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Course logistics

Goal: Introducing the Bayesian view on statistical
modelling using JAGS/WinBUGS and R
Prerequisite: R
Literature: Lee, M. D., & Wagenmakers, E.-J. (2014).
Bayesian cognitive modeling: A practical course
Examination: Five assignments. Send them to Dora
"D.Matzke [Ed] uva.nl" and hand in a printed version before
the next lecture
Website: http://www.ejwagenmakers.com/
BayesCourse/BayesCourse.html

http://www.ejwagenmakers.com/BayesCourse/BayesCourse.html
http://www.ejwagenmakers.com/BayesCourse/BayesCourse.html
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Definition

Definition of model

A small object, usually built to scale, that represents in
detail another, often larger object.
As researchers we simplify reality (say, an experiment) and
focus only on "the" details that we believe are vital in
describing reality (the experiment)
A preliminary construction that is used in testing or
perfecting a final product
Performing an experiment takes effort and time, while
running a (computer) model is cheap
A schematic description or representation of something,
especially a system or phenomenon, that accounts for its
properties and is used to study its characteristics.
It is unethical to someone’s head crack open to study
cognition, but it is okay to thinker with a model for cognition
to gain knowledge of human cognition
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Definition

Statistical models

Statistical model
A model embodies a set of statistical assumptions concerning
the generation of data, either uncertain future data or already
observed data.

These assumptions are the details that we believe to be vital in
describing reality (the experiment)

Modelling strategy
1 List all possible outcomes y
2 Identify the parameters θ that generate these possible

outcomes
3 Structurally link the parameter to the data f (y | θ)
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The "1-trial" binomial model

Example: "1-trial" binomial model

1. Outcomes and its Interpretation
Simplest model: Two possible outcomes "0" and "1".

Coin: "0" means tails, "1" means heads
Bag of candy: "1" means yellow candy, "0" not yellow,
Item response theory: "0" the student answered the item
incorrectly, "1" answered the item correctly

2. Parameter and its interpretation
We assume that the outcomes of Y are governed by a
parameter θ

Coin: θ represents the coin’s propensity to fall heads
Bag: θ represents the true proportion of yellow candies
IRT: θ represents the student’s ability
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The "1-trial" binomial model

3. Schematic representation of the binomial
distribution

Mathematically, there’s a structural relationship f (y | θ)
f (y | θ) = θy (1− θ)1−y (1)

that states how θ generates an outcome y

0

1 − θ

1

θ
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The binomial model

The binomial model consisting of n-trials

One observation/trial is not representative or informative.

Coin: One observation is only representative for θ = 0 or
θ = 1
Bag of candy: One observation is not informative for the
proportions of yellow candies
IRT: It would be crude to decide on a student’s ability
based on only one item response

As experimenter we gain information by measuring repeatedly,
say, n times.
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The binomial model

Same modelling strategy

Modelling strategy
1 List all possible outcomes y
2 Identify the parameters θ that generate these possible

outcomes
3 Structurally link the parameter to the data f (y | θ)

Q: If we present a student with n items, what are the
possible outcomes for the total number of correct
responses?
Answer: The student can respond {0,1, . . . ,n} items
correctly
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The binomial model

1. Outcomes of a binomial model
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The binomial model

2. Interpretation of the parameter θ in n-trials

A number at the bottom {0,1, . . . ,10} represent a possible
future outcome y of the experiment Y . The assumption is that
one and the same θ underlies the data generating process at
each trial.

Coin: The same propensity θ in all trials. "Coin does not
wear".
Bag of candy: The proportion of θ of yellow stays the
same. "Sampling with replacement".
IRT: Every question is of equal difficulty, student’s ability θ
stays the same in an exam of n questions. "No learning
effects".
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The binomial model

3. Structural relationship between θ and the data

The Galton board:
https://www.youtube.com/watch?v=6YDHBFVIvIs

Important remarks
The parameter θ is known: θ = 0.5
Possible outcomes: y = 0,1, . . . ,n, say, n = 10
Randomness: CANNOT predict where any SINGLE ball
will go to
Frequentist: Can predict the overall pattern for LOTS of
balls. This overall behaviour is given by the probability
density function (pdf).
Data generation: The pdf is the structural relationship that
links the parameter θ and n to a potential outcome y . Once
θ and n are known, we can generate an outcome y

https://www.youtube.com/watch?v=6YDHBFVIvIs
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A model as a data generating device

Galton board as a model for an experiment

Galton board is a mechanistic data generating device
θ = 0.5 is known, thus, "we know where to put the nails"
n is known, thus, the number of layers and the collection of
possible outcomes {0,1, . . . ,n} are known
Note: One ball is one outcome y of the experiment Y

An experiment as a collaborative way of data generation

A student has her own (fixed) ability θ
We as experimenter choose the number of trials n
Note: One student sitting through the exam yields one
exam score y of the experiment Y
Even if we know the student’s ability θ exactly, we cannot
predict the student’s exam score exactly
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A model as a data generating device

The Super Academic: Francis Galton (1822 – 1911)

Field expert: One of the inventors of genetics, psychology,
psychometrics, statistics and more
Mathematician: Strong theoretical background
Carpenter: Capable of building a board to generate data

Data generation with wood, nails and balls
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A model as a data generating device

Modern student in this class

Field expert: Psychology
Mathematician: Strong theoretical background Not
necessary, (use R) (Though, mathematics is preferred)
Carpenter: Capable of building a board to generate data
Just use R
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A model as a data generating device

Modern student in this class

Field expert: Psychology
Mathematician: Strong theoretical background Not
necessary, (use R) (Though, mathematics is preferred)
Carpenter: Capable of building a board to generate data
Just use R

R equivalent of the Galton board
Generate one ball
> rbinom(1, 10, prob=0.5)
[1] 4

Generate twenty balls
> rbinom(20, 10, prob=0.5)
[1] 4 6 3 4 5 2 5 7 4 5 5 5 4 6 6 6 3 6 5 6
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Probability density functions

Probability density functions (pdf)

To generate these data points R uses the probability
density function (pdf) of the binomial model
For n and θ are known, the pdf is

f (y | θ,n) =
(

n
y

)
θy (1− θ)n−y (2)

a function of the possible outcomes y = 0,1, . . . ,n
The pdf is actually the profile at bottom of the Galton’s
board. Thus, the pdf describes the overall ("lots of balls")
behaviour of the outcomes of Y and we write Y ∼ Bin(θ,n)
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Probability density functions

Example 1: Y ∼ Bin(θ = 0.5,n = 10) (Plot)
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Probability density functions

Example 1: Y ∼ Bin(θ = 0.5,n = 10) (R-Code)

The heights of the bars can be found by typing

> data.frame(row.names=0:10,
chance=dbinom(0:10, 10, 0.5))

chance
0 0.0009765625
1 0.0097656250
2 0.0439453125
3 0.1171875000
4 0.2050781250
5 0.2460937500
6 0.2050781250
7 0.1171875000
8 0.0439453125
9 0.0097656250
10 0.0009765625
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Probability density functions

Example 1: Y ∼ Bin(θ = 0.5,n = 10) (Maths)

The heights of the bars can also be calculated by hand using
the pdf

f (y | θ = 0.5,n = 10) =
(

10
y

)
0.5y (1− 0.5)10−y (3)

where y = 0,1, . . . ,10.
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Probability density functions

Example 2: Y ∼ Bin(θ = 0.9,n = 10) (Plot)

0 1 2 3 4 5 6 7 8 9 10

Number of successes y

f(
y
 |
 n

=
1

0
, 

θ
=

0
.9

)

0.0

0.1

0.2

0.3



Statistical Modelling Bayesian statistics Classroom exercises Summary

Probability density functions

Example 2: Y ∼ Bin(θ = 0.9,n = 10) (R-Code)

The heights of the bars can be found by typing

> data.frame(row.names=0:10,
chance=dbinom(0:10, 10, 0.9))

chance
0 0.0000000001
1 0.0000000090
2 0.0000003645
3 0.0000087480
4 0.0001377810
5 0.0014880348
6 0.0111602610
7 0.0573956280
8 0.1937102445
9 0.3874204890
10 0.3486784401
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Probability density functions

Example: Bin(θ = 0.9,n = 10) (Maths)

The heights of the bars can also be calculated by hand using
the pdf

f (y | θ = 0.9,n = 10) =
(

10
y

)
0.9y0.110−y (4)

where y = 0,1, . . . ,10.
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Probability density functions

Summary: Data generative view of a model

Statistical model
A model embodies a set of statistical assumptions concerning
the generation of data, either uncertain future data or already
observed data.

Data generative view is useful when planning an
experiment, that is, before data are observed
To do so, the structural relationship f (y | θ,n) and the
parameters θ and n are supposed to be known
Thus, the data y are (still) unknown, therefore, random
We can play around with different values of n and θ to see
what we can expect about the overall ("lots of balls")
behaviour of the data without actually making a Galton
board or recruiting people for an experiment
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Explanatory view of statistical models: Inferring θ

Explanatory view of a model

Statistical model
A model embodies a set of statistical assumptions concerning
the generation of data, either uncertain future data or already
observed data.

Inference
After the data collection, we have the observations yobs
which are not random
Likelihood: The functional relationship f (yobs | θ) is used as
an explanatory model of how the data came about
Goal of inference: Discover which θ is responsible for the
observed data yobs, thus, yobs and n are known, while θ is
unknown.
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Estimation and testing

Two inference strategies: Estimation and testing

Goal of inference: Discover which θ is responsible for the
observed data yobs, thus, yobs and n are known, while θ is
unknown.

Inference
Estimate θ: Guess θ based on the observations yobs

Hypothesis test: Postulate that θ is known, say, θ = θ0 do a
prediction about the overall behaviour of the data y and
compare this to the observations yobs.
Note: A prediction should be done before one observe the
outcome. Thus, pre-register your hypotheses.
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Estimation and testing

Estimation

A (point) estimate is a best guess for θ based on the data.

Examples
Estimate θ based on n = 10 and yobs = 7
Uncertainty quantification: How certain are we about this
best guess?
Estimate θ based on n = 100 and yobs = 70
Uncertainty quantification: How certain are we about this
best guess?

A Bayesian posterior can give you both a point estimate and a
method to quantify the uncertainty about this estimate
simultaneously.
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Bayes rule

Bayesian estimation

Because θ is unknown, a Bayesian says that her
knowledge about θ is random. Hence, θ has a "prior"
distribution π(θ)
The prior π(θ) allows us to backtrack θ conditioned on the
observations yobs using Bayes’ rule.

Bayes’ rule

π(θ | yobs) =
f (yobs | θ)π(θ)∫
f (yobs | θ)π(θ)dθ

(5)

Bayes’ rule reads as

Posterior =
Likelihood× Prior

Normalisation constant
(6)
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Bayes rule

Bayes’ rule

π(θ | yobs) =
f (yobs | θ)π(θ)∫
f (yobs | θ)π(θ)dθ

(7)

Likelihood f (yobs | θ): The model relates the observations
yobs back to the parameter θ
Prior π(θ): Our knowledge about θ before any datum is
observed. θ ∼ π(θ)
Posterior π(θ | yobs): Updated knowledge about θ
conditioned on the observations yobs

Normalisation constant
∫

f (yobs | θ)π(θ)dθ secures that the
posterior is a distributions that sums to one
Note: The observations yobs is known, the likelihood and
prior are chosen by the experimenter. To calculate the
normalisation constant use WinBUGS and JAGS within R
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Default analysis: Bayesian estimation 1

Prior selection strategy

Bayesian statistics requires a prior, which also boils down to
choosing a distribution

Prior selection strategy
1 List all possible outcomes for the parameter θ
2 Choose a density π(θ) for θ
3 Robustness check: See how the conclusions change when

the prior is changed

For continuous variables that take values in the bounded
interval (0,1) we typically use a so-called beta distribution, see
the shinyApp. Hence, θ ∼ Beta(α, β). When α = β = 1 this is
the uniform distribution on (0,1).
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Default analysis: Bayesian estimation 1

Bayesian estimation with a uniform prior θ ∼ Beta(1,1)

Parameter θ
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Prior probability of finding θ in (0.6,0.8) is 20 %.
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Default analysis: Bayesian estimation 1

Posterior given yobs = 7 successes in n = 10 and the
uniform prior

Parameter θ
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Posterior probability of finding θ in (0.6,0.8) is 54.2 %.
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Default analysis: Bayesian estimation 1

Posterior given yobs = 70 successes in n = 100 and
the uniform prior

Parameter θ
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Posterior probability of finding θ in (0.6,0.8) is 97.2 %.
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Sensitivity analysis: Bayesian estimation 2

Bayesian estimation with a Beta(2,6) prior

Parameter θ
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Prior probability of finding θ in (0.6,0.8) is 1.8 %.
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Sensitivity analysis: Bayesian estimation 2

Posterior given yobs = 7 successes in n = 10 and a
Beta(2,6) prior

Parameter θ
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Posterior probability of finding θ in (0.6,0.8) is 19.6 %.
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Sensitivity analysis: Bayesian estimation 2

Posterior given yobs = 70 successes in n = 100 and a
Beta(α = 2, β = 6) prior

Parameter θ
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Posterior probability of finding θ in (0.6,0.8) is 92.6 %.
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Sensitivity analysis: Bayesian estimation 2

Bayesian estimation example summary

Probability of finding θ in (0.6,0.8)

y/n (success / trials) 0/0 7/10 70/100
Uniform prior θ ∼ beta(1,1) 20 % 54.2 % 97.2 %
Subjective prior θ ∼ beta(2,6) 1.8 % 19.6 % 92.6 %
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Bayes factors

Bayesian hypothesis testing: Model comparison

ShinyApp:
http://87.106.45.173:
3838/felix/BayesLessons/BayesianLesson1.Rmd

Think of a person write down the name
Null hypothesis H0: The proportion of women is 50%. We,
thus, presuppose that the proportion is known and to equal
to θ = 0.5
Alternative hypothesis H1: The proportion of women can
be anything within (0,1). Use a uniform prior of θ on (0,1)
The Bayes factor BF10(yobs) quantifies the evidence in the
observations yobs in favour of the alternative hypothesis
against the null hypothesis.
Classroom result: BF10(yobs) = 1.61, thus,
BF01(yobs) = 1/BF10(yobs) = 0.621 with yobs = 5 and
n = 18

http://87.106.45.173:3838/felix/BayesLessons/BayesianLesson1.Rmd
http://87.106.45.173:3838/felix/BayesLessons/BayesianLesson1.Rmd
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Bayesian estimation

Bag of candy

Each person takes out a candy and replace it with a new
candy of the same type.
Estimate the true proportion θ of yellow candy in the bag
Posterior gives both point estimate and an uncertainty
quantification
Note: The true proportion θ is fixed throughout the process
and is not random. Our knowledge about θ changes
Classroom result: True proportion θ = 7/(7 + 11) = 0.39,
samples: 8 yellow and 10 black
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Pros and cons of Bayesian statistics

Pros and cons of Bayesian statistics

Pros
Allows for dynamic updating and a natural method to
include prior knowledge
Posterior gives both a point estimate and a credible interval
to quantify our uncertainty about the estimate
Only depends on the data that were actually observed yobs

Cons
Requires a prior. Choosing a prior can be hard.
Sensitivity analysis: Check the results under different priors
To calculate the posterior, need to be able to solve an
integral
No need for hard mathematics anymore, use WinBUGS or
JAGS within R



Statistical Modelling Bayesian statistics Classroom exercises Summary

Pros and cons of Bayesian statistics

WinBUGS, JAGS and MCMC

In the olden days, Bayesian statistics was inaccessible due
to the normalisation constant in Bayes’ rule

π(θ | yobs) =
f (yobs | θ)π(θ)∫
f (yobs | θ)π(θ)dθ

(8)

Now WinBUGS or JAGS calculates the normalisation
constant for you using MCMC sampling (next class)
All we need to do is specify a likelihood y ∼ f (y | θ) and a
prior θ ∼ π(θ)
Recall that yobs is not random, but that θ is random
In fact, WinBUGS or JAGS exploit the fact that θ is random
and actually generate samples of θ to calculate the
posterior (next class)
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Summary: Bayesian statistical modelling

Bayesian modelling strategy

Modelling strategy, but use the model as an explanatory device
1 List all possible outcomes for the data y
2 Identify the parameters θ that generate these possible

outcomes
3 Structurally link the parameter to the data f (y | θ)

Prior selection strategy
4 List all possible outcomes for the parameter θ
5 Choose a density π(θ) for θ
6 Robustness check: See how the conclusions change when

the prior is changed
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Summary: Bayesian statistical modelling

JAGS model file:

In both cases, we end up with a distribution

Data part: Likelihood
k ~ dbin(theta, n)

(In these slides, I used y instead k )

Prior part
theta ~ dbeta(1, 1)
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Summary: Bayesian statistical modelling

Data part: Likelihood
data <- list("k", "n")

in "Rate_1.R" tells JAGS that y is not random

y ~ dbin(theta, n)

thus, the binomial distribution is used as a exploratory model

Prior part
myinits <- list(list(theta = 0.1)... )

in "Rate_1.R" tells JAGS that theta is random,

theta ~ dbeta(1, 1)

thus, JAGS knows that it needs to "sample" from θ to calculate
the normalisation constant in Bayes’ rule



Statistical Modelling Bayesian statistics Classroom exercises Summary

Homework

1 Read and do the ShinyApp. (Getting started with Bayesian
statistics using an app)

2 Read Chapters 1 and 2 of the book. (Learn to program the
same app in R)

Write down any questions you have for EJ and bring them to
the next class.
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Homework

Slides can be found on
http://www.alexander-ly.com/teaching/
ShinyApp:
http://87.106.45.173:
3838/felix/BayesLessons/BayesianLesson1.Rmd
Website:
http://www.ejwagenmakers.com/BayesCourse/
BayesCourse.html

http://www.alexander-ly.com/teaching/
http://87.106.45.173:3838/felix/BayesLessons/BayesianLesson1.Rmd
http://87.106.45.173:3838/felix/BayesLessons/BayesianLesson1.Rmd
http://www.ejwagenmakers.com/BayesCourse/BayesCourse.html
http://www.ejwagenmakers.com/BayesCourse/BayesCourse.html
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