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Abstract5

Our original article provided a relatively detailed summary of Harold Jeffreys’s philosophy on

statistical hypothesis testing. In response, Robert (ress) maintains that Bayes factors have a

number of serious shortcomings. These shortcomings, Robert argues, may be addressed by an

alternative approach that conceptualizes model selection as parameter estimation in a mixture

model. In a second comment, Chandramouli and Shiffrin (ress) seek to extend Jeffreys’s framework

by also taking into consideration data distributions that do not originate from either of the models

under test. In this rejoinder we argue that Robert’s (ress) alternative view on testing has more in

common with Jeffreys’s Bayes factor than he suggests, as they share the same “shortcomings”. On

the other hand, we show that the proposition of Chandramouli and Shiffrin (ress) to extend the

Bayes factor is in fact further removed from Jeffreys’s view on testing than the authors suggest.

By elaborating on these points, we hope to clarify our case for Jeffreys’s Bayes factors.
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In our original article (Ly et al., ress) we outlined how Harold Jeffreys constructed his hy-7

pothesis tests. Jeffreys’s tests contrast a precise, point-null hypothesisM0 versus a more general8

alternative hypothesisM1. Here the point-null hypothesis represents a general law, an invariance,9

or a categorical causal claim (e.g., “apple trees always bear apples”; “people cannot look into10

the future”; “Alzheimer’s disease is caused by a fungal infection of the central nervous system”),11

whereas the alternative hypothesis relaxes that law. Jeffreys’s tests require a thoughtful speci-12

fication of the prior distribution for the parameter of interest, and much of Jeffreys’s work was13

concerned with providing good default specifications – “good” in the sense that they adhere to14

general common-sense desiderata (e.g., Bayarri et al., 2012). We are pleased that our summary15

attracted two comments by renowned researchers; below we respond to their ideas in a way that16

we hope is consistent with the overall philosophy of Harold Jeffreys himself.17
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1. Rejoinder to Robert1

In general, Robert’s (ress) comments highlight the inevitable subtleties in constructing a Bayes2

factor. His alternative mixture model procedure is practical and may be immensely valuable for3

specific situations (i.e., hierarchical models) that are common in psychological research. Neverthe-4

less, we believe Robert’s suggestion about the demise of the Bayes factor to be an overstatement.5

1.1. Robert’s Critique on the Bayes Factor6

Our understanding of Jeffreys’s method is partly based on the work by Robert and colleagues7

(2009), and it should, therefore, not come as a surprise that Robert’s view and ours overlap to a8

considerable degree. Robert’s arguments for dismissing the Bayes factor can be grouped in terms9

of (1) its usage in making decisions and (2) the care that needs to be taken in choosing the priors.10

1.1.1. First Critique: The Distinction Between Inference and Decision Making11

We share Robert’s discontent with the statistical practice that emphasizes all-or-none decisions12

at some arbitrary threshold, and we agree that scientific learning should instead be guided by a13

continuous measure of evidence. In the process of eviscerating p-value null hypothesis tests,14

Rozeboom (1960, pp. 422-423) already expressed a similar sentiment:15

“The null-hypothesis significance test treats ‘acceptance’ or ‘rejection’ of a hypothesis16

as though these were decisions one makes. But a hypothesis is not something, like17

a piece of pie offered for dessert, which can be accepted or rejected by a voluntary18

physical action. Acceptance or rejection of a hypothesis is a cognitive process, a degree19

of believing or disbelieving which, if rational, is not a matter of choice but determined20

solely by how likely it is, given the evidence, that the hypothesis is true.”21

Our favorite continuous measure of evidence is of course a Bayes factor constructed from a pair22

of priors selected according to Jeffreys’s desiderata, or a Jeffreys’s Bayes factor in short. It is23

important to note that this measure provides only the first of three Bayesian ingredients needed24

for decision making. The other two ingredients are the prior model probabilities (which, combined25

with the Bayes factor, yield posterior model probabilities) and the specification of a loss function26

(or equivalently, a utility function; Berger, 1985, Lindley, 1977, and Robert, 2007).27

For instance, consider a Bayes factor of BF10(d) = 4.6 for the observed data d. This Bayes28

factor can be converted to a posterior model probability of P (M0 | d) = 0.17 when we set P (M0) =29

P (M1) = 1/2 (Ly et al., ress). One possible subsequent decision rule is then to accept P (M1 | d)30
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because it has the highest posterior model probability. We did not intend to suggest such a1

procedure, as the decision is clearly sensitive to the prior model probabilities. Furthermore, we do2

not recommend uniform prior model probabilities regardless of scientific context. In fact, when3

decision making is desired, the assignment of prior model probabilities is left to the substantive4

researcher. Such flexibility in assignment introduces subjectivity, and this may be seen either as a5

disadvantage or as an advantage. At any rate, prior model probabilities can be used to formalize6

the adage that “extraordinary claims require extraordinary evidence” (e.g., Wagenmakers et al.,7

2011). Moreover, the prior model probabilities can be used to address the problem of multiplicity8

(e.g., Jeffreys, 1961; Scott and Berger, 2010; Stephens and Balding, 2009). A similar argument9

applies to utility functions: these may be subjective and hard to elicit, but such difficulties do not10

sanction the practice of ignoring utility functions altogether, at least not when the purpose is to11

make decisions.12

Thus, Robert worries that computation of Bayes factors may tempt users to make all-or-none13

decisions while disregarding prior model probabilities or loss functions. We agree with Robert14

that there is a considerable difference between inference and decision making, and that scientific15

learning should be guided by a continuous measure of evidence that incorporates what we have16

learned from the observed data. The Bayes factor is such a measure.17

1.1.2. Second Critique: The Jeffreys-Lindley-Bartlett Paradox18

We suspect that the Jeffreys-Lindley-Bartlett (henceforth JLB) paradox is central to Robert’s19

(1993; 2014) dismissal of the Bayes factor and it is the main motivation for the development of the20

mixture model alternative. We take a closer look at the JLB paradox and discuss two consequences21

foreseen by Jeffreys, who was keenly aware of the “paradox” from the very beginning (Etz and22

Wagenmakers, 2015).23

First, the JLB paradox implies that we cannot use improper priors to construct a Bayes factor.

For instance, to estimate µ within the normal model M1 : X ∼ N (µ, 1), we typically employ

Jeffreys’s (1946) prior µ ∝ 1. The reason to do so stems from the fact that Jeffreys’s prior is

translation-invariant, leading to a posterior that is independent on how researchers parameterize

the problem (Ly et al., 2015b). The JLB paradox implies that we cannot use this same (estimation)

prior on the test-relevant parameter for a Bayesian test. More specifically, when we pit the

aforementioned modelM1 against the null modelM0 : X ∼ N (0, 1) the improper prior π1(µ) ∝ 1

then becomes useless. To see this we consider the Jeffreys’s prior as the limit of proper priors

µ ∼ N (0, τ2) with τ going to infinity. The Bayes factor for the observed data d = (n, x̄) is then
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given by

lim
τ→∞

B̃F10 ; τ (d) = lim
τ→∞

∫
exp

[
− n

2 (x̄− µ)2] exp
[
− 1

2τ2µ
2]dµ

√
2πτ exp[−n2 x̄2]

= 0, (1)

= lim
τ→∞

1√
1 + nτ2

exp
[

(τnx̄)2

2(1 + nτ2)

]
= 0, (2)

regardless of the fixed sample size n, the observed sample mean x̄. As such, the Bayes factor1

constructed from the improper Jeffreys’s prior will always favor the null model and this also holds2

for other improper priors. Moreover, Eq. (2) shows that for fixed data d = (n, x̄) and a Bayes3

factor constructed from a normal prior with hyperparameter τ we can obtain a Bayes factor in4

favor of the null hypothesis of arbitrary size (i.e., B̃F10 ; τ (d) < 1) simply by taking τ large enough.5

Hence, the JLB paradox effectively implies that a testing problem should be treated differently6

from one that is concerned with estimation. As such, when π1 is interpreted as prior belief about7

the parameters θ1, in the example above θ1 = µ, one’s belief about the parameter then changes8

depending on whether one is concerned with testing or estimating. More generally, this difference is9

due to the fact that estimation is typically a within-model affair. Recall that a modelMi specifies10

a relationship fi(d | θi) that defines which parameters θi are relevant in the data generating process11

of the data d. Hence, the function fi gives the (only) context in which the parameters θi can be12

perceived.13

In essence, the fi justifies that it is meaningful to calculate a posterior distribution for the14

parameter. To underline this point we added subscripts to the parameters to indicate model15

membership, that is, we take θ0 = σ0 and θ1 = (µ1, σ1) for f0 and f1 and both normals. For16

example, when we assume thatM0 : X ∼ N (0, σ2
0) only a posterior for the standard deviation σ017

is worthwhile to be pursued, as the posterior for the population mean remains zero, regardless of18

the data. WithinM0, the Jeffreys’s prior for σ0 is given by π0(σ0) ∝ σ−1
0 , which can be updated19

to a posterior π0(σ0 | d). On the other hand, underM1 : X ∼ N (µ1, σ
2
1) we are dealing with two20

parameters of interest. WithinM1, the Jeffreys’s prior for µ1 is π(µ1) ∝ 1, for σ1 is π1(σ1) ∝ 1/σ121

and we take π1(µ1, σ1) = π1(µ1)π1(σ1). These priors can be updated to posteriors π1(µ1 | d) and22

π1(σ1 | d). Even though the two priors π0(σ0) and π1(σ1) have the same form, they do not lead23

to the same posterior. In fact, due to the presence of µ1 as a parameter, the posterior mean of24

π1(σ1 | d) withinM1 will be smaller or equal to the posterior mean of π0(σ0 | d) withinM0. Thus,25

when we are interested in the standard error σi, it matters whether we believe that M0 holds26

true or whether the population mean µ1 plays a role in the data generating process in accordance27
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to M1. The Bayes factor helps us distinguish which of the two models predict the data more1

adequately and which posterior for σi we should report. Hence, testing is a between-model matter.2

Jeffreys himself was very clear about the distinction between estimation and testing:3

“We are now concerned with the more difficult question: in what circumstances do4

observations support a change of the form of the law itself? This question is really5

logically prior to the estimation of the parameters, since the estimation problem pre-6

supposes that the parameters are relevant.” (Jeffreys, 1961, p. 245)7

Hence, testing implies that we are uncertain about which of the two functional relationships defined8

by the models M0 and M1 is adequate for the data under study. This uncertainty is expressed9

through the prior statement P (M0), P (M1) > 0 and when M0 and M1 are the only models10

under consideration we require that P (M0) + P (M1) = 1. The priors π1, π0 in a Bayes factor11

are, thus, chosen to guide scientific learning, that is, how one transitions from prior model odds12

to posterior model odds and are not designed to yield posteriors that are good for estimation. To13

simplify notation, we drop the subscripts indicating model membership when the context is clear.14

Second, the separation of estimation and testing and the resulting separation of models led us15

to instantiate the hypotheses Hi with their respective modelsMi as discussed in Ly et al. (ress).16

In effect, we have different contexts in which the respective parameters exist and, therefore, a17

philosophical conundrum in what is meant by common parameters. The difference between the18

posteriors π0(σ | d) and π1(σ | d) discussed above showed that one should not be fooled by the fact19

that the Greek letters are identical. We therefore agree with Robert’s warning concerning the20

treatment of common parameters.21

For the t-test the commonality between the two σs withinM0 andM1 is given by their meaning

as a scaling parameter within either models. Furthermore, the nesting of π0(σ) as π1(µ, σ) =

π1(δ)π0(σ) can be considered a practical choice. In effect, the Bayes factor BF10(d) is then given

by the ratio of the following two marginal likelihoods

p(d |M1) = (2π)−n
2

∫ ∞
0

σ−n
∫ ∞
−∞

exp
(
−n2

[(
x̄
σ − δ

)2
+
(
s
σ

)2
])

π1(δ)dδ π0(σ)dσ, (3)

p(d |M0) = (2π)−n
2

∫ ∞
0

σ−n exp
(
− n

2σ2

[
x̄2 + s2])π0(σ)dσ, (4)

where d = (n, x̄, s2). We would like to thank Robert for pointing out our notational inaccuracy,22

as Eq. (9) in Ly et al. (ress) should actually be Eq. (3) above, that is, the marginal likelihood of23

the alternative model, thus, the numerator of the Bayes factor BF10(d), after π1(δ) and π0(σ) are24
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specified. In the original text we already filled in π0(σ) ∝ σ−1, a choice which we elaborated on1

in Section 3.2.2 of Ly et al. (ress).2

With the nesting of π0 within π1 we made the following recommendation explicit: “It is to be3

understood that in pairs of equations of this type [such as Eqns. (3, 4)] the sign of proportionality4

indicates the same constant factor, which can be adjusted to make the total probability 1.” (Jef-5

freys, 1961, p. 247) More precisely, an improper prior π0(σ) ∝ σ−1 has a suppressed normalization6

constant π0(σ) = c0σ
−1 and we not only take π1(σ) = c1σ

−1 of the same form, but also choose to7

set c1 = c0, which allows us to use improper priors on the nuisance parameters (see Berger et al.,8

1998 for a theoretical justification). More examples of this type of nesting can be found in Dawid9

and Lauritzen (2001), Consonni et al. (2008), and references therein.10

1.2. Jeffreys’s Common-Sense Desiderata11

“Rejection of a null hypothesis is best when it is interocular”. Edwards et al. (1963, p.12

240)13

In conclusion, the JLB paradox prohibits the usage of improper priors for testing, separates14

the estimation practice from a testing concern, and challenges the idea of common parameters.15

As noted above, we first require a justification before we can use the same prior on the nuisance16

parameters. After doing so, we then create an exception on the ban of improper priors allowing17

us to assign improper priors to the nuisance parameters , say, θ0 = σ. Furthermore, let δ denote18

the test-relevant parameter with, say, θ1 = (θ0, δ). Hence, after specifying Jeffreys’s translation-19

invariant priors on the nuisance parameters θ0, which we would use for estimation within each20

model, we only require to set the prior π1(δ) in order to define the Bayes factor BF10(d). We21

suspect that Jeffreys’s underlying reasons for the choice of π1(δ) was to have a test that passes22

“the interocular traumatic test; you know what the data mean when the conclusion hits you23

between the eyes.” Edwards et al. (1963, p. 217).24

We believe that the information consistency criterion makes explicit which data hit us right25

between the eyes. This criterion leads to a Bayes factor that is consistent for a finite sample, a26

requirement that is much harder to be fulfilled than the asymptotic consistency criterion, at least27

for parametric models (e.g., Bickel and Kleijn, 2012, Yang and Le Cam, 2000). We agree with28

Robert that information consistency is in some cases an approximate statement. In particular,29

when the data are either distributed according toM0 : X ∼ N (0, σ2) orM1 : X ∼ N (µ, σ2) then30

the interocular data set with n > 2, x̄ 6= 0 and, in particular, s2 = 0 occurs with zero probability31
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under both models, due to having σ > 0. However, when M0 and M1 are the only two models1

under consideration, the observation x̄ 6= 0 with n > 2, in addition to s2 = 0, then should lead to2

the logical exclusion ofM0, thus, BF01(d) = 0.3

To appreciate the information consistency criterion, we revisit the Bayesian t-test with Bayes

factors B̃F10 ; τ (d) that lacks this property by constructing it from π0(σ) ∝ σ−1 and π1(δ, σ) =

π1(δ)π0(σ) where π1(δ) is normal around zero with a standard deviation τ , i.e.,

B̃F10 ; τ (d) =(1 + nτ2)
n−1

2

(
1 + nx̄2

ns2

(1 + nτ2) + nx̄2

ns2

)n
2

(5)

As before, letting τ tend to infinity, while keeping n, x̄ and s2 fixed, yields the JLB paradox, i.e.,4

limτ→∞ B̃F10 ; τ (d) = 0.5

To simplify the discussion we suppose that τ is set to one. The resulting Bayes factor6

B̃F10 ; τ=1(d) is then asymptotically consistent. This means that if we repeatedly sample from7

the null model, we let n tend to infinity and simultaneously let nx̄2/(ns2) = t2/(n − 1) tend to8

zero yielding a Bayes factor of zero, where t is the usual t-statistic t =
√
nx̄/sn−1. Similarly, if9

we repeatedly sample from the alternative model, we let n tend to infinity and simultaneously let10

t2/(n− 1) tend to infinity yielding a Bayes factor of infinity. Thus, this Bayes factor B̃F10 ; τ=1(d)11

is able to detect the correct model when the number of data points tends to infinity.12

The Bayes factor B̃F10 ; τ=1(d), however, is not information consistent. For the t-test informa-13

tion consistency is concerned with having a fixed number of data points n > 2, a observed sample14

mean, say, x̄ 6= 0 and s2 tending to zero. With τ , n and x̄ fixed, this Bayes factor B̃F10 ; τ=1(d) is15

an decreasing function of as a function of s2 that attains its maximum when s2 = 0. For instance,16

when n = 4, x̄ = 7 the maximum is given by lims2→0 B̃F10 ; τ=1(d) = 11.18. Note that the data17

set with n = 4, x̄ = 7 and s2 → 0 is interocular as it leads to an observed sample effect size,18

an realization of the t-statistic, that tends to infinity, which should therefore lead to an infinite19

support for the alternative compared to the null model. The fact that the information inconsistent20

Bayes factor B̃F10 ; τ=1(d) is bounded makes it hard to be interpret. For instance, the observations21

n = 4, x̄ = 7 and s2 = 1 yields a Bayes factor of B̃F10 ; τ=1(d) = 9.6, which does not seem a lot of22

evidence against the null, but with respect to its maximum 11.81 might be considered substantial.23

On the other hand, a Jeffreys’s Bayes factor is by construction information consistent and has24

a supremum (i.e., maximum) at infinity, which makes it easier to be interpret. Jeffreys referred to25

this and other desiderata as common-sense as they came natural to him (Etz and Wagenmakers,26
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2015), but it took a long time before his intuition was formalized by Berger and Pericchi (2001)1

and extended by Bayarri et al. (2012).2

Recall that information consistency in a t-test requires us to construct a Bayes factor from a3

heavy-tailed prior on δ and we agree with Robert that the Cauchy prior with scale γ = 1 is only4

one of many possible choices. This is why we included a robustness analysis in our open-source5

software package JASP (https://jasp-stats.org/). However, we believe that the merit of a6

Jeffreys’s Bayes factor (with γ fixed) is due to the fact that it kickstarts scientific learning.7

“In any of these cases it would be perfectly possible to give a form of [π1(δ)] that8

would express the previous information satisfactorily, and consideration of the general9

argument of [Chapter] 5.0 will show that it would lead to common-sense results, but10

they would differ in scale. As we are aiming chiefly at a theory that can be used in11

the early stages of a subject, we shall not at present consider the last type of case”12

(Jeffreys, 1961, p. 252).13

Thus, Jeffreys was not opposed to incorporating previously acquired data in a Bayesian hypothesis14

test, but to do so he first designed a starting Bayes factor, for a first data set, say, dorig. After15

observing dorig, we can then straightforwardly update a Jeffreys’s Bayes factor for a future, not yet16

observed, data set, say, drep. This informed Bayes factor BF10(drep | dorig) is then constructed from17

the priors π1(θ1 | dorig) and π0(θ0 | dorig). This idea forms the basis of the replication Bayes factors18

introduced in Verhagen and Wagenmakers (2014) and is further exploited in Ly et al. (2015a).19

Hence, the man who discovered the origin of the earth, thus, also provided us with the starting20

point for scientific learning.21

1.3. Robert’s Alternative Approach22

“Prior distributions must always be chosen with the utmost care when dealing with23

mixtures and their bearings on the resulting inference assessed by a sensitivity study.24

The fact that some noninformative priors are associated with undefined posteriors, no25

matter what the sample size, is a clear indicator of the complex nature of Bayesian26

inference for those models” (Marin and Robert, 2014, p. 199)27

As an alternative to Bayes factors, Robert (ress) suggests to use a mixture model approach elab-28

orated upon in Kamary et al. (2014). The data generating process of a mixture model can be29

envisioned as a stepwise procedure. First, a membership variable zj is realized; in a two-component30

mixture, zj assumes either the value zero or one. Next, given the outcome zj = 0 (or zj = 1) a31

8
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data point xj is generated according to M0 : Xj ∼ f0(xj | θ0) (or M1 : Xj ∼ f1(xj | θ1)). This1

means that the complete data should therefore consists of n-pairs (z1, x1), . . . , (zn, xn), but in2

reality we only have the observations d = x1, . . . , xn. As a result of not observing the membership3

variables zj , the observations are perceived as if each of the data points were generated from the4

(arithmetic) mixture model Ma : Xj ∼ (1 − α)f0(xj | θ0) + αf1(xj | θ1), where α is the mixture5

proportion. The artificial encompassing modelMa therefore contains the two competing models,6

M0 and M1, as special cases; when α = 0 and α = 1 respectively. Hence, to uncover whether7

the observations are more consistent with M0 or M1, Kamary et al. (2014) suggest to focus on8

estimating α within the encompassing modelMa.9

Inferring α amounts to a missing data problem which is in principle computationally intensive10

as there are 2n different combinations for the membership variables zjs. Luckily, one can resort to11

a completion method pioneered by Diebolt and Robert (1994). When this stochastic exploration12

method yields n0 and n1 numbers of observations allocated toM0 andM1, respectively, the pos-13

terior for α is then given by B(a+n0, a+n1), when we use a beta prior on the mixture proportion,14

α ∼ B(a, a). When n0 is large and n1 small or zero, the posterior for α then concentrates most of15

its mass near zero indicating more evidence forM0 as one would expect.16

Kamary et al. (2014) note that the data generative view of the mixture model is theoretically17

justified, but that the resulting natural Gibbs sampler has convergence problems when the hy-18

perprior a is smaller than one. To circumvent this problem, Kamary et al. (2014) propose to use19

a Metropolis-Hastings algorithm instead and illustrate its use by examples followed by a proof20

that shows that the method is asymptotically consistent. Thus, the work by Kamary et al. (2014)21

impressively introduces an alternative view on testing, an algorithmic resolution, and a theoretical22

justification.23

1.3.1. Testing versus Estimation24

We believe that the Kamary et al. (2014) mixture approach will be especially useful in psycho-25

logical research. In particular, consider a hierarchical model where each participant’s performance26

xj on a psychological task is captured by a particular model or strategy represented by fi. The27

posterior for α then gives an indication of the prevalence of the model or strategy. When the28

posterior for α is near zero or near one, this suggests that one model or strategy is dominant;29

when the posterior for α is near 1/2, this suggests that some participants are better described by30

one strategy, and some are better described by another (for similar approaches see Friston and31

Penny, 2011; Lee et al., 2015).32
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The advantage of the mixture model approach is particularly acute when it is reasonable1

to assume that not all participants will follow one or the other strategy. In this special issue for2

Journal of Mathematical Psychology alone, the articles by Kary et al. (ress) and Turner et al. (ress)3

demonstrate considerable heterogeneity among participants: the behavior of some participants is4

predicted much better by one model, the behavior of other participants is predicted much better5

by the competing model, and the behavior of a third set of participants is predicted by the models6

about equally well (see also Steingroever et al., ress).7

The standard Bayes factor tests determines whether all participants are better predicted by8

model M0 or whether all participants are better predicted by model M1. Therefore, one can9

construct situations in which the data support model M0 for 99 out of 100 participants, and10

nevertheless the Bayes factor strongly prefers model M1. We believe that in these hierarchical11

scenarios, the mixture model approach is a valuable technique that can offers additional insight.12

The above considerations suggests that the mixture approach relaxes Jeffreys’s conceptualiza-13

tion of a hypothesis test. More precisely, Jeffreys viewed the null hypothesis as a general law,14

which by definition implies that the membership variables zj are either all zeroes or all ones. Note15

that by embedding the models into an artificial encompassing model, Kamary et al. (2014) trans-16

formed the testing problem into one of estimation. Jeffreys, however, did not feel that estimation17

is appropriate when the test of a general law is at hand:18

“Broad used Laplace’s theory of sampling, which supposes that if we have a population19

of n members, r of which may have a property ϕ, and we do not know r, the prior20

probability of any particular value of r(0 to n) is 1/(n+ 1). Broad showed that on this21

assessment, if we take a sample of number m and find all of them with ϕ, the posterior22

probability that all n are ϕ’s is (m+ 1)/(n+ 1). A general rule would never acquire a23

high probability until nearly the whole of the class had been sampled. We could never24

be reasonably sure that apple trees would always bear apples (if anything). The result25

is preposterous, and started the work of Wrinch and myself in 1919-1923.” (Jeffreys,26

1980, p. 452)27

Wrinch and Jeffreys (1919, 1921, 1923) argued that within an estimation framework, a general28

law such as H0 :“All swans are white” cannot gain much evidence until almost all swans have been29

inspected.2 Moreover, common sense prescribes that the plausibility of a general law increases30

2We now know that this particular statement does not hold true, since Australia is home to many black swans.
The statement itself however cannot be discarded until the first exception is actually observed.
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with every observation in accordance with the law, that is, s = n number of successes within n1

trials. Jeffreys (1961, p. 256) operationalized the general law as a binomial model M0 with θ02

fixed and its negation as the binomial modelM1 with a θ free to vary. With a uniform prior on θ3

this then leads to a Bayes factor of BF01(d) = (n+1)!
s!f ! θs0(1−θ0)f , where n denotes the total number4

of trials, s the number of successes, and f the numbers of failures.5

When only successes are observed (i.e., observations consistent with the general law H0 : θ0 =6

1), the Bayes factor simplifies to n+1; a single failure, on the other hand, indicates infinite evidence7

against the general law: the observation of a single black swan is interocular, as it conclusively8

falsifies the general law “all swans are white”. Hence, Jeffreys’s Bayes factor formalizes inductive9

reasoning and the logic of proof by contradiction.10

The discussion above indicates that the mixture model approach does not formalize inductive11

reasoning and the logic of proof by contradiction: after having observed 10,000 white swans, the12

observation of a single black swan will not greatly affect the mixture proportion – the mixture13

proportion still reflects the fact that there is a great preponderance of white swans. However, in14

Jeffreys conceptualization, the single exception utterly destroys the general law.15

Another concern with the mixture model approach is that it is relatively insensitive to the16

shape of the prior distributions. Of course, this is also its strength, as this is needed to avoid17

the JLB paradox. However, models that make correct predictions should receive more reward18

when these predictions are risky, and the degree of risk is partly encoded in the shape of the19

prior distributions. For instance, suppose we model a binomial parameter θ and assume that20

M1 : θ ∼ U [1/2, 1] andM2 : θ ∼ U [0, 1]; further, suppose the observed data are highly consistent21

with the simpler model M1. Because the predictions from M1 are twice as risky as those from22

M2 we would want to preferM1 overM2, and in fact, the Bayes factor is asymptotically equal23

to 2 in favor ofM1 (e.g., Heck et al., 2015; Shiffrin et al., ress).24

1.4. Conclusion25

Scientific learning involves more than just testing general laws and invariances. Estimation and26

exploration are important and the mixture approach has a lot to offer in this respect, particularly27

in hierarchical settings where the general law is unlikely to hold for all participants simultane-28

ously. Other advantages of the mixture approach are apparent as well. For instance, Example 3.129

in Kamary et al. (2014) compares a Poisson distribution with parameter λ to a geometric distri-30

bution with parameter p (see Robert, 2015 for R code). The comparison begins by relating the31

parameterizations to each other by setting p = (1 + λ)−1, which allows the use of the improper32
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Jeffreys’s prior (with respect to the Poisson distribution) π(λ) = λ−1 over the two models. Note1

how this procedure resembles Jeffreys’s recommendation for common parameters even though the2

arguments differ. Moreover, its posterior π(λ | d) will be mixture of the likelihoods of both models.3

The simulations show that the mixture approach performs well. We do not know how a Jeffreys’s4

Bayes factor can be constructed to deal with a test between two models of different relational5

forms as Jeffreys was only concerned with nested model comparisons (e.g., Robert, ress).6

The mixture approach is not fully automatic, however, and requires some thoughts on how the7

priors should be chosen. In particular, one cannot naively use improper priors on the test-relevant8

parameters, as this may yield posteriors that are also improper (Grazian and Robert, 2015). This9

was acknowledged by Robert (ress) who used an (arbitrary) standard normal prior on µ in a t-test.10

Our implementation of this recommendation lead to a posterior median ranging from 0.3 to 0.9,11

for the interocular data with n = 4, x̄ = 7 and s2 = 0, while α should be 1.0 if it were information12

consistent. More recently, Kamary et al. (2016) proposed a noninformative reparametization for13

location-scale mixtures to resolve the aforementioned arbitrariness. Hence, as with a Jeffrey’s14

Bayes factor, one should choose the priors carefully when one conceptualizes model selection as15

parameter estimation in a mixture model.16

Lastly, Robert notes that the mixture approach is superior to the Bayes factor as it leads to17

a faster accumulation of α to the null. The parametric convergence rate of
√
n follows immediate18

from casting the testing problem as one of estimation. Similarly, it should be noted that Johnson19

and Rossell (2010) also use the rate of convergence as a motivation for their Bayes factor approach.20

We are unsure whether this rate is relevant as we do not consider a testing problem as one of21

estimation. In the end the Bayes factor and the mixture approach of Kamary et al. (2014) simply22

answer different questions. The choice which method to use should not be based on the rate of23

convergence, but on the research question the user seeks to address.324

2. Rejoinder to Chandramouli and Shiffrin25

Chandramouli and Shiffrin (ress) put forward a thought-provoking proposal which aims to26

explain and extend Bayesian induction using simple matrix algebra. We have given this novel idea27

considerable thought and outline some of our reservations below.428

3We thank Joris Mulder for attending us to this.
4The second and third authors are in a state of perpetual confusion regarding the details of the Chandramouli and

Shiffrin proposal. All credit concerning this section goes to the first author, who, as such, takes full responsibility for
any errors here. For a thorough understanding of our reply, we recommend to have the comment of Chandramouli
and Shiffrin (ress) on hand.
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We believe that Chandramouli and Shiffrin (henceforth C&S) put forward a belief propagation1

procedure that allows us to verify whether two given models, say, M1 and M2 align with a2

scientist’s prior belief about the true data generating process p∗(X). Instead of setting the priors3

onto the two given modelsM1 andM2 directly, C&S recommend to first elicit a scientist’s prior4

belief about the true data generating p∗(X) in the most general setting. This prior belief is then5

subsequently translated into priors on the models. Hence, the resulting prior model probabilities6

P (M1) and P (M2) are derived.7

In contrast, a Jeffreys’s Bayes factor follows from a top-to-bottom procedure, where the top8

level is concerned with the comparison between two models (i.e., model classes) for which one has9

to (subjectively) choose prior model probabilities P (Mi). Based on top level desiderata, i.e., a10

coherent comparison between the two models, we then derive the pair of priors π1 and π2 on the11

lower level that are concerned with the parameters (i.e., model instances) within the modelsM112

andM2 respectively. In effect, the sole purpose of the pair π1, π2 is to mediate scientific learning13

through the Bayes factor, that is, to update the prior model odds to posterior model odds.14

On the other hand, the C&S induction scheme is a bottom-up approach based on the philosophy15

that the whole is the sum of its parts. At the lowest level, one has to subjectively elicit the16

scientist’s prior belief about the true data generating process. The procedure then elaborates on17

how this lowest level belief can be used to derive the model instance priors π1 and π2 at the18

intermediate level. By aggregating the model instance priors of π1 and π2 we then get the prior19

model probabilities P (M1) and P (M2) at the top level. As such, this method is not free from20

subjective input on the lowest level.21

Our major concern with the C&S method is the lack of invariance, which stems from their rec-22

ommendation to operationalize their procedure with a seemingly innocent looking finite-dimensional23

matrix withM rows andW number of columns.5 By using a finite-dimensional matrix, C&S basi-24

cally made a choice in how they tackle the statistical modeling problem. The resulting model priors25

P (Mi) are sensitive to this choice. More specifically, by initializing their procedure with a finite-26

dimensional matrix, they use discretized approximations of quantities that are essentially contin-27

uous. The approximation error due to discretization is non-negligible, as it permeates through all28

subsequent steps due to the bottom-up nature leading to an ill-defined Bayes factor.29

In brief, we believe that the C&S approach has to overcome some challenges before their30

5We divert from the C&S notation, where the matrix is M × N dimensional. As the number of columns do
not correspond with the number of samples in a data set. Instead, the number of columns refers to the number of
possible outcomes a random variable can take on, we use w and W instead.
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procedure can be perceived as an extension of a traditional Bayes factors, let alone Jeffreys’s Bayes1

factors. We have three remarks: (1) The C&S procedure is not invariant to how one discretizes2

the statistical modeling problem; (2) the subjective assessment of the priors on the lowest level3

and the resulting prior model probabilities P (Mi) on the top level are, therefore, ill-defined, and4

(3) model selection based on posterior predictive p-statistics does not lead to a proper measure of5

evidence.6

This paper continues as follows: We first apply the C&S induction scheme to a concrete exam-7

ple. Then we show that we get different results when we choose a different finite-dimensional ma-8

trix to operationalize the C&S induction scheme. Lastly, we argue that the implicit discretization9

necessary for the finite-dimensional matrix is the main culprit of the resulting lack of invariance.10

2.1. Running Example11

To illustrate why we believe that the C&S method is essentially a belief propagation procedure,12

we consider a random variable X with a finite number of outcomes W . This W is denoted as n in13

Chandramouli and Shiffrin (ress) and defines the number of columns in their matrix representation14

(i.e., their Figures 1 and 2). To simplify matters, we use an example (taken from Ly et al., 2015b)15

where X has W = 3 number of outcomes.16

Example 1 (A Psychological Task with Three Outcomes). In the training phase of a source-17

memory task, the participant is presented with two lists of words on a computer screen. List L is18

projected on the left-hand side and list R is projected on the right-hand side. In the test phase,19

the participant is then presented with two words, side by side, that can stem from either list, thus,20

ll, lr, rl, rr. At each trial, the participant is asked to categorize these pairs as either:21

• x1 meaning both words come from the left list, i.e., “ll”,22

• x2 meaning the words are mixed, i.e., “lr” or “rl”,23

• x3 meaning both words come from the right list, i.e., “rr”.24

Thus, the random variable X has W = 3 outcomes. To ease the discussion, we assume that the25

words presented to the participant are “rr”. �26

As model M1 we take the so-called individual-word strategy. A participant guided by this27

strategy will consider each word individually and compare it with list R only. Within this model28

M1, the parameter is given by θ1 = ϑ, which we interpret as the participant’s “right-list recognition29

ability”. Hence, when the participant is presented with the pair “rr” she will respond x1 with30
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probability (1− ϑ)2, thus, two failed recollections; x2 with probability 2ϑ(1− ϑ), thus, one failed1

and one successful recollection; x3 with probability ϑ2, thus, two successful recollections.2

More compactly, a participant guided by this strategy generates the outcomes [x1, x2, x3] with3

the following three probabilities p(X |ϑ,M1) = [(1−ϑ)2, 2ϑ(1−ϑ), ϑ2], respectively. Note the data4

generative formulation. For instance, when the participant’s true ability is ϑ∗ = 0.9, the three out-5

comes [x1, x2, x3] are then generated with the three probabilities p(X | 0.9,M1) = [0.01, 0.18, 0.81]6

respectively. We call the function p(X | θi,Mi) with θi fixed a probability mass function (pmf) or7

model instance of Mi.6 Hence, every ϑ in (0, 1) yields a pmf that defines W number of proba-8

bilities. In effect, the model M1 consists of a collection of pmfs, which C&S refer to as a model9

class.10

As a competing modelM2, we take the so-called only-mixed strategy. Within this modelM2,11

the parameter is given by θ2 = a, which we interpret as the participant’s “mixed-list differentia-12

bility ability”. With probability a the participant first checks whether the presented pair of words13

are mixed. If she perceives it as mixed, she then produces the outcome x2 with probability a. If14

she does not perceive the pair of words as mixed, the participant then randomly chooses x1 or x315

each with probability (1− a)/2.16

More compactly, a participant guided by this strategy generates the outcomes [x1, x2, x3] with17

the following three probabilities p(X | a,M2) = [(1 − a)/2, a, (1 − a)/2], respectively. Again we18

formulated the model as a data generative process. For instance, when the participant’s true19

ability is a∗ = 1/3, the three outcomes [x1, x2, x3] are then generated with the same probability,20

i.e., p(X | 1/3,M2) = [1/3, 1/3, 1/3]. Note that this last pmf p(X | 1/3,M2) is not in the collection21

of pmfs defined by M1. Similarly, the pmf p(X | 0.9,M1) is not a member of the collection of22

pmfs defined byM2.23

The two models M1 and M2 share only one pmf (model instance), that is, the pmf indexed24

by ϑ = 0.5 within M1 and, coincidentally, when a = 0.5 within M2. We use these two models25

M1 andM2 to explain the C&S belief propagation procedure.26

6C&S call the function p(X | 0.9,M1) a data distribution predicted by the model instance ϑ = 0.9. When we
use a capital X we mean the three probabilities simultaneously. On the other hand, a small letter x refers to the
probability with which it is generated, for instance, p(xw | 0.9,M2) = 0.18 when w = 2.
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2.2. Chandramouli and Shiffrin’s Procedure for Induction1

For a Bayesian analysis we need priors on the model instances, which we denote by πi(θi) as2

we have done before,7 and the priors on the models P (Mi). Instead of doing so directly, C&S3

recommend to first (Step 1) elicit the scientist’s prior belief about the true data generating process4

p∗(X) in the most general setting. Next (Step 2) this subjectively chosen prior belief about p∗(X)5

is used to derive the model instance priors πi(θi) and, subsequently, the model class priors P (Mi).6

Lastly, (Step 3) C&S recommend to use posterior p-statistics for inference.7

2.2.1. Step 1: Eliciting the Prior on Candidate True Data Generating Pmfs8

In our example, the true data generating pmf p∗(X) defines three probabilities p∗(X) =9

[p∗(x1), p∗(x2), p∗(x3)] with which it generates the three outcomes [x1, x2, x3]. For instance, a first10

candidate true data generating pmf could be p(X |ψ1) = [0.0, 0.0, 1.0], where ψ1 is an indicator for11

later reference. A second candidate true data generating pmf could be p(X |ψ2) = [0.0, 0.1, 0.9]12

and so forth and so on. This method yields a candidate set of true pmfs that we depicted in13

Table 1. The “matrix” depicted in Table 1 is a simplification of the table in Figure 1 in Chan-14

dramouli and Shiffrin (ress) with M = 66 rows and W = 3 columns. Please ignore the quantities15

to the right of the double vertical line for the moment. Note that the number of rows M = 66 is16

a result of our arbitrary choice of using a step size of 0.1 on the probabilities. Furthermore, recall17

that the pmfs p(X |ψm) are candidates for the true data generating pmf p∗(X) and may not have18

any connection with the models M1 and M2 specified above. Of particular interest is the pmf19

p(X |ψ62) = [0.8, 0.1, 0.1], which is neither a member ofM1 nor ofM2,8 but because it defines a20

valid pmf it is, nonetheless, a candidate true data generating pmf.21

Given this finite-dimensional matrix of Table 1, C&S then recommend to elicit a scientist’s prior22

belief by setting prior beliefs λ(ψm) form = 1, . . . ,M , thus, on each candidate true data generating23

pmf p(X |ψm).9 For example, λ(ψ62) = 0.7 means that the scientist bestows a large portion of24

belief to the pmf indexed by ψ62 as being the true generating pmf p∗(X). Furthermore, λ(ψ61) +25

λ(ψ62)+λ(ψ63) = 0.90 means that the scientist is quite sure that the participant will generate the26

response x1 with 80% chance. As λ represents the scientist’s prior belief, we necessarily require27

7C&S denote this by p0(θi). Instead, we use the Greek letter πi to distinguish this model instance prior from
the prior model probability P (Mi) on the top level. The subscript i refers to the model membership.

8A pmf ofM1 with p(x1 |ϑ,M1) = 0.8 requires ϑ ≈ 0.11. However, this automatically yields p(x2 | 0.11,M1) =
0.19. Hence, there is no ϑ in M1 that leads to the pmf indexed by ψ62. Similarly, a pmf of M2 necessarily has
p(x1 | a,M2) = p(x3 | a,M2), which is clearly not the case for the pmf indexed by ψ62.

9C&S denote this prior pmf probability as p0(ψm). Instead, we use the Greek letter λ to distinguish this prior
pmf probability on the lowest level from the model instance prior πi(θi) on the intermediate level and the prior
model probabilities P (Mi) on the top level.
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Table 1: The matrix is a simplified version of the matrix found in Figure 1 of C&S with M = 66 and W = 3. The
quantities under the columns with G(ψm,M1) and G(ψm,M2) at the top refer to the KL-divergences, see the main
text. The parameter under θi refers to the model instance that the pmf p(X |ψm) is allocated to within the model
underMi. For example, the candidate true pmf p(X |ψ18) is allocated to the model instance p(X |ϑ = 0.60,M1)
of model classM1.

x1 x2 x3 G(ψm,M1) G(ψm,M2) θi Mi

ψ1 0.0 0.0 1.0 0 0.693 ϑ = 1.00 M1
ψ2 0.0 0.1 0.9 0.002 0.624 ϑ = 0.95 M1
ψ3 0.0 0.2 0.8 0.011 0.555 ϑ = 0.90 M1
...

...
...

...
...

...
...

...
ψ11 0.0 1.0 0.0 0.693 0 a = 1.00 M2
ψ12 0.1 0.0 0.9 0.325 0.368 ϑ = 0.90 M1
ψ13 0.1 0.1 0.8 0.137 0.310 ϑ = 0.85 M1
ψ14 0.1 0.2 0.7 0.060 0.253 ϑ = 0.80 M1
ψ15 0.1 0.3 0.6 0.019 0.198 ϑ = 0.75 M1
ψ16 0.1 0.4 0.5 0.011 0.145 ϑ = 0.70 M1
ψ17 0.1 0.5 0.4 0.005 0.096 ϑ = 0.65 M1
ψ18 0.1 0.6 0.3 0.032 0.052 ϑ = 0.60 M1
ψ19 0.1 0.7 0.2 0.089 0.017 a = 0.70 M2
ψ20 0.1 0.8 0.1 0.193 0 a = 0.80 M2
ψ21 0.1 0.9 0.0 0.427 0.069 a = 0.90 M2
ψ22 0.2 0.0 0.8 0.500 0.193 a = 0.00 M2
ψ23 0.2 0.1 0.7 0.254 0.148 a = 0.10 M2
ψ24 0.2 0.2 0.6 0.133 0.104 a = 0.20 M2
ψ25 0.2 0.3 0.5 0.057 0.067 ϑ = 0.65 M1
ψ26 0.2 0.4 0.4 0.014 0.034 ϑ = 0.60 M1
ψ27 0.2 0.5 0.3 0.000 0.010 ϑ = 0.55 M1
...

...
...

...
...

...
...

...
ψ61 0.8 0.0 0.2 0.500 0.193 a = 0.00 M2
ψ62 0.8 0.1 0.1 0.137 0.310 ϑ = 0.15 M1
ψ63 0.8 0.2 0.0 0.011 0.555 ϑ = 0.10 M1
ψ64 0.9 0.0 0.1 0.325 0.368 ϑ = 0.10 M1
ψ65 0.9 0.1 0.0 0.003 0.624 ϑ = 0.05 M1
ψ66 1.0 0.0 0.0 0 0.693 ϑ = 0.00 M1

that
∑M
m=1 λ(ψm) = 1.1

2.2.2. Step 2: Propagating the Prior Belief to yield the Prior Model Probabilities2

Once the prior beliefs λ(ψm) about the true data generating p∗(X) are chosen, C&S commence

their belief propagation procedure by redistributing λ(ψm) over the two models. Recall that a

model (class) Mi defines a collection of pmfs (model instances) denoted as p(X | θi,Mi). The

allocation of the prior pmf belief of the first candidate true pmf in Table 1, that is, λ(ψ1), is easy,

because the associated pmf p(X |ψ1) = [0.0, 0.0, 1.0] does not belong to M2, but it is a member

of M1; the pmf indexed by ψ1 is a model instance of M1 when θ1 = ϑ = 1. C&S therefore

allocate the prior pmf probability λ(ψ1) to the model instance π1(ϑ = 1) of M1. On the other
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hand, the pmf p(X |ψ62) = [0.8, 0.1, 0.1] is neither a member ofM2 nor does it belong toM1. To

nonetheless allocate this prior pmf belief λ(ψ62) to a model instance of either M1 or M2, C&S

use a divergence measure denoted by G. For simplicity we take as G the Kullback-Leibler (KL)

divergence, which is a measure of dissimilarity. The KL-divergence from a candidate true pmf

indexed by ψm to a model instance ofMi is defined as

G(ψm, θi |Mi) =
W∑
w=1

p(xw |ψm) log p(xw |ψm)
p(xw | θi,Mi)

, (6)

and the larger this divergence, the more dissimilar the model instance p(X | θi,Mi) is from the1

candidate true data generating pmf p(X |ψm). For example, a direct calculation shows that the2

KL-divergence between the candidate true p(X |ψ1) in Table 1 to the model instance ofM1 with3

θ1 = ϑ = 1.0 is given by G(ψ1, θ1 = 1.0 |Mi) = 0. The KL-divergence is zero if and only if4

the pmfs indexed by ψm and the model instance indexed by θi are exactly the same, hence, their5

dissimilarity is zero.6

The KL-divergence between the candidate true p(X |ψm) and a collection of pmfs defined by7

the modelMi is given by G(ψm,Mi) = minθi
G(ψm, θi |Mi). That is, the dissimilarity between8

the candidate true data generating pmf ψm and the modelMi is the smallest dissimilarity between9

p(X |ψm) and the model instances p(X | θi,Mi) of modelMi. For example, a direct calculation10

shows that the KL-divergence from the candidate true data generating pmf p(X |ψ62) to M1 is11

given by G(ψ62,M1) = G(ψ62, θ1 = 0.15,M1) = 0.137. Similarly, the KL-divergence between the12

same candidate true data generating pmf toM2 is given by G(ψ62,M2) = G(ψ62, θ2 = 0.1 |M2) =13

0.310. Because the divergence from the candidate true pmf p(X |ψ62) toM1 is smaller than the14

divergence to M2, the C&S procedure implies that we should allocate the prior pmf probability15

λ(ψ62) to the prior model instance probability π1(ϑ = 0.15) belonging toM1.16

We suspect that the underlying idea of this belief allocation procedure is based on the idea17

of chaining. Thus, if λ(ψ62) = 0.70, the scientist has much fate in p(X |ψ62) being the true data18

generating pmf. However, as p(X |ψ62) is not in the model M1 nor in M2, the C&S procedure19

then recommends to go for the next best thing; assigning the pmf prior λ(ψ62) to the model20

instance that is most similar, in this case, π1(ϑ) with ϑ = 0.15.21

This redistribution of the pmf prior λ(ψm) to model instance priors can be read from their22

table in Figure 1 in Chandramouli and Shiffrin (ress) from left to right.10
23

10We are unsure what ϕ in their table indicates.
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In our Table 1 the numbers under G(ψm,M1) and G(ψm,M2) represents the KL-divergence1

from the candidate true pmf indexed by ψm to the modelsM1 andM2 respectively. The parameter2

value under θi indicates which parameter value ϑ withinM1 or a withinM2 corresponds to the3

model instance that is closest to the pmf of ψm. The last column indicates whether the ψm is4

eventually allocated toM1 orM2.5

As in their table in Figure 1 of Chandramouli and Shiffrin (ress), note that there are multiple6

candidates ψms allocated to certain parameter values in our Table 1. For example, the candidate7

pmfs indexed by ψ3 and ψ12 are both allocated to the same model instance indexed by ϑ = 0.908

within M1. As such, C&S derive the prior on the model instances as π1(ϑ) =
∑
λ(ψm), where9

the sum is over the candidates ψm which have the same ϑ in the column under θi. For example,10

π1(ϑ = 0.90) = λ(ψ3) + λ(ψ12).11

After allocating all the M number of prior pmf probability λ(ψm) to the model instances of12

either model classes, we have π1(ϑk) and π2(ak̃) for k = 1, . . . ,K and k̃ = 1, . . . , K̃. The K indi-13

cates the number of unique values of ϑs in the column under θi. As there are multiple candidates14

allocated to certain parameter values we typically have K + K̃ < M . With the model instance15

priors at hand, the C&S scheme tells us to aggregate them to yield prior model probabilities, i.e.,16

P (M1) =
∑K
k=1 π1(ϑk) and P (M2) =

∑K̃
k̃=1 π2(ak̃). As a result of

∑M
m=1 λ(ψm) = 1 we have17

P (M1) + P (M2) = 1.18

2.2.3. Step 3: Posterior Predictive p-Statistics19

So far, we only discussed the C&S belief propagation procedure as a method to translate a20

scientist’s prior belief λ(ψ) about the true data generating p∗(X) to prior beliefs on the model21

instances πi(θi), which can then be used to define prior beliefs on the models P (Mi). These22

priors can be used for inference after we observe data d. As in C&S, we simplify the discussion by23

supposing that the data consist of one observation where the participant responded with x1.24

To invert the data generative view of pmfs, we fix the data part of each pmf at the observation25

p(X |ψm) = p(d |ψm) and consider the pmfs as a function of ψm, i.e., as likelihood functions.26

Bayes’ rule then allows us to update the subjectively chosen pmf prior to a pmf posterior using all27

specified candidate likelihood functions indexed by the ψms, that is, λ(ψm | d) = p(d |ψm)λ(ψm)/C,28

for m = 1, . . . ,M , where the normalization constant C is given by C =
∑M
m=1 p(d |ψm)λ(ψm).29

Recall that the rows p(X |ψm), thus, the likelihood functions, themselves do not need to belong30

to the modelsM1 andM2. In fact, most of them do not, as most of the entries under G(ψm,M1)31

and G(ψm,M2) are non-zero.32

19



For inference concerning replication studies, C&S recommend using posterior predictive p-1

statistics. For example, the observations dorig of the original experiment might suggest that a2

participant’s “right-list recognition ability” ϑ is a half. To test whether this postulate ϑ = 0.53

can be reproduced, C&S recommend to update the subjectively chosen pmf prior about the true4

p∗(X) to a posterior yielding λ(ψm | dorig). Recall that this posterior is also based on likelihood5

functions p(d |ψm) that do not belong toM1 as discussed above. For example, if λ(ψ62) > 0 then6

p(X |ψ62) = [0.8, 0.1, 0.1] in Table 1 is used as a likelihood to relate the observations dorig to ψ62.7

Because there is no ϑ that leads to p(X |ψ62), see the footnote at the end of Section 2.2.1, the8

likelihood function at ψ62 does not and cannot extract information about ϑ from dorig.9

Nonetheless, C&S use the posterior λ(ψm | dorig) to weight all the candidate true pmfs in Table 110

resulting in a posterior predictive p(xw | dorig) =
∑M
m=1 p(xw |ψm)λ(ψm | dorig) for w = 1, . . . ,W .11

This posterior predictive is used as a sampling distribution, i.e., it defines the probabilities with12

which new data are generated. If the actually observation drep is very improbable under this13

predictive, then the C&S procedure prescribes this as a failure of reproducibility. The problem14

with this prediction is that it is also calculated from the predictions of p(X |ψ62), even though15

this pmf ψ62 has no connection to ϑ whatsoever.16

In sum, it seems that the C&S recommendation for replication boils down to comparing the17

observed data drep in a replication attempt using the posterior predictive as a sampling distribu-18

tion, which is based on irrelevant likelihood functions and subjective belief λ(ψm). Moreover, by19

using the posterior predictive as a sampling distribution to assess replication, this method shares20

many pitfalls with common p-value tests and therefore does not quantify evidence (e.g., Bayarri21

and Berger, 2000; Wagenmakers, 2007).22

2.2.4. C&S Bayes factors23

Although C&S do not recommend to use Bayes factors for inference, they note that Bayes24

factors can be constructed from their belief propagation procedure. The main idea is to reuse the25

belief propagation procedure, but this time to redistribute the posterior beliefs λ(ψm | d) about the26

true data generating p∗(X) to posterior beliefs for the “model instances” πi(θ̂i | d), which can then27

be used to define posterior beliefs on the “models” P (M̂i | d). We are reluctant to call P (M̂i | d)28

the posterior model probabilities, because they are calculated using likelihood functions that do29

not belong to Mi (hence, the hats in our notation). There are now two ways to derive a Bayes30

factor based on the quantities resulting from the C&S belief propagation procedure.31
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The first method involves the ratio of the posterior and prior model odds, that is,

B̂F12(d) = P (M̂1 | d)/P (M̂2 | d)
P (M1)/P (M2) . (7)

This Bayes factor depends on the subjectively chosen prior beliefs λ(ψm) about p∗(X), the chosen1

divergence measure G, and –most troublesome– on the collection of candidate likelihood functions2

p(d |ψm) rather than on the likelihood that belong to the respective models.3

The second method involves the ratio of marginal likelihoods, that is,

B̃F12(d) =
∑K
k=1 p(d |ϑk,M1)π1(ϑk)∑K̃
k̃=1 p(d | ak̃,M2)π2(ak̃)

. (8)

In contrast to B̂F12(d), this Bayes factor is calculated from the likelihoods p(d | θi,Mi) that4

actually do belong to the respective models. Hence, B̂F 12(d) and B̃F 12(d) will differ from each5

other.6

We have some reservations about the Bayes factor as defined in Eq. (7) or Eq. (8) as a gener-7

alization of traditional Bayes factors. First, a traditional Bayes factor leads to the same quantity8

whether it is computed as the ratio of the posterior and prior model odds or as the ratio of marginal9

likelihoods. Second, a traditional Bayes factor would involve continuous integrals, whenever the10

parameters ϑ and a are free to vary in continuous intervals. The replacement of the integrals by11

finite sums is an artefact of only considering a finite number M of candidate true pmfs p(X |ψm).12

2.3. Lack of Invariance13

Our major concern with Bayes factors calculated from the C&S approach, however, is rooted14

in its operationalization using a finite-dimensional matrix (e.g., Table 1), as it causes a lack of15

invariance affecting every step of their belief propagation procedure. As such, two scientist with16

the same subjective belief λ(ψ) about the true p∗(X) using the same divergence measure G, but17

with a different finite-dimensional matrix will calculate different Bayes factors.18

We appreciate the attempt by C&S to assess how well models represent the true data generat-19

ing process. Their procedure considers all possible data generating pmfs and as such can account20

for model misspecification. Although attractive, such an unrestrictive view leads to complications21

when one is concerned with testing models for which one has to set priors. The C&S recommenda-22

tion is to do so subjectively, which we consider nigh impossible. More specifically, the collection of23

all possible data generative pmfs P is typically hard to describe and without a proper description24
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even harder to subjective assign prior beliefs to. Our paper continuous as follows: (1) We first1

characterize P and simplify it with a parameterization; (2) a different parameterization of P is2

then given leading to a different finite-dimensional matrix. (3) In effect, this leads to different3

prior beliefs and (4) different allocations, thus, different Bayes factors. (5) Lastly, we remark how4

this problem is related to the invariance problem already solved by Jeffreys (1946) and what his5

solution implies for the C&S procedure.6

2.3.1. Characterizing the Collection of All Possible Pmfs7

When X hasW = 3 number of outcomes, its true distribution p∗(X) can then be characterized8

by W − 1 = 2 parameters. Recall that a pmf for X then defines the three chances p(X) =9

[p(x1), p(x2), p(x3)] with which it generates the outcomes [x1, x2, x3]. The pmf must therefore10

satisfy two conditions: (i) it has to be non-negative and bounded by one, i.e., 0 ≤ p(xw) ≤ 111

for each outcome xw of X with w = 1, . . . ,W , and (ii) the probabilities must sum to one, i.e.,12 ∑W
w=1 p(xw) = 1. Note that this holds true for any candidate true pmf p(X |ψm) in Table 1.13

We call the collection of functions for which the conditions (i) and (ii) hold the collection of all14

possible pmfs or the full model and denote it by P. The collection P has an uncountably infinite15

number of members, each capable of being the true data generating process p∗(X). By using a16

finite-dimensional matrix such as the one in Table 1, C&S, thus, only restrict their prior belief17

elicitation to only M = 66 candidate true pmfs.18

To show that even for W = 3 the full model P is uncountable, we first parameterize P, that19

is, we identify each possible true pmf of P with a two dimensional parameter ψ = (b, c). Given20

any pmf p(x) = [p(x1), p(x2), p(x3)], we define b = p(x1), c = p(x2) and set ψ = (b, c). This21

construction is essentially a function ξ that maps a member of the full model P into a parameter22

space Ψ of dimension W − 1 = 2. Using the inverse parameterization ξ−1 we can identify every23

parameter ψ = (b, c), where (i’) 0 ≤ b, c ≤ 1 and (ii’) b + c ≤ 1, with a pmf such that the three24

outcomes [x1, x2, x3] are generated with the probabilities p(X |ψ) = [b, c, 1− b− c]. As there are25

an uncountable number of ψ = (b, c)s for which the conditions (i’) and (ii’) holds, we conclude26

that there are also an uncountable number of pmfs p(X |ψ) in the full model P for which (i) and27

(ii) holds.28
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2.3.2. Different Parameterizations, Different Representation of P: A Different Set of Candidate1

True Pmfs2

The aforementioned parameterization ξ : P → Ψ relates to the candidate true pmfs of Table 1 as3

we have actually chosen ψ1 = (0.0, 0.0), ψ2 = (0.0, 0.1), . . . , ψ62 = (0.8, 0.1), ψ63 = (0.8, 0.2), ψ64 =4

(0.9, 0.0), ψ65 = (0.9, 0.1), ψ66 = (1.0, 0.0). The resulting M = 66 number of columns is due to the5

dependence between b and c.6

A different parameterization ξ̃ from the full model P to a parameter space Ψ̃ is based on a7

“stick-breaking” approach. Given a p(x) we then choose b̃ = p(x1), c̃ = p(x2)/[1 − p(x1)] and8

define ψ̃ = (b̃, c̃).11 Using the inverse parameterization ξ̃−1 we can also identify every parameter9

ψ̃ = (b̃, c̃), where (i’+ii’) 0 ≤ b̃, c̃ ≤ 1, with a pmf such that the three outcomes [x1, x2, x3] are10

generated with the probabilities p(X |ψ) = [b̃, (1− b̃)c, (1− b̃)(1− c̃)]. Note that every parameter11

ψ̃ lies within the unit square Ψ̃ = [0, 1] × [0, 1] and that b̃ and c̃ can be chosen independently12

from each other. Again, as there are an uncountable numbers in the unit square, we have an13

uncountable collection of candidate true pmfs P. With this stick-breaking representation of P14

and a step size of 0.1 we get the matrix depicted in Table 2.15

This new matrix differs substantially from the previous one. First, it has more rows, thus, a16

larger number of candidate true pmfs;M = 111 compared toM = 66 in Table 1. Second, there are17

more candidate pmfs that imply that the first response x1 is generated with 80% chance; eleven18

in Table 2 compared to three in Table 1.19

2.3.3. Different Representation, Different Prior Beliefs20

Expanding on these observations, we suspect that a scientist would subjectively set different21

prior beliefs depending on whether she is confronted with the matrix of Table 1 or with the22

matrix of Table 2. In particular, when confronted with the matrix of Table 1 the scientist might23

subjectively set λ(ψ61) = λ(ψ63) = 0.1 and λ(ψ62) = 0.7 meaning that she is quite sure, that24

the participant will generate the response x1 with 80% chance, i.e., P (p∗(x1) = 0.80) = 0.9. To25

cohere to this belief the scientist would simply set λ(ψ̃89) = λ(ψ̃99) = 0.1 and λ(ψ̃94) = 0.7 and,26

subsequently, set the prior belief of all the “in-between” pmfs that generate x1 with 80% to zero27

in the Table 2. We highly doubt that any scientist would be so specific in formulating her prior28

beliefs and, thus, doubt that a subjective assessment of the prior beliefs will work here.29

As an alternative, we might think that we are noninformative if we give each candidate true30

11This only works if p(x1) 6= 1. When p(x1) = 1, we simply set c̃ = 0 and define ψ̃ = (1, 0).
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Table 2: The matrix is a simplified version of the matrix found in Figure 1 of C&S based on the different parame-
terization ξ̃ defined in text. Note how the pmf p(X | ψ̃19) is allocated toM2.

x1 x2 x3 G(ψm,M1) G(ψm,M2) θi Mi

ψ̃1 = (0.0, 0.0) 0.00 0.00 1.00 0 0.693 ϑ = 1.00 M1
ψ̃2 = (0.0, 0.1) 0.00 0.10 0.90 0.003 0.624 ϑ = 0.95 M1

...
...

...
...

...
...

...
...

ψ̃17 = (0.1, 0.5) 0.10 0.45 0.45 0.000 0.120 ϑ = 0.68 M1
ψ̃18 = (0.1, 0.6) 0.10 0.54 0.36 0.013 0.078 ϑ = 0.63 M1
ψ̃19 = (0.1, 0.7) 0.10 0.63 0.27 0.046 0.041 a = 0.63 M2

...
...

...
...

...
...

...
...

ψ̃88 = (0.7, 1.0) 0.70 0.30 0.00 0.027 0.485 ϑ = 0.15 M1
ψ̃89 = (0.8, 0.0) 0.80 0.00 0.20 0.500 0.193 a = 0.00 M2
ψ̃90 = (0.8, 0.1) 0.80 0.02 0.18 0.393 0.212 a = 0.02 M2
ψ̃91 = (0.8, 0.2) 0.80 0.04 0.16 0.315 0.233 a = 0.04 M2
ψ̃92 = (0.8, 0.3) 0.80 0.06 0.14 0.248 0.256 ϑ = 0.17 M1
ψ̃93 = (0.8, 0.4) 0.80 0.08 0.12 0.189 0.281 ϑ = 0.16 M1
ψ̃94 = (0.8, 0.5) 0.80 0.10 0.10 0.137 0.310 ϑ = 0.15 M1
ψ̃95 = (0.8, 0.6) 0.80 0.12 0.08 0.091 0.342 ϑ = 0.14 M1
ψ̃96 = (0.8, 0.7) 0.80 0.14 0.06 0.053 0.378 ϑ = 0.13 M1
ψ̃97 = (0.8, 0.8) 0.80 0.16 0.04 0.022 0.421 ϑ = 0.12 M1
ψ̃98 = (0.8, 0.9) 0.80 0.18 0.02 0.002 0.474 ϑ = 0.11 M1
ψ̃99 = (0.8, 1.0) 0.80 0.20 0.00 0.011 0.555 ϑ = 0.10 M1
ψ̃100 = (0.9, 0.0) 0.90 0.00 0.10 0.325 0.368 ϑ = 0.10 M1
ψ̃100 = (0.9, 0.1) 0.90 0.01 0.09 0.263 0.384 ϑ = 0.10 M1

...
...

...
...

...
...

...
...

ψ̃110 = (0.9, 1.0) 0.90 0.00 0.10 0.003 0.623 ϑ = 0.05 M1
ψ̃111 = (1.0, 0.0) 1.00 0.00 0.00 0 0.693 ϑ = 0.00 M1

pmf the same prior probability. This means that we then give each candidate true pmf of Table 11

a prior probability of λ(ψm) = 1/66 ≈ 0.0152. The pmfs that the participant will generate the2

response x1 with 80% chance then get a total prior probability of 3/66 ≈ 0.0455. On the other3

hand, in Table 2 a uniform prior on λ(ψ̃m) = 1/111 ≈ 0.009 and the pmfs that the participant will4

generate the response x1 with 80% chance then gets prior probability of 11/111 ≈ 0.099. Hence,5

a different set of candidate true pmfs will lead to a different assessment of prior beliefs. This6

lack of invariance depends on how many and which true candidate pmfs are chosen from P in7

constructing the finite-dimensional matrices of Table 1 and Table 2.8

2.3.4. Different Representation, Different Prior Model Probabilities, thus, Bayes Factors9

Applying the C&S belief propagation procedure to the matrix of Table 1 yields different al-10

locations, thus, different Bayes factors then when we use the matrix of Table 2. For example, a11

scientist might believe that the true data generating pmf is close to p(X |ψ18) = [0.1, 0.6, 0.3] of12

24



Table 1, thus, chooses λ(ψ18) = 0.50. This prior belief then gets allocated to the model instance1

p(X |ϑ = 0.6,M1) ofM1. Similarly, we would expect that the scientist would also set λ(ψ̃19) ≈2

0.50 when confronted with Table 2, because the candidate pmf p(X | ψ̃19) = [0.10, 0.63, 0.27] in3

the second matrix does not differ that much from the pmf p(X |ψ18) of the first matrix. How-4

ever, according to the second matrix the prior pmf probability λ(ψ̃19) is then allocated to the5

model instance p(X | a = 0.63,M2) of M2. In effect, a different representation leads to a differ-6

ent belief allocation, thus, different priors πi(θi), P (Mi) and different posteriors P (M̂i | d) and,7

consequently, different Bayes factors. As such, our understanding of the C&S belief propagation8

procedure leads to an inadequate definition Bayes factors, which depends on how we choose to9

represent P.10

2.3.5. Jeffreys’s Prior and the C&S Procedure11

The reason for this lack of invariance is due to an error incurred from (1) the parameterization12

ξ itself, and (2) the discretization of the parameter space. For example, the matrices depicted in13

Table 1 and Table 2 were derived from the parameterizations ξ and ξ̃, respectively, followed by a14

discretization of the parameter space with a step size of 0.1 in each coordinate. The first point15

can be repaired, as Jeffreys (1946) showed that the Fisher information can be used to neutralize16

the parameterization error. This solution is more commonly known as the Jeffreys’s prior. In Ly17

et al. (2015b) we showed that the Jeffreys’s prior on the parameters, say, ψ = (b, c) in Ψ leads to18

a uniform prior on pmfs in P. The second point however cannot be fixed.19

To elaborate on this latter point, recall that the collection of all data generating pmfs P is20

uncountably large, which means that the scientist’s actual prior belief λ(ψ) is a continuous quan-21

tity. By using a finite number M of candidate true data generating pmfs, the target continuous22

random variable λ(ψ) is then approximated by a discretized version λ(ψm). The corresponding23

discretization errors are comparable to the errors incurred when histograms are used to approx-24

imate a smooth density function. Moreover, because the actual belief about ψ is continuous, we25

have zero probability of having the true data generating process p∗(X) being exactly equal to one26

of the finite number of candidate pmfs p(X |ψm). As such, we cannot construct the actual belief27

λ(ψ) from point masses. Note that this continuity issue was already alluded to in Section 2.3.328

as one would expect that if the pmfs indexed by ψ̃89, ψ̃94, ψ̃99 in Table 2 are assigned some prior29

mass, the pmfs in between would also receive some prior mass. The implication is that the C&S30

procedure might only work if we use a “matrix” with an uncountable number of rows.31

Furthermore, the discretization leads to another type of approximation error that we refer to32

25



as geometric approximation error due to the chosen divergence measure G. This error was alluded1

to in Section 2.3.4, where a small change in the candidate true data generating pmf p(X |ψ18) =2

[0.1, 0.6, 0.3] to p(X | ψ̃19) = [0.10, 0.63, 0.27] leads to a completely different allocation of the prior3

belief; from a model instance ofM1 toM2 instead. The geometrical interpretation stems from the4

fact that KL-divergence can be thought of as a generalization of the Fisher information metric.12
5

Moreover, it follows directly from the geometric interpretation that the C&S belief propagation6

procedure favors the more complex model, as it will attracts a larger number of candidate data7

generating pmfs indexed by ψm, see Ly et al. (2015b). This a priori boosting of the more complex8

model is at odds with the simplicity postulate that seems to be central in the foundations of the9

C&S procedure, see Shiffrin et al. (ress) in this special issue.10

The fact that we cannot construct the actual belief λ(ψ) from point masses is at odds with11

the C&S idea that P (Mi) is the sum of its parts. This bottom-up view is what caused Shiffrin12

et al. (ress) to avoid overlapping models; whenM1 andM2 share a pmf and the shared instance13

receives some prior mass, this prior mass will be accounted for twice. As a result, the prior model14

probabilities will then exceed one, i.e., P (M1) + P (M2) > 1. To deal with overlapping models15

Shiffrin et al. (ress) suggested to remove the common pmfs from the larger model. This idea is16

elaborated on with a toy example whereM3 is a binomial model with the chance of success θ fixed17

at θ = 0.5 and where M4 represents the binomial model in which θ is free to vary between zero18

and one. They then reformulateM4 as the binomial model M̃4 in which θ is free to vary between19

(0, 0.49) and (0.51, 1). This replacement ofM4 by M̃4 leads to another approximation error. One20

solution would be to allow M̃4 to converge toM4 by allowing θ to be in (0, 0.5− ε)∪ (0.5 + ε, 1).21

This construction however depends on how ε goes to zero and induces the Borel-Kolmogorov22

paradox (e.g., Lindley, 1997; Wetzels et al., 2010). This paradox is another indication of how the23

C&S belief propagation scheme depends on how we as scientists represent the problem in terms24

of the chosen parameterization and, subsequently, discretize the parameter space.25

In other words, we believe that the lack of invariance is inescapable when the C&S approach26

is operationalized with a finite-dimensional matrix leading to an oversimplication of the problem27

resulting in a representation that is not on par with the sophisticated ideas behind the C&S28

approach.29

12The KL-divergence is not a metric in the formal sense, only its infinitesimal version can be related to the Fisher
information as a metric, i.e., Jeffreys’s prior.
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2.4. Conclusion1

Based on the different strategies used to set priors πi(θi) within the modelsMi, we conclude2

that the C&S belief propagation procedure answers a different question than a traditional Bayes3

factor. We believe that C&S are mostly concerned with how a scientist’s subjective knowledge of4

the true data generating p∗(X) is permeated in the models M1 and M2. Hence, C&S focus on5

checking whether the modelsM1 andM2 give a good representation of expert knowledge.6

As such, we think that the C&S approach can be valuable at the preliminary stage of model7

building. In particular, by considering all possible data generating pmfs for the random variable8

X, the C&S procedure forces the statistician to focus on building a model that is relevant for the9

problem at hand, rather than being restricted by the standard models. We would like to emphasize10

that our remarks are not aimed at the aspiration of C&S to construct good models that mimic11

nature well.12

Our major concern deals with the finite-dimensional representation that C&S use to opera-13

tionalize their procedure and the recommendations to set λ(ψ) subjectively. The idea to consider14

the full model P is to account for misspecification; as a result, however, the subjective assessment15

of prior beliefs is nigh impossible. Note that the subjective belief λ(ψ) is necessary a continuous16

random variable, because the full model P contains an uncountable number of candidate true pmfs17

p(X |ψ). To make their procedure viable C&S oversimplify the problem with a finite-dimensional18

matrix yielding approximation errors that cannot be ignored.19

The problem worsens when X is also continuous. In that case, the full model should then be20

represented by a “matrix” with an uncountable number of rows and columns. Moreover, this full21

model is far too complex as it does not even allow for consistent inference (Dvoretzky et al., 1956).22

This is why regularization methods were invented and alternative models were proposed that grow23

with the number of samples (e.g., Bickel et al., 2006). The goal set by C&S to compare models24

in a totally unrestrictive setting is ambitious and an active area of research that is progressing25

slowly, see Borgwardt and Ghahramani (2009), Ghosal et al. (2008), Holmes et al. (2015), Labadi26

et al. (2014), Salomond (2013) and Salomond (2014) for some recent results.27

For estimation problems, one solution would be to forgo the finite matrix representation and28

consider the prior on P as a continuous random variable instead. As a replacement of the subjective29

assessment, we then recommend Jeffreys’s prior as it is uniform on P when X has a finite number30

of outcomes W . A Jeffreys prior for the full model P is viable when W <∞, as the distribution31

of X is then at most a multinomial distribution with W categories. When X is continuous the32
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Jeffreys prior can then be extended by a method described in Ghosal et al. (1997), which has been1

used successfully to justify Bayesian nonparametric estimation methods, see also Ghosal et al.2

(2000) and Kleijn (2013). However, this replacement of the discretizated λ(ψm) by a continuous3

version λ(ψ) is at odds with the philosophy that the prior on the whole, P (Mi), is a sum of its4

parts πi(θi) as the individual model instances then necessarily receive zero mass. Furthermore, we5

do not know how to translate a continuous λ(ψ) on all pmfs P to the model instances πi of Mi6

without an explicitly defined relationship between the true data generating p∗(X) and the model7

instances of Mi. In effect, we doubt that the C&S procedure extends traditional Bayes factors8

and that it is capable of yielding a Jeffreys’s Bayes factors that formalizes inductive reasoning9

and the logic of proof by contradiction. The reason for this doubt is due to the fact that C&S10

do not focus on the two models under test, instead, they embed these two models within a larger11

encompassing model as Robert did, see Section 1.12

In conclusion, we believe that a Jeffreys’s Bayes factor remains the preferred method of infer-13

ence, because a Jeffreys’s Bayes factor does not depend on how the full model P is represented and14

discretized. Thus, it does not suffer from the lack of invariance as discussed above. Furthermore,15

a Jeffreys’s Bayes factor does not require a subjectively elicitation of prior beliefs. Note that the16

Bayes factor focuses on comparing the modelsM1 andM2, no reference is made to any true data17

generating process p∗(X). Jeffreys was mostly concerned with quantifying the (relative) evidence18

provided by the observations for either model. The Bayes factor is not concerned with the true19

data generating process p∗(X) and it does not aspire to do so. BothM1 andM2 could be poor20

descriptions of the true data generating pmf p∗(X), but fortunately it has been shown that the21

model selected with a Bayes factor is the model closest to the true p∗(X) in terms of KL-divergence22

(e.g., Dass and Lee, 2004). Hence, the model that is preferred by the Bayes factor will be able to23

generalize better to yet unseen data –a guarantee that aligns with the spirit of the C&S approach.24

3. Conclusion25

We would like to thank the authors of both comments for their stimulating remarks and for26

their creative alternatives and extensions to Jeffreys’s Bayes factors. We hope this discussion27

has resulted in a renewed appreciation for Harold Jeffreys’s foundational contributions to model28

selection and hypothesis testing, and we look forward to future developments in this exciting and29

important area of research.30
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