call X̄ consistent.4 ♦2

Recall that when a participant’s true latent ability is given by θ∗ = 0.4, there is a slim3

but non-zero chance that the participant never responds correctly in the animal discrimination4

task (y = 0; see Fig. 4). Such an extreme outcome will yield the estimate x̄ = 0, which is5

inaccurate as it is far from the true value θ∗ = 0.4. Hence, probabilistic models do not afford6

iron-clad guarantees: unrepresentative data will lead to inaccurate estimates.7

However, Eq. (18) does justify the idea that an empirical scientist can obtain a more8

accurate measurement of a participant’s latent ability θ by increasing n. In other words,9

consistency of X̄, within the Bernoulli model, implies that the chance of X̄ yielding an10

inaccurate estimate goes to zero, whenever the number of trials n is sufficiently large.11

Step (iii): Derive sampling distribution Clearly, we cannot detain a participant12

and get her to sit through a million trials or more. Hence, to quantify “sufficiently large” we13

first obtain the sampling distribution of the estimator.14

Example 1 (Sampling Distribution of the Sample Mean within the Bernoulli Model, Contin-15

ued). Within the Bernoulli model we can consider X̄ as a rescaling of the number of successes16

in n trials, since X̄ = 1
nY , where Y =

∑n
i=1Xi. Consequently, by Eq. (4) we know that the17

sampling distribution of X̄ is essentially a binomial with outcomes rescaled by the factor18

1
n . For instance, with n = 10 the estimator can take on the estimates (i.e., the outcomes)19

0, 0.1, 0.2, . . . , 0.9, 1.0 which corresponds to 0, 1, 2, . . . , 9, 10 number of successes y. ♦20

This sampling distribution quantifies how both the true value of the parameter θ and21

the number of trials n affect the probable outcomes of the estimator X̄, schematically:22

(θ, n) Bin(θ,n)=⇒ x̄.5 As experimenters we cannot control θ, but we can lower the chances of23

inaccurate estimates by increasing n. Step (iv): Derive n In the following example we24

4Formally, we call an estimator T for θ consistent, if for every possible true value θ∗, the estimator converges
in probability, i.e., limn→∞ P (|t(~x)− θ∗| ≥ ε) = 0, where n refers to the number of trials involved in a sequence
of outcomes ~x.

5Note the direction, knowing the true value θ∗ allows us to deduce the chances with which the estimates
occur, and not the other way around. A sampling distribution does not give us the probabilities of θ given an
observed estimate.
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show how the sampling distribution can be used to pre-experimentally deduce the number of1

trials n for a pre-specified level of accuracy.2

Example 1 (Determining the Number of Trials for the Sample Mean within the Bernoulli3

Model, Continued). We wish to determine the number of trials n for an experiment ~X with4

X ∼ Ber(θ) such that the chance of obtaining an estimate that is more than 0.1 distance5

away from the true value is no larger than, say, α = 0.25, regardless of the exact true value of6

θ. This means that we require n such that P
(
X̄ ∈ [θ∗ ± 0.1]

)
≥ 0.75 for every possible true7

value θ∗. To translate this targeted level of accuracy into a sample size n we use properties of8

the sampling distribution of X̄ as follows:9

From consistency we know that the sampling distribution will increasingly concentrated10

its estimates around the true value as n grows, since Var(X̄) = Var(X)
n . Hence, when the11

single-trial variance Var(X) is already low to begin with we require fewer trials to the target12

level of accuracy. For instance, when θ∗ = 0.99, almost all outcomes will be 1 and the resulting13

estimate x̄ is also approximately 1 which is close to the true value.14

On the other hand, when the single-trial variance is large, we require more trials to sat-15

isfy the aforementioned requirement. The goal is, thus, to tame the variance of the estimator16

and we should therefore set out to minimize the largest variation Var(X) = θ∗(1− θ∗), which17

occurs at θ∗ = 0.5. By plugging in θ = 0.5 in the sampling distribution Eq. (4) we deduce that18

we require the participant to sit through at least n = 25 trials for the specified requirement to19

hold.20

In other words, suppose the true value is θ∗ = 0.5 and we were to replicate the experi-21

ment ~X say, m = 100 times yielding as many estimates x̄1, . . . , x̄m. Further suppose that each22

replication experiment consists of n = 25 trials. Then we expect that 75 of the 100 replicated23

estimates will fall between 0.4 and 0.6, satisfying the requirement P
(
X̄ ∈ [θ∗ ± 0.1]

)
≥ 0.75.24

♦25

Intermediate Conclusion In the above example we introduced concepts such as a “true26

value” θ∗ for the parameter, consistency, and the sampling distribution of an estimator and27

showed how these concepts can be used in a pre-experimental analysis. In particular, we28
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showed that a specific estimator, X̄, is consistent for θ, by studying the mean and the variance1

of this estimator. Furthermore, we showed how consistency of the mean estimator can be2

exploited to determine the number of trials n for an experiment at a pre-specified level of3

accuracy by controlling the largest variance at θ∗ = 0.5. Note that Var(X̄) Eq. (10)= 1
nI(θ) and4

this worst-case scenario was therefore already hinted at in Fig. 4, as the data are then expected5

to be least informative. In the remainder of the section we further explore the connection of6

frequentist estimation theory and Fisher information by comparing two estimators within the7

normal model.8

Evaluating the Performance of an Estimator Within More Complex Models9

Step (i): Choose an estimator In more complex models, there are often several viable10

estimators for a parameter of interest. For instance, if the data are modeled according to11

a normal distribution, i.e., X ∼ N (µ, σ2), we can then use both the mean X̄ and median12

estimator M for µ. This is due to the fact that µ is not only the population mean, but13

also the population median. Furthermore, estimates of the mean and the median estimator14

will typically differ. From a design point of view, we prefer the estimator that requires the15

least number of samples to distill a certain amount of information about µ. Step (ii)+(iii):16

Assessing consistency and deriving the sampling distributions First we show that17

within the normal model both the X̄ and M are consistent for µ by considering the means18

and variances of these estimators.19

Example 2 (Mean and Variances of the Sample Mean and Sample Median within the Normal20

Model, Continued). When X ∼ N (µ, σ2) the mean estimator X̄ has mean E(X̄) = µ∗ and21

variance Var(X̄) = σ∗2

n , whatever the true values of µ and σ2. This can be shown as in22

Eq. (16) and Eq. (18). Moreover, a sum of normals is also normal, from which it follows23

that the sampling distribution of the mean estimator is also normal, X̄ ∼ N (µ∗, σ∗2n ), this is24

a particular special case.25

More commonly, however, we cannot derive the sampling distribution of an estima-26

tor exactly, that is, for finite n and we then resort to so-called large-sample approximations.27

In particular, instead of deriving the sampling of the median estimator exactly we call upon28
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Corollary 21.5 from van der Vaart (1998), which tells us that the asymptotic sampling dis-1

tribution of median estimator is also normal, that is, M  N
(
µ∗, 2πσ∗2

4n

)
, where the symbol2

 conveys that this equality only holds for large enough n. Note that the variances of both3

estimators X̄,M tend to zero with the number of trials n increases. ♦4

Step (iv): Derive n Thus, both X̄ and M are consistent estimators for µ, and we5

can, therefore, determine, for each of these estimators, the number of trials that are required6

to reach a targeted level of accuracy.7

Example 2 (Determining the Number of Trials n within the Normal Model When the Vari-8

ance is Known, Continued). We wish to determine the number of trials n for an experiment ~X9

with X ∼ N (µ, 1) such that the chance of obtaining an estimate that is less than 0.2 distance10

away from the true value µ∗ is 1− α = 95.8%, regardless of the exact true value of µ.11

To this end we exploit the fact that the estimators have an (asymptotically) normal12

sampling distribution. More specifically, we know that a probability of 95.8% of a normal13

distribution corresponds to two standard deviations of X̄ away from the mean of the estimator,14

the true value µ∗. Hence, we therefore translate the requirement P
(
X̄ ∈ [µ∗ ± 0.2]

)
≤ 0.04215

into Var(X̄) ≤ 0.01. By solving Var(X̄) = σ2

n = 1
n = 0.01 we see that we require at least16

n = 100 trials if we choose the mean estimator X̄ to estimate µ.17

Similarly, as the asymptotic distribution of the median estimator M is also normal, we18

use the same translation of the targeted accuracy 1−α = 0.958 in terms of the quantiles of a19

normal distribution with an asymptotic variance as derived in the previous example. Solving20

Var(M) 2π
4n = 0.01, we deduce that we require at least n = 157 trials to estimate µ whenever21

we use M . Hence, we therefore prefer the mean estimator X̄ over the median estimator M :22

the mean estimator X̄ is able to extract more information about µ from n = 100 trials than23

the median estimator. ♦24

Note that we approximated the exact sampling distribution of the median estimator25

by its asymptotic version. This simplification is applied commonly to most estimators as the26

exact sampling distribution is typically intractable. In this example, we replaced the exact27

sampling distribution of M by a normal distribution that is fully specified by its mean and28
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variance, i.e., M  N
(
µ∗, 2π

4n

)
. Subsequently, we translated the targeted accuracy of the1

estimator into the quantiles of this normal sampling distribution, N
(
µ∗, 2π

4n

)
, to calculate the2

required sample size n.3

Hence, this approximation of n can be applied to any estimator that has an asymptotic4

normal sampling distribution for which we have to identify the corresponding asymptotic5

mean and variance. In particular, this holds true for the MLE as shown below. Recall that6

X̄ is also the MLE for µ whenever the data are modeled according to a normal distribution.7

Computational Advantage of the MLE In general, the MLE θ̂ for θ within regular8

models6 is: Step (ii) consistent and Step (iii) has an asymptotically normal sampling9

distribution with an asymptotic mean given by the true value of the parameter, thus, it10

is “aimed” at the right value and with an asymptotic variance given by the inverse Fisher11

information, i.e.,12

θ̂  N
(
θ∗,

I−1(θ∗)
n

)
or equivalently, θ̂  θ∗ + ε with ε ∼ N

(
0, I

−1(θ∗)
n

)
, (19)

where I−1(θ∗) is the inverse unit Fisher information at the true value θ∗ of the parameter13

that governs the possible outcomes. The latter formulation of Eq. (19) can be thought of14

as a linear regression in which the MLE regresses to the true value of the parameter with15

an error determined by the inverse Fisher information. In particular, note that this error16

disappears when the sample size n grows indefinitely, which confirms the claim that the MLE17

is consistent.18

Note that Eq. (19) is not that surprising for X̄ as the central limit theorem states that19

the asymptotic sampling distribution of the mean estimator converges to a normal distribution20

X̄  N
(
E(X), Var(X)

n

)
, where E(X) and Var(X) refer to the population mean and the21

population variance respectively. The statement of the central limit theorem, however, is22

only restricted to mean estimators, while Eq. (19) also generalizes to other estimators as well:23

6Regular models are models f(x | θ) that depend smoothly on the parameter θ, such that the Fisher infor-
mation is non-zero and bounded for every θ not on the boundary, see van der Vaart (1998, pp. 61-64).
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Example 2 (The MLE for σ2 within the Normal Model, Continued). In many cases, we1

have to infer both the population mean and variance. If we choose the MLE for σ2, that is2

σ̂2 = 1
n

∑n
i=1(Xi − X̄)2 then Eq. (19) tells us that σ̂2  N (σ2∗, 2σ4∗

n ), regardless of the true3

value σ2∗ of σ2.4

In the particular case that the data are modeled according to a normal distribution,5

X ∼ N (µ, σ2), we can actually derive the sampling distributions of σ̂2 exactly and compare6

it to the approximation given in Eq. (19). To do so, we use the fact that the sums of squares7

divided by σ2 have a χ2-distribution. As a result of this calculation we conclude that E
(
σ̂2) =8 (

1− 1
n

)
σ2∗ and that Var

(
σ̂2) =

(
1− 1

n

)
2

σ4∗n = (1− 1
n) I

−1(σ2∗)
n , regardless of the true values9

of µ and σ2.10

Note that the MLE is biased, i.e., E
(
σ̂2) =

(
1− 1

n

)
σ2∗ and that this bias of 1

nσ
2∗11

can be made arbitrarily small regardless of the true value of σ2 by choosing n large enough.12

Similarly, by choosing n large enough we can get the variance of the MLE Var(σ̂2) close to13

the inverse Fisher information. Hence, this confirms that the inverse Fisher information is14

indeed a quite accurate approximation of the exact variance of the MLE. ♦15

This last example allows us to view Eq. (19) as an extension of the central limit theorem16

to the MLE with an asymptotical mean and variance given by the true value of the parameter17

and the inverse Fisher information, respectively. In the example above Eq. (19) we also saw18

the merits of choosing the estimator with the lower asymptotic variance as this lower variance19

leads to smaller sample size n we require a participant to sit through.20

Estimator Selection by Fisher Information Apart from being computationally conve-21

nient, the use of the MLE as an estimator for the parameter can also be theoretically justified22

by the Hájek-LeCam convolution theorem (Hájek, 1970; Inagaki, 1970).7, which guarantees23

that the sample size n derived from the MLE is (asymptotic) minimal.24

The Hájek-LeCam convolution theorem states that whenever we choose to model the25

relationship f(x | θ) between the data and the latent property θ such that the Fisher in-26

formation exists for every possible true value θ∗ (not on the boundary), then every regular27

7See Ghosh (1985) for a beautiful review in which this theorem is related to the more popular, but also more
restricted Cramér-Rao information lower bound derived by Rao (1945), Cramér (1946), and Fréchet (1943).
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estimator8, such as the median estimator M within the normal model and the MLE, can1

be decomposed into an independent sum of an arbitrary random variable W and a normally2

distributed random variable ε that has a variance given by the inverse Fisher information.3

That is, any regular estimator T can be written as:4

T  W + ε, where ε ∼ N
(

0, I
−1(θ∗

n
)
)
. (20)

when n is sufficiently large. Due to the independence of W and ε, this implies that the5

asymptotic variance of any regular estimator T is given by Var(T ) = Var(W ) + Var(ε) =6

Var(W ) + I−1(θ∗)
n . Furthermore, as the variance of W cannot be negative we know that the7

asymptotic variance of any regular estimator is therefore at least the inverse Fisher information8

at the true value of θ. Clearly, this is the case for the MLE, Eq. (19), as the true value θ∗9

takes on the role of W , which does not vary within the frequentists’ framework, Var(W ) = 0.10

Hence, of all regular estimators the MLE has the lowest asymptotical variance and the sample11

size determined based its sampling distribution is therefore the lowest. This means that the12

MLE is expected to be (asymptotically) efficient in extracting all the information about the13

parameter of interest from the anticipated data.14

Summary of Section 1 We discussed how the MLE in conjunction with the Fisher in-15

formation can be used to determine the number of trials n that are to be presented to a16

participant in order to estimate the latent properties θ from observed behavior ~x within a17

statistical model f(~x | ~θ) given a targeted level of accuracy 1− α.18

This method of sample size determination was justified by the Hájek-LeCam convolution19

theorem, which states that the resulting sample size is (asymptotically) minimal, if we choose20

to model the relationship f(x | θ) between the data and the latent property θ smoothly, that21

is, whenever the Fisher information is non-zero and finite for every possible true value θ∗ that22

does not lie on the boundary of the parameter space.23

8Regular estimators are estimators that have a limiting distributions that depends smoothly on the parame-
ters, see Bickel, Klaassen, Ritov, and Wellner (1993) for a challenging, almost agonizing account. Furthermore,
see Beran (1995) for a discussion of the convolution theorem and the bootstrap.



A TUTORIAL ON FISHER INFORMATION 21

2. Using Fisher Information to Define a Default Prior According to1

Jeffreys’ Rule2

Introduction In this section we discuss the role Fisher information plays in Bayesian statis-3

tics. The Bayesian estimation procedure proceeds as follows: Step 0 Propose a model that4

contains a parameter θ. For instance, one could choose the Bernoulli model in Example 15

which serves as the running example for the next two steps.6

Step 1 Extend the model by assigning the parameter a distribution, denoted g(θ), prior7

to seeing the data. We can use g(θ) to incorporate previous findings about θ. Alternatively,8

we can use g(θ) to incorporate expert knowledge, and we can refer to g(θ) as the expert’s9

prior beliefs. This implies that we consider θ as an additional random variable for which10

we can make probabilistic statements. Step 2 Employ Bayes’ theorem (see Eq. (21) below)11

to update knowledge about the parameter θ in light of the observed data. Bayes’ theorem12

indicates how data should modify prior beliefs about θ to yield a posterior belief, measured13

by a posterior distribution g(θ | ~X = ~x), schematically: θ g(θ |
~X=~x)⇐= ~x. If needed, the posterior14

distribution can be summarized by a point estimate and a credible interval, which reflects the15

uncertainty of the estimate.16

In sum, the goal of coherently updating information using the observed data about17

the parameter of interest reduces to an application of Bayes’ theorem. To this end, we first18

have to extend the model with a prior distribution g(θ) which might be unavailable when19

we venture into novel research. To nonetheless take advantage of the Bayesian machinery,20

one might be tempted to construct a “flat” or uniform prior distribution that assigns equal21

probability to each parameter value.22

We start this section with the adoption of this flat prior to elaborate on the role of23

Bayes’ theorem in Step 2. We then show the flaws of flat priors as they lead to conclusions24

that depend on the arbitrary way in which the problem is represented. To overcome this25

limitation we can use Jeffreys’ rule to specify priors that are translation invariant Jeffreys26

(1946). The concept of Fisher information forms a key component of Jeffreys’ rule.27
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From Prior to Posterior: The Principle of Insufficient Reason and Bayes’ Theorem1

When there is a complete lack of knowledge about the parameter of interest it seems intuitively2

sensible to expand the model f(~x | θ) with a prior that assigns equal probability to every3

possible value of θ, a rule known as Laplace’s (1749 – 1827) “principle of insufficient reason”4

(Laplace, 1986; Stigler, 1986). Step 1 In particular, this suggests extending data that are5

modeled according to a Bernoulli distribution Eq. (2) with a uniform prior for the parameter6

of interest θ ∼ U [0, 1]. Step 2 Equipped with this prior, we can now draw conclusions about7

θ conditioned on observed data ~x using Bayes’ theorem:8

g(θ | ~X = ~x) = f(~x | θ)g(θ)∫
Θ f(~x | θ)g(θ)dθ , (21)

where g(θ) is the prior density function for the parameter θ. The left-hand side of Eq. (21) is9

known as the posterior density of θ, and Eq. (21) is often verbalized as:10

posterior = likelihood× prior
marginal likelihood . (22)

Note that the marginal likelihood does not involve the parameter θ, and that it is given by a11

single number that ensures that the area under the posterior distribution equals one, see the12

right panel in Fig. 5. It is common practice, therefore, to write g(θ | ~X = ~x) ∝ f(~x | θ)g(θ),13

which says that the posterior is proportional to the likelihood times the prior. Furthermore,14

note that the posterior distribution is a combination of what we knew before we saw the data15

(i.e., the information in the prior distribution), and what we have learned from the data in16

terms of likelihood.17

Example 1 (Uniform prior on θ, Continued). We assume that no prior research has been18

conducted for the animal discrimination task and set g(θ) = 1 for every possible value of19

the ability parameter θ in [0, 1] in accordance with Laplace’s principle. We then apply the20

following scheme21
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Prior for θ Data−→ Posterior for θ (23)

to update our knowledge of θ. Fig. 5 illustrates this updating scheme with data characterized1

by y = 7 successes out of n = 10 trials.2

Prior of θ

Propensity θ
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Figure 5. Bayesian updating based on observing y = 7 successes out of n = 10 Bernoulli trials. In
the left panel, the flat prior distribution assigns equal probability to every possible value of θ. In the
right panel, the posterior distribution is a compromise between the prior and the observed data (i.e.,
y = 7 and n = 10).

In this case, we have an analytically tractable posterior given by a beta distribution3

g(θ | y = 7) ∼ Beta(8, 11) (e.g., Bayes & Price, 1763; Diaconis & Ylvisaker, 1979). If4

desired, the posterior distribution for a participant’s latent animal discrimination ability θ5

can be summarized by a point estimate and a so-called credible interval. A commonly used6

point estimate is the posterior median, which is given by 0.68 and we can accompany it with7

a 95% credible interval that ranges from 0.39 to 0.89 to quantify our uncertainty about this8

estimate. Note the similarities between the posterior distribution in Fig. 5 and the likelihood9

function in Fig. 2; the maximum likelihood is in fact the mode of this posterior. ♦10

In more complicated data models, we might not be able to derive a posterior distribution11

analytically, as the integration involved in the marginal likelihood is typically hard to perform.12

However, due to the advent of computer-driven sampling methodology generally known as13

Markov chain Monte Carlo (MCMC: e.g., Gamerman & Lopes, 2006; Gilks, Richardson, &14

Spiegelhalter, 1996), we can directly sample sequences of values from the posterior distribution15

of interest, foregoing the need for closed-form analytic solutions (e.g., Lee & Wagenmakers,16

2013). In the following, we omit the derivations of the posteriors and instead provided R code17
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on the first author’s website.1

The Principle of Insufficient Reason and its Dependence on the Parametrization2

Step 1 Laplace’s principle seems to yield priors that reflect complete ignorance about the3

parameter θ. In spite of its intuitive formulation, this is not true, as it depends on how a4

statistical problem is represented. To demonstrate this paradoxical result we exploit the sim-5

ilarity the Bernoulli model has to a coin flip experiment with a bent coin that has propensity6

θ = P (x = 1) to land heads instead of tails. Furthermore, we say that this propensity is due7

to the angle, denoted as φ, unbeknownst to the researcher, with which the coin is bent.8

Moreover, suppose that the coin’s physical relation between the angle φ and the propen-9

sity θ is given by the hypothetical function h(φ) = 1
2 + 1

2

(
φ
π

)3
.9 Thus, the generative model10

can be modified in terms of φ by the following chain: φ h=⇒ θ
f(~x | θ)=⇒ ~x. In the absence of11

prior knowledge we could therefore model our ignorance about the angles φ according to a12

uniform prior on (−π, π), thereby extending the Bernoulli model with a prior density given13

by g(φ) = 1
2π for every possible value φ of the angle. Step 2 This uniform prior on the14

angles of φ then induces a prior on θ for which we can subsequently apply Bayes’ theorem,15

as schematically described by Eq. (24):16

Prior on φ

h ↓

Prior on θ induced from φ
Data−→ Posterior for θ induced from φ

(24)

The results of this chain of induction is plotted in Fig. 6.17

The resulting posterior can also be obtained by first updating the uniform prior on φ18

to a posterior on φ, which is subsequently transformed into a posterior for θ. Either way, the19

resulting posterior on θ will differ substantially from the previous result plotted in the right20

panel of Fig. 5. Hence, the principle that was set out to reflect ignorance depends greatly on21

how the problem is represented. In particular, a uniform prior on the coin’s angle φ yields a22

9This function was chosen purely for mathematical convenience.
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Uniform prior on the angle φ

Angle φ

D
e

n
s

it
y

− π 0 π

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

h

Prior θ from φ~ U[− π, π]

Propensity θ

D
e

n
s

it
y

0 0.5 1

0

2

4

6

8

Y=7

Y=7

Posterior φ induced from φ~ U[− π, π]

Angle φ
− π 0 π

h

Posterior θ induced from φ~ U[− π, π]

Propensity θ
0 0.5 1

Figure 6. A uniform prior is not always uninformative: example of a bent coin landing heads in
y = 7 out of n = 10 tosses. The top left panel is the starting point of our investigation with a uniform
prior on the coin’s angle φ. The corresponding bottom left panel shows that this prior distribution is
highly informative for the propensity of the coin as it induces a lot of mass near θ = 0.5. This is also
apparent from the bottom right panel, which shows the posterior for θ with a posterior mean at 0.53
and a 95%-credible interval that ranges from 0.42 to 0.84. The same posterior on θ is obtained if we
proceed via an alternative route in which we first updated the prior on φ to a posterior on φ (top left
panel) and then use the transformation h to obtain the posterior on θ.

highly informative prior in terms of the coin’s propensity θ. Similarly, a uniform prior on the1

propensity induces a prior on φ that assigns relatively much mass near the endpoints −π and2

π.3

It may not be clear, therefore, on what scale we should apply Laplace’s principle of4

insufficient reason: one can defend a uniform prior on propensity or on angle, but neither5

representation seems privileged in any particular way.6

Using Fisher Information to Construct a Translation Invariant Prior Step 1 This7

dependence on how the problem is parameterized has been put forward as a major objection8

to Bayesian inference (e.g., Edwards, 1992; Fisher, 1930).9

One way to meet this objection is to use a rule for constructing prior distributions that10
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are translation invariant, i.e., that will lead to the same conclusion (i.e., the same posterior1

distribution) regardless of how the problem is represented. The following rule proposes a2

prior that is proportional to the square root of the Fisher information:3

g(θ) =
√
I(θ)∫ √
I(θ) dθ

∝
√
I(θ), (25)

which is known as the prior obtained from Jeffreys’ rule, or Jeffreys’ prior (Jeffreys, 1946).4

We now apply this prior to the coin example both in terms of θ and φ to demonstrate that it5

is indeed translation invariant.6

Example 1 (Invariance of the Jeffreys’ Prior within the Bernoulli Model, Continued). Step 27

To apply Jeffreys’ rule, Eq. (25), to the propensity θ for data distributed according to a8

Bernoulli distribution, recall that the unit information for θ is given by I(θ) = 1
θ(1−θ) , from9

which it follows that10

g(θ) = 1
π
θ−0.5(1− θ)−0.5. (26)

The proof that
∫ √

I(θ) dθ = π can be found in the online appendix. Jeffreys’ prior on the coin11

propensity θ is plotted in the bottom left panel of Fig. 7. We can then apply Bayes’ theorem,12

using the data (i.e., y = 7 heads out of n = 10 tosses) to update this prior to a posterior on θ13

(bottom right panel) and subsequently use the backwards transform k(θ) = φ to translate this14

result in terms of φ (top right panel).15

A re-parametrization invariant rule implies that we could as well have started in terms16

of φ. The online appendix shows that the Fisher information for φ is given by I(φ) = 9φ4

π6−φ6 ,17

which yields the following prior18

g(φ) = 1
π

3φ2√
π6 − φ6 . (27)
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Figure 7. For priors constructed through Jeffreys’ rule it does not matter whether the problem
is represented in term of the coin’s angles φ or its propensity θ. Thus, not only is the problem
equivalent due to the transformations θ = h(φ) and φ = k(θ), the prior information is the same in
both representations. This also holds for the posteriors. The posterior median for θ is given by 0.69
with a 95% credible interval of (0.40, 0.91).

Note that the normalization constant for this prior is also π, a property we elaborate on in1

the next section. The top left panel of Fig. 7 shows the Jeffreys’ prior in terms of φ and the2

top right panel shows the resulting posterior. This posterior is identical to the one obtained3

from the previously described updating procedure that starts by postulating Jeffreys’ prior on4

θ instead of on φ. ♦5

The above example shows how the Jeffreys’ prior is constructed from a rule such that6

the same posterior knowledge is reached regardless of the scale for the prior. That is, one7

draws the same conclusions about θ regardless of whether we (1) use Jeffreys’ rule to construct8

a prior on θ and update with the observed data, or (2) use Jeffreys’ rule to construct a prior9

on φ, update to a posterior distribution on φ, and then transform that posterior in terms of10

θ. In contrast, a flat prior on φ induces a posterior distribution on θ that differs substantially11

from the one obtained by assigning a flat prior on θ (i.e, compare the bottom right panel of12

Fig. 6 to Fig. 5).13
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Summary of Section 2 In this section we showed how a model f(~x | θ) can be extended1

with default priors constructed according to Jeffreys’ rule, a rule that uses Fisher information2

to define default priors that are translation invariant in the sense that they do not depend on3

the arbitrary scale on which the problem is defined.4

One of the drawbacks of Jeffreys’ rule is that it does not apply to multiple parameters5

simultaneously, for instance, when ~θ =
( µ
σ2
)
within the normal model. Jeffreys (1961) suggests6

to apply this rule to each parameter individually, which he justified due to the fact that the7

Fisher information has zeros in the off-diagonal entries, see Eq. (15) and the discussion about8

orthogonality below. Another drawback is that Jeffreys’ rule may lead to improper priors9

(i.e., priors which are non-normalized). For instance, the Jeffreys’ prior for µ within a normal10

model is uniform over the real line as µ does not depend on σ. Surprisingly, however, this11

prior does lead to proper normalized posteriors.12

3. Using Fisher Information to Measure Model Complexity13

Introduction In this section we show how Fisher information can be used to measure14

model complexity from the perspective of data compression and the principle of minimum15

description length (Grünwald, 2007; Myung, Forster, & Browne, 2000; Pitt, Myung, & Zhang,16

2002).17

Different theories are implemented as different statistical models, and model selection18

therefore helps to quantify the extent to which the data support one theory over another.19

However, the support in the data cannot be assessed by solely considering goodness-of-fit, as20

the ability to fit random data increases with model complexity, see (e.g., Roberts & Pashler,21

2000).22

For this reason, every method for model selection needs to take into account the trade-off23

between goodness-of-fit and parsimony: more complicated models necessarily lead to better24

fits but may in fact over-fit the data. Such overly complicated models capture idiosyncratic25

noise rather than general structure, resulting in poor model generalizability (Myung, Forster,26

& Browne, 2000; Wagenmakers & Waldorp, 2006). The goal of most model selection methods,27

therefore, is to acknowledge the trade-off between goodness-of-fit and parsimony in some28
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principled way, allowing the selection of models that best predict new data coming from the1

same source.2

Most popular amongst the many model selection methods are the penalized maximum3

likelihood criteria, including the Akaike information criterion (AIC; Akaike, 1974; Burnham4

& Anderson, 2002), the Bayesian information criterion (BIC; Raftery, 1995; Schwarz, 1978),5

and the Fisher information approximation based on the minimum description length principle6

(FIA and MDL; Rissanen, 1996; Grünwald, 2007; Pitt et al., 2002). All these methods have a7

single component that quantifies goodness-of-fit (i.e., through maximum likelihood) and one8

or more penalty components that discount the goodness-of-fit by the degree to which it was9

accomplished using a complex model. The methods differ in the way that they quantify the10

penalty term for complexity. Specifically, AIC, BIC, and FIA are formalized as follows:11

AIC =− 2 log f(~x | θ̂) + 2d (28)

BIC =− 2 log f(~x | θ̂) + d log(n) (29)

FIA =− log f(~x | θ̂)︸ ︷︷ ︸
Goodness-of-fit

+ d

2 log n

2π︸ ︷︷ ︸
Dimensionality

+ log
(∫

Θ

√
detI(θ) dθ

)
,︸ ︷︷ ︸

Geometric complexity

(30)

where d refers to the number of free parameters, n refers to sample size, and θ̂ refers to the12

MLE. For all criteria, the model with the lowest criteria is best. Note that, in contrast to13

AIC and BIC, the FIA penalizes both for the number of models parameters and for their14

functional form. The latter is accomplished through the geometric complexity term, a term15

that is computed using the Fisher information (Myung, Balasubramanian, & Pitt, 2000).16

The goal of this section is to visualize how Fisher information can be used to assess17

geometric complexity. These ideas are based on Kass (1989) and illustrated with a set of18

simple multinomial processing tree (MPT) models (e.g., Batchelder & Riefer, 1999; Wu,19

Myung, & Batchelder, 2010; Klauer & Kellen, 2011). For details about the philosophy of20

data compression as a method for model selection we refer the interested reader to the books21

by Grünwald, Myung, and Pitt (2005) and Grünwald (2007).22
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Running Example with Three Outcomes To demonstrate the role of Fisher information1

for model selection we use the following source-memory task: during an initial study phase,2

participants are presented with two list of words on a computer screen. List L is projected3

on the left-hand side and list R is projected on the right-hand side. In a later test phase,4

the participant is presented with two words, side by side, that can stem from either list,5

ll, lr, rl, rr. The participant is asked to categorize these pairs as follows:6

1. Both words come from list L, i.e., ll,7

2. The words are mixed M , i.e., lr or rl,8

3. Both words come from list R, i.e., rr.9

As before we assume that the participant is presented with n test pairs of equal difficulty,10

yielding the trial sequence ~X = (X1, . . . , Xn) consisting of n i.i.d. copies of a prototypical11

trial X that has three outcomes. Below we propose three process models for X and show12

how MDL model selection using Fisher information can be used to measure the complexity13

of each model.14

General Model for a Random Variable with Three Outcomes As a starting point,15

we discuss a general model for random variables X with three outcomes. This model, shown16

in the top left panel of Fig. 8, assumes that the participant categorizes words as pairs in a17

cascaded fashion: with probability a, the participant concludes that the words are mixed.18

With probability 1− a, both words are perceived to stem from the same list, and the partic-19

ipant subsequently decides whether the two words come from list L (with probability b) or20

list R (with probability 1− b).21

The model parameters naturally depend on the nature of the stimulus; for mixed pairs,22

for instance, parameter a will be higher than for pure pairs. For the purposes of this tutorial23

we wish to keep the models as simple as possible, and hence we assume that the presented24

word pair stimulus subject to modeling is always “rr”.25

In particular, when the participant’s parameters are given by a = 1
3 , b = 1

2 , then the26

model predicts that P (X = L) = P (X = M) = P (X = R) = 1
3 meaning that the participant27
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M

a

1 − a

Lb

R1 − b

Cascading process model

L

pL

M

pM

R

pR

Trinomial model

θ

Rθ

M1 − θ

1 − θ

Mθ

L1 − θ

2−Binomial model

M

a

1 − a

L0.5

R0.5

Restricted cascading process model

Figure 8. Three MPT models that describe a participant’s choices (i.e., L, M , or R) in the source-
memory task described in the main text. The left panel shows two equivalent models: the cascading
process model and the trinomial model. The top right panel shows the 2-binomial model and the
bottom right panel shows a restricted version of the cascading process model with b fixed at b = 0.5.
Note: in order to limit the number of model parameter, we assume that the presented word pair
stimulus subject to modeling is always “rr”.

is to respond L,M,R with the same chances, and we therefore expect to see a data pattern1

that consists of an equal number of responses L,M , and R. In general, we can model the2

expected data patterns directly by re-parametrizing the cascading process model in terms of3

pL = P (X = L) = (1−a)b, pM = P (X = M) = a, and pR = P (X = R) = (1−a)(1−b). This4

model is generally referred to as a (one-trial) trinomial model, X ∼ Tri(pL, pM, pR), which5

in fact has only two free parameters, pL, pM , as pR = 1 − pL − pM . This latter equation6

allows us to depict the data patterns that this model accommodates as a surface in three7

dimensions, see Fig. 9. As the components of each point ~p = (pL, pM, pR) on the surface sum8

to one, we may refer to each such point as an expected data pattern of the cascading process9

model or a pdf10 of the trinomial model.10

A more natural representation of the trinomial model, which helps relate Fisher infor-11

10This is clearly a probability mass function, since we are dealing with discrete outcomes. As the ideas
elaborated here extend to pdfs as well, we do not distinguish the two here.
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pR

pL

sL

pM sM

sR

Figure 9. Expected data patterns from the trinomial model (left panel) and the transformed trinomial
model (right panel). In the left panel, for instance, the left hand corner ~p = (1, 0, 0) represents the
pdf that assigns all its mass to the L response and none to the other outcomes. The dot in the middle
of the surface represents the pdf ~p = ( 1

3 ,
1
3 ,

1
3 ) that assigns equal probability to every outcome. Points

outside the surface cannot be pdfs as they do not sum to one.

mation to model complexity, can be obtained by transforming the probabilities pL, pR, pM to1

two times the square roots of each probability: sL = 2
√
pL, sM = 2

√
pM, sR = 2

√
pR; the2

resulting surface is shown in the right panel of Fig. 9. Instead of forming a triangular surface,3

the transformed trinomial model now forms the positive octant of a sphere with radius two.4

In this representation all possible data patterns of the trinomial model are two units away5

from the origin, which can be easily verified by the Pythagorean theorem:6

‖~s‖ =
√
sL2 + sM2 + sR2 =

√
4(pL+ pM + pR) = 2, (31)

where we have written ‖~s‖ for the length of an arbitrary point ~s on the sphere. In conclusion,7

the trinomial model is a general model for X and we will use this fact to visualize the8

predictions from the more restricted 2-binomial model defined below.9
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The Single-List Memorization Strategy An alternative theory for the underlying cog-1

nitive process, shown in the top right panel of Fig. 8, assumes that the participant assesses2

the words individually but only with respect to a single list, say list R. In other words,3

with probability θ the participant decides that the first word comes from the right list. This4

decision process is repeated for the second word, after which the complete word pair can be5

categorized as L,M , or R.6

This model has one parameter, θ, yielding expected data patterns given by pL =7

(1− θ)2, pM = 2θ(1− θ) and pR = θ2. These probabilities correspond to a 2-binomial model8

which we define by X ∼ Bin(θ, 2) where a single word coming from list R is seen as a success9

with probability θ. For the representation on the sphere, this yields:10

θ 7→ ~s(θ) =


sL(θ)

sM(θ)

sR(θ)

 =


2
√
pL

2
√
pM

2
√
pR

 =


2(1− θ)

2
√

2θ(1− θ)

2θ

 (32)

As a 2-binomial distribution also has three outcomes, we can represent the corresponding11

probabilities within the trinomial model, see Fig. 10. Note that because the 2-binomial12

model has only one free parameter, its data patterns form a line instead of a surface.13

Expected Data Patterns and Model Specificity The 2-binomial model can be sim-14

plified even further. For instance, we might entertain the hypothesis that the participant’s15

responses are governed by a specific value for the free parameter, such as θ0 = 0.5. From this16

hypothesis, we expect to see 30L, 60M , and 30R responses in n = 120 trials, hence, the data17

pattern ~p = (0.25, 0.50, 0.25).18

Real data, however, will typically deviate around the expected data pattern even if19

the hypothesis θ0 = 0.5 holds true exactly. To see this, Fig. 11 shows data patterns of 20020

synthetic participants each completing 120 trials of the source-memory task with θ0 = 0.521

according to the 2-binomial model.22

Fig. 11 confirms the fact that even though the expected data patterns from the 2-23
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pR

pL
p(0.1)

p(0.2)
p(0.3)

p(0.4)

sL

p(0.5)

p(0.6)

pM

p(0.7)

p(0.8)

p(0.9)

sR

s(0.1)

s(0.2)

s(0.4)

s(0.3)

s(0.7)

s(0.6)

s(0.5)

s(0.8)

sM

s(0.9)

Figure 10. Expected data patterns from the 2-binomial model are represented by the curves within
the trinomial model (left panel) and the transformed trinomial model (right panel). In the 2-binomial
model θ = 0 corresponds to a point on the surface floor, as we then expect only L responses. Data
patterns corresponding to parameter values 0.1, 0.2, . . . , 0.8, 0.9 are represented by rectangular symbols,
except for the parameter value θ = 0.5 which is represented by a cross. See Eq. (32) for the definition
of ~s(θ).

binomial model are confined to the line, random data patterns generated from such a model1

are not.2

To illustrate how specific the 2-binomial model is in generating data, Fig. 12 shows the3

results from a similar simulation using other values of the θ parameter: θ = 0.1, 0.2, . . . , 0.9.4

Each dot in in Fig. 12 represents the data pattern of a synthetic participant completing5

120 trials and as the number of trials increases indefinitely we will see that the observed data6

pattern will coincide with the expected data pattern. This confirms the relation between the7

size of the expected data pattern, i.e., the curve in this case, and model specificity.8

To contrast the specificity of the 2-binomial model to that of the trinomial model, note9

that the expected data patterns for the trinomial model are not restricted to the curve. In10

effect, the predictions of the trinomial model cover the whole sphere. This also implies that11

the trinomial model is less specific in its predictions, making it harder to falsify. This is why12

the trinomial model is said to be more complex than the 2-binomial model.13
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pR

pL

sL

pM

sR

sM

Figure 11. The curve represents the expected data patterns from the 2-binomial model and the cross
represents the expected data pattern from to the restricted 2-binomial model with θ0 = 0.5. Each dot
represents the data of a synthetic participant completing n = 120 trials.

The Trade-off between Model Specificity and Goodness-of-Fit What the trinomial1

model lacks in specificity is compensated by its ability to produce good fits for all data patterns2

with three outcomes. In contrast, when the data are simulated from the equiprobable pdf3

X ∼ Tri(1
3 ,

1
3 ,

1
3) we cannot yield good fits within the 2-binomial model as this pdf is not4

included on the line, see Fig. 10 - 12.5

Thus, as the surface plot suggest, the 2-binomial model can never yield better fits6

than the trinomial model, as the former is nested within the latter. In other words, the7

maximum likelihood for the trinomial model is as least as large as the maximum likelihood8

for the 2-binomial model: log f(~x | θ̂ within trinomial) ≥ log f(~x | θ̂ within 2-binomial). For9

this reason, model selection information criteria such as AIC and BIC do not consider only10

goodness-of-fit measures but also penalize for the number of free parameters. Within the MDL11

philosophy Eq. (30) such a penalty is incomplete because it ignores differences in model com-12

plexity due to the functional relationship between the parameters and the data, a relationship13

that can be measured using Fisher information.14



A TUTORIAL ON FISHER INFORMATION 36

pR

pL

pM

sL

sR

sM

Figure 12. The curve represents the expected data patterns from the 2-binomial model and the cross
represents the expected data pattern from to the restricted 2-binomial model with θ0 = 0.5. Each dot
represents the data of a synthetic participant completing n = 120 trials. Data were simulated for each
θ = 0.1, 0.2, . . . , 0.9.

Using Fisher Information to Measure the Size of a Model In the previous section1

we related the complexity of a model to its expected data patterns. An intuitive measure for2

model complexity is therefore its size. In particular, we can use the length of the curve in3

Fig. 10 to measure the complexity of the 2-binomial model. Before we show that this length4

can be calculated from the Fisher information, recall that a single trial of a 2-binomial model5

consists of two independent Bernoulli flips. We therefore conclude that the unit information6

for the 2-binomial model is given by I(θ | 2-binomial) = 2
θ(1−θ) .7

To calculate the length of the curve, we use the fact that we can linearly approximate,8

i.e., Taylor approximate, the parametrization from θ 7→ ~s(θ). This strategy consists of two9

steps: (a) linear approximations and (b) summing the linear approximations over the domain10

of θ.11

Step a. Linear Approximation In Fig. 13 we illustrate the first step by a linear approx-12

imation of the curve by considering three approximation points, namely: 0.05, 0.40, 0.75.1113

11For technical reasons we avoid θ = 0 for now.
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For each of these approximation points we calculate ~s(θ) and the key idea is to approximate

0.05 0.4 0.75 1

s(0.05)

s(0.4)

s(0.75)

s(0.05)+0.35 Ds(0.05)

s(0.4)+0.35 Ds(0.4)

s(0.75)+0.25 Ds(0.75)

Figure 13. The size of a model can be calculated by linear approximations. The smooth curve
represents the expected data patterns under the 2-binomial model. The three line segments below
the bottom left corner show the partitioning of the subdomain (0.05, 1) for the corresponding tangent
vectors along the curve. The length of the curve can be approximated by summing the length of the
three lines tangent to the curve. For clarity, we removed the grid lines that were drawn in Fig. 9, but
we retained both the reference point corresponding to the data pattern Tri( 1

3 ,
1
3 ,

1
3 ) and the plus sign

for the expected data pattern for θ = 0.5 within the 2-binomial model.

1

the “gap” between, say, ~s(0.05) and ~s(0.4) by a linear extrapolation at ~s(0.05). Hence, for2

θ0 = 0.05 this yields3

~s(θ0 + h) ≈ ~s(θ0) + hD~s(θ0), (33)

where D~s(θ0) denotes the 3-dimensional tangent vector at θ0 and we used h = 0.40− 0.05 =4

0.35 at θ0 = 0.05 in Fig. 13. This procedure is repeated for the other points θ = 0.40 and5

θ = 0.75 and we approximate the arc length by summing the length of the tangent vectors at6

each point. The accuracy of this approximation of the arc length increases with the number7

of approximation points. For this reason we desire an expression for the tangent vector at8

each arbitrarily chosen point θ, which can be obtained by taking the derivative with respect9

to θ for each component (i.e., possible outcomes L,M,R):10
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D~s(θ) =


d
dθsL

d
dθsM

d
dθsR

 =


d
dθ log (pL)

√
pL

d
dθ log (pM)

√
pM

d
dθ log (pR)

√
pR

 =


−2

2−4θ√
2θ(1−θ)

2

 (34)

where the second equality is due to the general relation between ~s(θ) and ~p(θ). The length of1

this tangent vector can be calculated by an application of the Pythagorean theorem, which2

yields:3

‖D~s(θ)‖ =

√√√√(−2)2 +
(

2− 4θ√
2θ(1− θ)

)2

+ 22 =
√

2
θ(1− θ) =

√
I(θ | 2-binomial), (35)

As θ was chosen arbitrarily we conclude that the tangent length at each θ ∈ (0, 1) within the4

2-binomial model is given by
√
I(θ | 2-binomial), the square root of the Fisher information.5

Step b. Accumulating the Tangent Lengths To establish the size of a model, we now6

have to sum the tangent lengths over all approximation points. This sum becomes more7

accurate as we increase the number of approximation points, eventuating into an integral.8

For the 2-binomial this yields9

V2Bin =
∫ 1

0

√
I(θ | 2-binomial)dθ =

√
2
∫ 1

0

1√
θ(1− θ)

dθ =
√

2π, (36)

see the online appendix for the full calculation. Hence, the length of the curve is given by10

V2Bin =
∫

Θ
√
I(θ | 2-binomial) dθ =

√
2π, and we can use it as a measure for the specificity of11

the 2-binomial model, and, hence, its model complexity.12

Fisher Information as a Measure of Complexity for Models with Vector-valued13

Parameters The ideas developed above can be easily generalized to models with vector-14

valued parameters such as the trinomial model with free parameters pL, pM or, equivalently,15
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the cascading process model with free parameters a, b. As there are two parameters to vary1

over we then have two tangent vectors which form a tangent surface. To compute the size of2

the model we then have to calculate the surface area of the Fisher information matrix, which3

is given by its determinant (for details see the online appendix). Hence,4

V =
∫ √

det
(
I(~θ)

)
d~θ, (37)

where we have written ~θ for a vector-valued parameter and wrote V for the volume of the5

model (Pitt et al., 2002). Fig. 14 shows the tangent surface at the equiprobable pdf ~pe =6

(1
3 ,

1
3 ,

1
3): on the left parameterized in terms of pL, pM and on the right parameterized in7

terms of a, b.8

The two models are equivalent as we can re-parameterize pL, pM to a, b and vice versa.9

This implies that the two models accommodate the same expected data patterns, hence, the10

two models are equal in size. In effect, we are free to choose the parametrization that allows11

us to calculate the size of the trinomial model conveniently as described by Eq. (37). What12

qualifies as convenient can be derived from the Fisher information matrix, which is given by:13

I(pL, pM) = 1
1− pL− pM

 1− pM 1

1 1− pL

 , (38)

in terms of the parameters pL, pM , yielding det (I(pL, pM)) = pLpM−pL−pM
(1−pL−pM)2 . Consequently,14

the volume of the trinomial model is then given by15

VTri =
∫ 1

0

(∫ 1−pL

0

√
pL · pM − pL− pM

(1− pL− pM)2 dpM
)

dpL. (39)

This integral is hard to compute as the inner integral depends on the outer integral, because16

the probabilities pL, pM and pR have to sum up to one. We prefer the Fisher information in17

the parametrization a, b as it leads to zero off-diagonal terms:18
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I(a, b) =

 1
a(1−a) 0

0 1−a
b(1−b)

 . (40)

Whenever the Fisher information matrix parametrized in terms of a, b has zero-off diagonals1

we then say that a, b are orthogonal parameters, see Fig. 14. Orthogonal parameters allow us2

to decouple the summing up to one restriction pL+pR+pM = 1 into two separate conditions3

a ∈ (0, 1) and b ∈ (0, 1), compare the integration bounds of Eq. (39) to those of Eq. (41). The4

volume of the cascading process model (thus, also of the trinomial model) is then given by5

VTri =
∫ 1

0

∫ 1

0

1√
ab(1− b)

da db =
∫ 1

0

1√
a
da
∫ 1

0

1√
b(1− b)

db Eq. (63)= π

∫ 1

0

1√
a
da = 2π,

(41)

which equals an eighth of the surface area of a sphere of radius two, 1
84π22, as one would6

expect. The size of the trinomial model can therefore be expressed as 2π.7

An Application of Fisher Information to Model Selection To illustrate the merits8

of model selection using FIA over AIC and BIC, we introduce another model and compare9

it against the 2-binomial model. The new model is a version of the cascading process model10

where the parameter b is fixed to 0.5. Hence we refer to this model as the restricted cascading11

process model. According to the new model, participants only discriminate mixed from pure12

pairs of words and then randomly answer L or R. Fig. 15 shows the corresponding expected13

data patterns.14

Note that the 2-binomial model and the restricted cascading process model are not15

nested and –because both models have only a single parameter– AIC and BIC discriminate16

the two models based on goodness-of-fit alone. Hence, when the observed data patterns lie17

near the right corner P (X = M) = 1, AIC and BIC will prefer the restricted cascading18

process model over the 2-binomial model. Conversely, when the observed data patterns lie19

near the bottom left corner P (X = L) = 1, AIC and BIC will prefer the 2-binomial model20
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over the restricted cascading process model.1

Thus, AIC and BIC are unable to discriminate the 2-binomial model from the restricted2

cascading process model when the goodness-of-fit terms are close to each other, i.e., for data3

patterns near the point ~p = (1
4 ,

1
2 ,

1
4), where the two models intersect. Hence, whenever the4

likelihood and dimensions of the two models are similar, model selection by FIA then boils5

down to the assessment of the geometric complexity term, Eq. (30).6

As noted above, the 2-binomial model has a volume term that equals V2Bin =
√

2π,7

whereas the restricted cascading process model has a volume term given by VRestrict =8 ∫ 1
0

1√
a(1−a)

da = π (for details see the online appendix). Thus, the restricted cascading process9

model is slightly less complex than the 2-binomial model, e.g., log(VRestrict) < log(V2Bin), and10

FIA will automatically prefer the simpler model whenever the goodness-of-fit is non-diagnostic11

(i.e., when the data are near the plus sign in Fig. 15).12

Summary of Section 3 In this section we showed how Fisher information can be used13

to quantify model complexity by measuring the size of model in the space of expected data14

patterns. This sophisticated conceptualization of model complexity takes into account the15

functional form of model parameters to strike an appropriate balance between parsimony and16

goodness-of-fit.17

Concluding Comments18

Fisher information is a central statistical concept that is of considerable relevance for19

mathematical psychologists. We illustrated the use of Fisher information in three different20

statistical paradigms: in the frequentist paradigm, Fisher information can be used to deter-21

mine the sample size required to estimate parameters at a target level of accuracy; in the22

Bayesian paradigm, Fisher information can be used to specify a default, translation-invariant23

prior distribution; finally, in the paradigm of information theory, data compression, and min-24

imum description length, Fisher information can be used to measure model complexity.25

Our goal was to use concrete examples to provide more insight about Fisher information,26

something that may benefit psychologists who propose, develop, and compare mathematical27
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models for psychological processes. Our goal was not to provide a comprehensive or complete1

treatment of all the uses of Fisher information throughout statistics. In our opinion, such a2

treatment would require a book (e.g., Frieden, 2004) rather than a tutorial article.3

Other usages of Fisher information are in the detection of model misspecification,4

(Golden, 1995; Golden, 2000; Waldorp, Huizenga, & Grasman, 2005; Waldorp, 2009; Waldorp,5

Christoffels, & van de Ven, 2011; White, 1982) and in the reconciliation of frequentist and6

Bayesian estimation methods through the Bernstein–von Mises theorem (van der Vaart, 1998;7

Bickel & Kleijn, 2012). In sum, Fisher information is a key concept in statistical modeling.8

We hope to have provided an accessible and concrete tutorial article that explains the con-9

cept and some of its uses for applications that are of particular interest to mathematical10

psychologists.11
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sL

pL fixed, pM variable

pL variable, pM fixed

sM

sR

sL

a variable, b fixed

sM

a fixed, b variable

sR

Figure 14. The size of the model is invariant under re-parametrization and we can therefore choose
a parameterization which simplify the calculations. Recall that the size of an one-dimensional model,
the arc length, is approximated by tangent lines, see Fig. 13. The size of a two-dimensional model on
the other hand can be thought of an surface area that needs to be approximated by a tangent surface.
This tangent surface can be decomposed into two tangent lines that can be derived by letting each
parameter vary while the other stays fixed. The arrows in the left panel span up the tangent surface of
the trinomial model with parameters pL, pM, pR at the dot that is represented by pL = pM = pR = 1

3 .
The arrow that is directed to the left is tangent to the curve when pL is allowed to vary freely between
zero and 1−pM , while pM = 1

3 is set fixed. Similarly, the arrow that is directed to the right is tangent
to the curve when pM is allowed to vary freely between zero and 1 − pR, while pR = 1

3 is set fixed.
Analogously, the arrows in the right panel span up the tangent surface of the cascading process models
with parameters a, b at the dot that is represented by a = 1

3 , b = 1
2 . The arrow that is directed to the

left is tangent to the curve when a is allowed to vary freely between zero and one, while b = 1
2 is set

fixed. Similarly, the arrow that is directed to the right is tangent to the curve when b is allowed to
vary freely between zero and one, while a = 1

2 is set fixed. Note that the area of this tangent surface
is easier to calculate due to the fact that the arrows are orthogonal to each other, which allows us
simplify the calculations see Eq. (41).
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pR

pL

sL

pM

sR

sM

Figure 15. Expected data patterns from the 2-binomial model versus the restricted cascading process
model. The latter model is represented by the line that traverses the surface starting from the bottom
right corner. Note that it accommodates both the dot, i.e., the data pattern for which pL = pR =
pM = 1

3 , and the cross that corresponds to θ = 0.5 within the 2-binomial model. As before, the
2-binomial model is represented by the line that curves upwards starting from the bottom left corner.
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Appendix A

Calculating the MLE and Fisher information for the normal

distribution

1

For the normal distribution we have the following log-likelihood functions.2

log f(~x | ~θ) = −n2 log(2πv)− 1
2v

n∑
i=1

(Xi − µ)2, (42)

where we have written v = σ2 to avoid confusion of differentiation with respect to the standard3

deviation. To derive the maximum likelihood functions we are required to solve the likelihood4

equations. Hence, find that parameter value such that the following partial derivatives are5

zero:6

∂

∂µ
log f( ~X | µ̂n, v) = 1

2v

n∑
i=1

(Xi − µ) (43)

∂

∂v
log f( ~X | µ̂n, v) =− n

2v + 1
2v2

n∑
i=1

(Xi − µ)2 (44)

To calculate the Fisher information we need to calculate the second derivates, the Hessian7

matrix, and integrate these with respect to ~X:8

∂2

∂µ∂µ
log f( ~X |µ, v) =− 1

v
, (45)

∂2

∂µ∂v
log f( ~X |µ, v) =− 1

2v2

n∑
i=1

(Xi − µ), (46)

∂2

∂v∂v
log f( ~X |µ, v) = n

2v2 −
1
v3

n∑
i=1

(Xi − µ)2. (47)

We use these equations to show:9

Theorem 3 (Maximum likelihood estimators for normal distributions). If ~X = (X1, . . . , Xn)10

are i.i.d. with X1 ∼ N (µ, σ2), then the MLEs are given by µ̂n = X̄n = 1
n

∑n
i=1Xi, σ̂

2
n = Sn =11
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1
n

∑n
i=1(Xi − X̄n)2. Furthermore, the expected Fisher information matrix is then given by1

In(~θ) = n

 1
σ2 0

0 1
2σ4

 , (48)

where the matrix on the right-hand side represents the unit information of a normally dis-2

tributed random variable ~X. ♦3

Proof. For the MLE of µ, we set (43) to zero, which yields
∑n
i=1Xi) = nµ. Hence, µ̂n is given4

by the sample mean. We use this knowledge to derive the MLE for the variance v. Setting5

(44) to zero yields n = 1
v

∑n
i=1(Xi − µ)2 after we multiplied both sides by 2v and plugging in6

the MLE for µ yields Sn.7

To compute the Fisher information matrix, we have to integrate the negatives of (45),8

(46) and (47) with respect to ~X, see (9). First note that (45) does not depend on ~X so it is9

straightforward to see that I(µ) = 1
v . Furthermore, as (46) defines an uneven function about10

µ, it is as much positive as negative on each side of µ, it will integrate to zero. By i.i.d. we11

know that the integration on the right-hand side of (47) times -1 yields nv
v3 − n

2v2 = n 1
2v2 .12

Appendix B

Calculating the mean and variance of σ̂2
n for the normal distribution

13

Theorem 4. If ~X = (X1, . . . , Xn) are i.i.d. with X1 ∼ N (µ, σ2) with an MLE σ̂2
n and the14

standard sample variance S2
n−1 = 1

n−1
∑n
i=1(Xi − X̄n)2, we have:15

E(σ̂2
n) =

(
1− 1

n

)
E(S2

n−1) and E(S2
n−1) = σ2 (49)

Var(σ̂2
n) =

(
1− 1

n

)2
Var(S2

n−1) <Var(S2
n−1) = 2σ4

n− 1 (50)

Proof. First note that as n is known 1 − 1
n can be considered as a constant and that σ̂2

n =16

n−1
n S2

n−1. This explains the factors on the left-hand side of both results. Furthermore, the17

result (49) follows directly from the linearity of the expectation and the fact that the sample18
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variance S2
n−1 is unbiased, E(S2

n−1) = σ2. By Basu’s theorem, (Ch. 18 DasGupta, 2011)1

we can show that n−1
σ2 S

2
n−1 ∼ χ2(n− 1) is distributed according to a chi-squared distribution2

with n− 1 degrees of freedom and thus a variance of 2(n− 1). Hence,3

2(n− 1) = Var(n− 1
σ2 S2

n−1) = n− 1
σ2 Var(S2

n−1), (51)

and the result (50) then follows directly from multiplying (51) with σ2

n−1 on both sides.4

Appendix C

Angle coin

5

Let P (X = 1) = θ and φ is the angle of a bent coin with respect to the horizontal axis.6

h : Φ→ Θ : φ 7→ 1
2 + 1

2

(
φ

π

)3
with dθ

dφ = 3
2π3φ

2 (52)

and an inverse function7

k = h−1 : Θ→ Φ : θ 7→



−π(1− 2θ)
1
3 with dφ

dθ = 2π
3(1−2θ)

2
3

when 0 ≤ θ < 0.5

0 with dφ
dθ = 2π

3(1−2θ)
2
3

when θ = 0.5

π(2θ − 1)
1
3 with dφ

dθ = 2π
3(2θ−1)

2
3

when 0.5 < θ ≤ 1

(53)

For I(φ), write8

log p(x |φ) = x log
(

1
2 + 1

2

(
φ

π

)3)
+ (1− x) log

(
1
2 −

1
2

(
φ

π

)3)
(54)

Furthermore,9
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d
dφ log p(x |φ) = 3

π3

x φ2

1 +
(
φ
π

)3 − (1− x) φ2

1−
(
φ
π

)3

 (55)

Moreover, (this is where it gets exciting)1

d2

dφ2 log p(x |φ) = 3
π3

x 2φ− φ4

π3

(1 +
(
φ
π

)3 − (1− x)
2φ+ φ4

π3

(1−
(
φ
π

)3

 (56)

Hence,2

I(φ) = 9φ4

π6 − φ6 (57)

Or, based on the fact that the Fisher information in basis θ is given by I(θ) = 1
θ(1−θ) :3

I(φ) =
( dθ
dφ

)2
I(θ(φ)) =

(
3φ2

2π3

)2 1

(1
2 + 1

2

(
φ
π

)3
)(1

2 −
1
2

(
φ
π

)3
)

(58)

To calculate the normalizing constant for Jeffreys’ prior we have to integrate
∫ π
−π
√
I(φ)dφ.4

∫ π

−π

√
I(φ)dφ =

∫ π

−π

√
9φ4

π6 − φ6dφ (59)

=
∫ π

−π

3φ2√
π6 − φ6

1
π3√
π6

dφ (60)

=
∫ π

−π

1√
1−

(
φ
π

)6

3φ2

π3 dφ. (61)

If we substitute s =
(
φ
π

)3
we then have ds = 3φ2

π3 dφ. Furthermore, when φ = π this means5

that s = 1 and we get s = −1 as a lower bound. Hence,6
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∫ π

−π

√
I(φ)dφ =

∫ 1

−1

1√
1− (s)2

ds, (62)

= sin−1(s)
∣∣∣s=1

s=−1
= π

2 −
−π
2 = π, (63)

where we have used a standard calculus result to derive the identity with sin−1. Similarly,1

the normalizing constant for the Jeffreys prior in θ basis is given by2

∫ 1

0

√
I(θ) dθ =

∫ 1

0

1√
θ(1− θ)

dθ. (64)

Substituting θ = sin2(z) we have dθ = 2 sin(z) cos(z) yields the result. Note that Jeffreys’3

prior on θ is in fact Beta(0.5, 0.5) and since a beta prior leads to a beta posterior we know4

that the posterior for θ is then given by:5

1
B(7.5, 3.5)θ

6.5(1− θ)2.5. (65)

Similarly, we then have this yields the following6

1
B(7.5, 3.5)

(
1
2 + 1

2

(
φ

π

)3)6.5(1
2 −

1
2

(
φ

π

)3)2.5 3φ2

2π3 , (66)

for φ.7

Appendix D

Computations for Section 3

8

Fisher information for the trinomial model By definition we can derive the Fisher9

information by the second partial derivatives of the log-likelihood functions. The first partial10

derivatives for each single outcome are given by:11
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∂
∂pL logP (X = L) = 1

pL
∂

∂pM logP (X = L) = 0
∂
∂pL logP (X = M) = 0 ∂

∂pM logP (X = M) = 1
pM

∂
∂pL logP (X = R) = −1

1−pL−PM

∂
∂pM logP (X = R) = −1

1−pL−PM

(67)

The non-zero unmixed second partial derivatives for each single outcome are then given by1

∂2

∂pL2 logP (X = L) = −1
pL2

∂2

∂pM2 logP (X = M) = −1
pM2

∂2

∂pL2 logP (X = R) = −1
(1−pL−PM )2

∂2

∂pM2 logP (X = R) = −1
(1−pL−PM )2

(68)

Hence, taking the expectation over minus the left vector of (68) yields2

I1,1 = IpL,pL = 1
pL2 pL+ 1

(1− pL− pM)2 (1− pL− pM) = 1− pM
1− pL− pM (69)

Hence, taking the expectation over minus the right vector of (68) yields3

I2,2 = IpM,pM = 1
pM2 pM + 1

(1− pL− pM)2 (1− pL− pM) = 1− pL
1− pL− pM (70)

The only non-zero mixed second partial derivatives with respect to both arguments pL, pM4

is given by5

∂2

∂pL∂pM
logP (X = R) = −1

(1− pL− pM)2 (71)

which yields6

I2,1 = I1,2 = IpL,pM = 1
(1− pL− PM )2 (1− pL− pM) (72)
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Fisher information for the cascading process model By definition we can derive the1

Fisher information by the second partial derivatives of the log-likelihood functions. The first2

partial derivatives for each single outcome are given by:3

∂
∂a logP (X = L) = −1

1−a
∂
∂b logP (X = L) = 1

b

∂
∂a logP (X = M) = 1

a
∂
∂b logP (X = M) = 0

∂
∂a logP (X = R) = −1

1−a
∂
∂b logP (X = R) = −1

1−b

(73)

The unmixed second partial derivatives with respect to both a, b for each single outcome are4

then given by5

∂2

∂a2 logP (X = L) = −1
(1−a)2

∂2

∂b2 logP (X = L) = −1
b2

∂2

∂a2 logP (X = M) = −1
a2

∂2

∂b2 logP (X = M) = 0
∂2

∂a2 logP (X = R) = −1
(1−a)2

∂2

∂b2 logP (X = R) = −1
(1−b)2

(74)

Hence, taking the expectation over minus the left vector of (74) yields6

I1,1 = Ia,a = 1
(1− a)2 (1− a)b+ 1

a2a+ 1
(1− a)2 (1− a)(1− b) = 1

a(1− a) (75)

Hence, taking the expectation over minus the right vector of (74) yields7

I2,2 = Ib,b = 1
(b)2 (1− a)b+ 1

(1− b)2 (1− a)(1− b) = 1− a
1− b (76)

All mixed second partial derivatives are zero. Hence, I1,2 = I2,1 = 08


