Bayes factors to assess whether a study replicates

Alexander Ly, Maarten Marsman, Sacha Epskamp, Dora Matzke, Ravi Selker, Quentin Gronau, Tahira Jamil, Helen Steingroever, Jonathon Love and Eric-Jan Wagenmakers

Psychological Methods University of Amsterdam

Newport Beach, 18 July 2015

Overview

- Relevance and Context
- Replication Bayes Factor as a Modified Default Bayes Factor
- 3 Examples
- 4 Conclusion

Open Science Framework (OSF): Reproducibility Project

- JEP:LMC, JPSP, and Psychological Science
- 167 replication attempts (22 April 2015)

Open Science Framework (OSF): Reproducibility Project

- JEP:LMC, JPSP, and Psychological Science
- 167 replication attempts (22 April 2015)
- Successful replication?

Example: Successful Replications?

Replication result

•
$$p_{\text{orig}} = .047, n_{\text{orig}} = 100 \text{ & } p_{\text{rep}} = .047, n_{\text{rep}} = 100$$

Example: Successful Replications?

Replication result

- $p_{\text{orig}} = .047, n_{\text{orig}} = 100 \& p_{\text{rep}} = .047, n_{\text{rep}} = 100$
- $p_{\text{orig}} = .047$, $n_{\text{orig}} = 100 \& p_{\text{rep}} = .757$, $n_{\text{rep}} = 100$

Example: Successful Replications?

Replication result

- $p_{\text{orig}} = .047, n_{\text{orig}} = 100 \& p_{\text{rep}} = .047, n_{\text{rep}} = 100$
- $p_{\text{orig}} = .047$, $n_{\text{orig}} = 100 \& p_{\text{rep}} = .757$, $n_{\text{rep}} = 100$
- $p_{\text{orig}} = .047, n_{\text{orig}} = 25 \text{ & } p_{\text{rep}} = .051, n_{\text{rep}} = 100$

Example: Successful Replications?

Replication result

- $p_{\text{orig}} = .047, n_{\text{orig}} = 100 \& p_{\text{rep}} = .047, n_{\text{rep}} = 100$
- $p_{\text{orig}} = .047$, $n_{\text{orig}} = 100 \& p_{\text{rep}} = .757$, $n_{\text{rep}} = 100$
- $p_{\text{orig}} = .047, n_{\text{orig}} = 25 \text{ & } p_{\text{rep}} = .051, n_{\text{rep}} = 100$

- Typically, n_{oriq} < n_{rep}
- Typically, not informative: p_{orig} < .05 and p_{rep} > .05. Need a continuous measure of evidence.

Bayes Factors

The pros of Bayes factors

- Evidence for \mathcal{M}_1 and \mathcal{M}_0
- BF₁₀(d) = 7, the data d are seven times more likely to be generated from the alternative model \mathcal{M}_1
- BF₁₀(d) = 1/7, the data d are seven times more likely to be generated from the null model \mathcal{M}_0 , as BF₀₁(d) = 7

The cons of Bayes factors

Bayes Factors

The pros of Bayes factors

- Evidence for \mathcal{M}_1 and \mathcal{M}_0
- BF₁₀(d) = 7, the data d are seven times more likely to be generated from the alternative model \mathcal{M}_1
- BF₁₀(d) = 1/7, the data d are seven times more likely to be generated from the null model \mathcal{M}_0 , as BF₀₁(d) = 7

The cons of Bayes factors

- Comparative measure of evidence
- Computationally hard
- Sensitive to the prior choice

Example: Successful Replications?

Replication result

•
$$BF_{10}(d_{orig}) = 7$$
, $n_{orig} = 100 \& BF_{10}(d_{rep}) = 7$, $n_{rep} = 100$

Example: Successful Replications?

Replication result

- $BF_{10}(d_{orig}) = 7$, $n_{orig} = 100 \& BF_{10}(d_{rep}) = 7$, $n_{rep} = 100$
- $BF_{10}(d_{orig}) = 7$, $n_{orig} = 100 \& BF_{10}(d_{rep}) = 0.1$, $n_{rep} = 100$

Example: Successful Replications?

Replication result

- $BF_{10}(d_{orig}) = 7$, $n_{orig} = 100 \& BF_{10}(d_{rep}) = 7$, $n_{rep} = 100$
- $BF_{10}(d_{orig}) = 7$, $n_{orig} = 100 \& BF_{10}(d_{rep}) = 0.1$, $n_{rep} = 100$
- $BF_{10}(d_{orig}) = 7$, $n_{orig} = 25$ & $BF_{10}(d_{rep}) = 3$, $n_{rep} = 100$

Example: Successful Replications?

Replication result

- $BF_{10}(d_{orig}) = 7$, $n_{orig} = 100 \& BF_{10}(d_{rep}) = 7$, $n_{rep} = 100$
- $BF_{10}(d_{orig}) = 7$, $n_{orig} = 100 \& BF_{10}(d_{rep}) = 0.1$, $n_{rep} = 100$
- $BF_{10}(d_{orig}) = 7$, $n_{orig} = 25$ & $BF_{10}(d_{rep}) = 3$, $n_{rep} = 100$

- Not informative
- Need to link the two d_{orig} to d_{rep}.

 Replication Bayes factor defined as a modification of a default Bayes factor

- Replication Bayes factor defined as a modification of a default Bayes factor
- Default Bayes factor constructed from priors $\pi(\phi, \theta)$ within \mathcal{M}_1 and $\pi(\phi)$ within \mathcal{M}_0 , ϕ are nuisance parameters, θ test-relevant parameter

- Replication Bayes factor defined as a modification of a default Bayes factor
- Default Bayes factor constructed from priors $\pi(\phi, \theta)$ within \mathcal{M}_1 and $\pi(\phi)$ within \mathcal{M}_0 , ϕ are nuisance parameters, θ test-relevant parameter
- Linking d_{orig} to d_{rep} : Use $\pi(\phi, \theta \mid d_{\text{orig}})$ within \mathcal{M}_1 as a prior for the new data d_{rep}

- Replication Bayes factor defined as a modification of a default Bayes factor
- Default Bayes factor constructed from priors $\pi(\phi, \theta)$ within \mathcal{M}_1 and $\pi(\phi)$ within \mathcal{M}_0 , ϕ are nuisance parameters, θ test-relevant parameter
- Linking d_{orig} to d_{rep} : Use $\pi(\phi, \theta \mid d_{\text{orig}})$ within \mathcal{M}_1 as a prior for the new data d_{rep}
- Computational method to approximate $\pi(\phi, \theta \mid d_{\text{orig}})$, sampling method.

- Replication Bayes factor defined as a modification of a default Bayes factor
- Default Bayes factor constructed from priors $\pi(\phi, \theta)$ within \mathcal{M}_1 and $\pi(\phi)$ within \mathcal{M}_0 , ϕ are nuisance parameters, θ test-relevant parameter
- Linking d_{orig} to d_{rep} : Use $\pi(\phi, \theta \mid d_{\text{orig}})$ within \mathcal{M}_1 as a prior for the new data d_{rep}
- Computational method to approximate $\pi(\phi, \theta \mid d_{\text{orig}})$, sampling method.
- Generalisations? Theoretical properties? Well-behaved?
 Relationship to default Bayes factor?

Default Bayes Factors

$$\mathsf{BF}_{10}(d) = \frac{p(d \mid \mathcal{M}_1)}{p(d \mid \mathcal{M}_0)}$$

• $p(d \mid \mathcal{M}_0)$ marginal likelihood

Default Bayes Factors

$$\mathsf{BF}_{10}(\textit{d}) = \frac{\int_{\Phi} \int_{\Theta} \textit{f}(\textit{d} \mid \phi, \theta) \pi(\phi, \theta) d\theta d\phi}{\int_{\Phi} \textit{f}(\textit{d} \mid \phi, \theta_0) \pi(\phi) d\phi}$$

• User: Likelihood functions $f(d \mid \phi, \theta)$ and $f(d \mid \phi, \theta_0)$. Example: Binomial rate $\theta_0 = 1/2$, correlation test $\theta_0 = \rho = 0$, etc.

Default Bayes Factors

$$\mathsf{BF}_{10}(d) = \frac{\int_{\Phi} \int_{\Theta} f(d \mid \phi, \theta) \pi(\phi, \theta) d\theta d\phi}{\int_{\Phi} f(d \mid \phi, \theta_0) \pi(\phi) d\phi}$$

- User: Likelihood functions $f(d \mid \phi, \theta)$ and $f(d \mid \phi, \theta_0)$. Example: Binomial rate $\theta_0 = 1/2$, correlation test $\theta_0 = \rho = 0$, etc.
- Statistician: Priors $\pi(\phi, \theta)$ and $\pi(\phi)$ Example: uniform on θ Jeffreys (1961), scaled beta distribution on θ in a correlation test (Ly, Verhagen & Wagenmakers, in press), etc.

Default Bayes Factors

$$\mathsf{BF}_{10}(d) = \frac{\int_{\Phi} \int_{\Theta} f(d \mid \phi, \theta) \pi(\phi, \theta) d\theta d\phi}{\int_{\Phi} f(d \mid \phi, \theta_0) \pi(\phi) d\phi}$$

- Statistician: Priors $\pi(\phi, \theta)$ and $\pi(\phi)$ Example: uniform on θ Jeffreys (1961), scaled beta distribution on θ in a correlation test (Ly, Verhagen & Wagenmakers, in press), etc.
- Model selection consistency: If d of size n is generated from \mathcal{M}_1 , $\mathsf{BF}_{10}(d) \to \infty$ as $n \to \infty$ and when d is generated from \mathcal{M}_0 , $\mathsf{BF}_{10}(d) \to 0$ as $n \to \infty$.

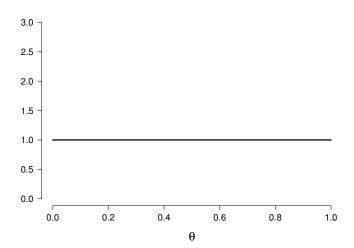
Default Bayes factor applied to drep

$$\mathsf{BF}_{10}(\mathit{d}_{\mathsf{rep}}) = \frac{\int_{\Phi} \int_{\Theta} f(\mathit{d}_{\mathsf{rep}} \mid \phi, \theta) \pi(\phi, \theta) \mathsf{d}\theta \mathsf{d}\phi}{\int_{\Phi} f(\mathit{d}_{\mathsf{rep}} \mid \phi, \theta_0) \pi(\phi) \mathsf{d}\phi}$$

- Answers: "Is there an effect?"
- Want: to answer "Is the experiment replicated?"
- Need: Link with dorig

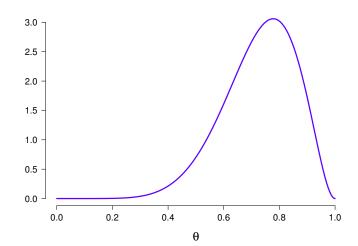
Replication Bayes Factor: Linking Data

Default prior for binomial:



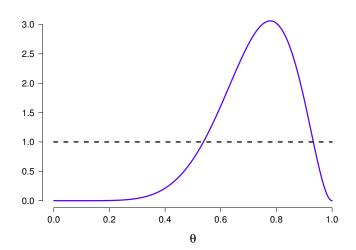
Replication Bayes Factor: Linking Data

Original data $y_{\text{orig}} = 7$ successes in n_{orig} trials



Replication Bayes Factor: Linking Data

Comparison between the two priors



Conclusion

Replication Bayes Factor: Linking Data

Linking d_{orig} to d_{rep} within a default Bayes factor

$$\mathsf{B}\tilde{\mathsf{F}}_{\mathsf{r}\mathsf{0}}(\textit{d}_{\mathsf{rep}}) = \frac{\int_{\Phi} \int_{\Theta} f(\textit{d}_{\mathsf{rep}} \,|\, \phi, \theta) \pi(\phi, \theta \,|\, \textit{d}_{\mathsf{orig}}) \mathsf{d}\theta \mathsf{d}\phi}{\int_{\Phi} f(\textit{d}_{\mathsf{rep}} \,|\, \phi, \theta_{\mathsf{0}}) \pi(\phi) \mathsf{d}\phi}$$

• Answers "Is the experiment replicated?"

Linking d_{orig} to d_{rep} within a default Bayes factor

$$\mathsf{B}\tilde{\mathsf{F}}_{\mathsf{r}\mathsf{0}}(\textit{d}_{\mathsf{rep}}) = \frac{\int_{\Phi} \int_{\Theta} f(\textit{d}_{\mathsf{rep}} \,|\, \phi, \theta) \pi(\phi, \theta \,|\, \textit{d}_{\mathsf{orig}}) \mathsf{d}\theta \mathsf{d}\phi}{\int_{\Phi} f(\textit{d}_{\mathsf{rep}} \,|\, \phi, \theta_{\mathsf{0}}) \pi(\phi) \mathsf{d}\phi}$$

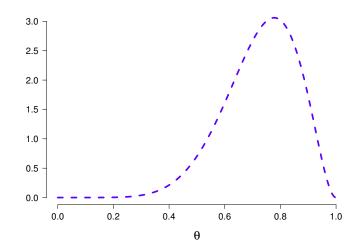
- Answers "Is the experiment replicated?"
- $\pi(\phi, \theta \mid d_{\text{orig}})$ proponents' idealised beliefs

Linking d_{orig} to d_{rep} within a default Bayes factor

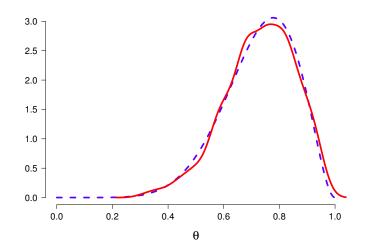
$$\mathsf{B}\tilde{\mathsf{F}}_{\mathsf{r}\mathsf{0}}(\textit{d}_{\mathsf{rep}}) = \frac{\int_{\Phi} \int_{\Theta} f(\textit{d}_{\mathsf{rep}} \mid \phi, \theta) \pi(\phi, \theta \mid \textit{d}_{\mathsf{orig}}) \mathsf{d}\theta \mathsf{d}\phi}{\int_{\Phi} f(\textit{d}_{\mathsf{rep}} \mid \phi, \theta_{\mathsf{0}}) \pi(\phi) \mathsf{d}\phi}$$

- Answers "Is the experiment replicated?"
- $\pi(\phi, \theta \mid d_{\text{orig}})$ proponents' idealised beliefs
- Computationally: Verhagen and Wagenmakers (2014) approximate $\pi(\phi, \theta \mid d_{\text{orig}})$ and use a sampling method

Original data $y_{\text{orig}} = 7$ successes in n_{orig} trials



Original data $y_{\text{orig}} = 7$ successes in n_{orig} trials



Linking d_{orig} to d_{rep} within a default Bayes factor

$$\mathsf{B}\tilde{\mathsf{F}}_{\mathsf{r}\mathsf{0}}(\textit{d}_{\mathsf{rep}}) = \frac{\int_{\Phi} \int_{\Theta} f(\textit{d}_{\mathsf{rep}} \,|\, \phi, \theta) \pi(\phi, \theta \,|\, \textit{d}_{\mathsf{orig}}) \mathsf{d}\theta \mathsf{d}\phi}{\int_{\Phi} f(\textit{d}_{\mathsf{rep}} \,|\, \phi, \theta_{\mathsf{0}}) \pi(\phi) \mathsf{d}\phi}$$

- Answers "Is the experiment replicated?"
- $\pi(\phi, \theta \mid d_{\text{orig}})$ proponents' idealised beliefs
- Computationally: Verhagen and Wagenmakers (2014) approximate $\pi(\phi, \theta \mid d_{\text{orig}})$ and use a sampling method
- $\pi(\phi)$ skeptics' totally unmoved beliefs

The Replication Bayes Factor

$$\mathsf{BF}_{r0}(\textit{d}_{\mathsf{rep}}) = \frac{\int_{\Phi} \int_{\Theta} f(\textit{d}_{\mathsf{rep}} \mid \phi, \theta) \pi(\phi, \theta \mid \textit{d}_{\mathsf{orig}}) d\theta d\phi}{\int_{\Phi} f(\textit{d}_{\mathsf{rep}} \mid \phi, \theta_0) \pi(\phi \mid \textit{d}_{\mathsf{orig}}) d\phi}$$

- Answers: Is the experiment replicated?
- $\pi(\phi, \theta \mid d_{\text{orig}})$ updated
- $\pi(\phi \mid d_{\text{orig}})$ also updated
- Simplies dramatically

Conclusion

Replication Bayes Factors

Main Result:

$$\mathsf{BF}_{\mathsf{r0}}(\mathit{d}_{\mathsf{rep}}) = \mathsf{BF}_{\mathsf{10}}(\mathit{d}_{\mathsf{rep}} \,|\, \mathit{d}_{\mathsf{orig}}) = \frac{\mathsf{BF}_{\mathsf{10}}(\mathit{d}_{\mathsf{rep}}, \mathit{d}_{\mathsf{orig}})}{\mathsf{BF}_{\mathsf{10}}(\mathit{d}_{\mathsf{orig}})}$$

• Philosophically: Model selection consistent if $BF_{10}(d)$ is

Conclusion

Replication Bayes Factors

Main Result:

$$\mathsf{BF}_{\mathsf{r0}}(\mathit{d}_{\mathsf{rep}}) = \mathsf{BF}_{\mathsf{10}}(\mathit{d}_{\mathsf{rep}} \,|\, \mathit{d}_{\mathsf{orig}}) = \frac{\mathsf{BF}_{\mathsf{10}}(\mathit{d}_{\mathsf{rep}}, \mathit{d}_{\mathsf{orig}})}{\mathsf{BF}_{\mathsf{10}}(\mathit{d}_{\mathsf{orig}})}$$

- Philosophically: Model selection consistent if $BF_{10}(d)$ is
- Computationally: Use the computational method of the default Bayes factor

Replication Bayes Factors

Main Result:

$$\mathsf{BF}_{\mathsf{r0}}(\mathit{d}_{\mathsf{rep}}) = \mathsf{BF}_{\mathsf{10}}(\mathit{d}_{\mathsf{rep}} \,|\, \mathit{d}_{\mathsf{orig}}) = \frac{\mathsf{BF}_{\mathsf{10}}(\mathit{d}_{\mathsf{rep}}, \mathit{d}_{\mathsf{orig}})}{\mathsf{BF}_{\mathsf{10}}(\mathit{d}_{\mathsf{orig}})}$$

- Philosophically: Model selection consistent if BF₁₀(d) is
- Computationally: Use the computational method of the default Bayes factor
- Interpretation: A replication is successful, if the combined data d_{all} = (d_{rep}, d_{orig}) yield at least as much evidence for the alternative as d_{orig} alone

Binomial Test

Default Bayes factor (Jeffreys, 1961; Wagenmakers et al., 2014) with a uniform prior on θ

$$\mathsf{BF}_{10}(d) = \frac{\mathcal{B}(y+1, n-y+1)}{(1/2)^n}$$

 Good theoretical behaviour: Model selection consistent and more.

Binomial Test

Default Bayes factor (Jeffreys, 1961; Wagenmakers et al., 2014) with a uniform prior on θ

$$BF_{10}(y, n) = 1/dbeta(1/2, y+1, n-y+1)$$

- Computational implementation in R
- Need: y_{orig}, n_{orig} and y_{all}, n_{all}

Combining Artificial Data

Data

- $d_{\text{orig}}: (y_{\text{orig}} = 10, n_{\text{orig}} = 10)$
- $d_{\text{rep}}: (y_{\text{orig}} = 0, n_{\text{rep}} = 10)$
- $d_{\text{all}}: (y_{\text{all}} = 10, n_{\text{all}} = 20)$ (Typical for \mathcal{M}_0)

Combining Artificial Data

Data

- $d_{\text{orig}}: (y_{\text{orig}} = 10, n_{\text{orig}} = 10)$
- $d_{\text{rep}}: (y_{\text{orig}} = 0, n_{\text{rep}} = 10)$
- $d_{\text{all}}: (y_{\text{all}} = 10, n_{\text{all}} = 20)$ (Typical for \mathcal{M}_0)

Bayes factors

• $BF_{10}(y_{orig}, n_{orig}) = 93.09$

Combining Artificial Data

Data

- $d_{\text{orig}}: (y_{\text{orig}} = 10, n_{\text{orig}} = 10)$
- $d_{\text{rep}}: (y_{\text{orig}} = 0, n_{\text{rep}} = 10)$
- $d_{\text{all}}: (y_{\text{all}} = 10, n_{\text{all}} = 20)$ (Typical for \mathcal{M}_0)

- $BF_{10}(y_{orig}, n_{orig}) = 93.09$
- $BF_{10}(y_{rep}, n_{rep}) = 93.09$ (opposite direction)

Combining Artificial Data

Data

- $d_{\text{orig}}: (y_{\text{orig}} = 10, n_{\text{orig}} = 10)$
- $d_{\text{rep}}: (y_{\text{orig}} = 0, n_{\text{rep}} = 10)$
- $d_{\text{all}}: (y_{\text{all}} = 10, n_{\text{all}} = 20)$ (Typical for \mathcal{M}_0)

- $BF_{10}(y_{orig}, n_{orig}) = 93.09$
- $BF_{10}(y_{rep}, n_{rep}) = 93.09$ (opposite direction)
- $BF_{10}(y_{all}, n_{all}) = 0.27$

Combining Artificial Data

Data

- $d_{\text{orig}}: (y_{\text{orig}} = 10, n_{\text{orig}} = 10)$
- $d_{\text{rep}}: (y_{\text{orig}} = 0, n_{\text{rep}} = 10)$
- $d_{\text{all}}: (y_{\text{all}} = 10, n_{\text{all}} = 20)$ (Typical for \mathcal{M}_0)

- $BF_{10}(y_{orig}, n_{orig}) = 93.09$
- $BF_{10}(y_{rep}, n_{rep}) = 93.09$ (opposite direction)
- $BF_{10}(y_{all}, n_{all}) = 0.27$
- BF₁₀($d_{\text{all}} \mid d_{\text{orig}}$) = 0.0029. Hence, evidence against replication; BF₁₀(d_{orig}) works as a penalty.

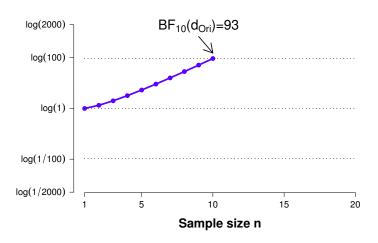
Replication Bayes Factor and Penalty

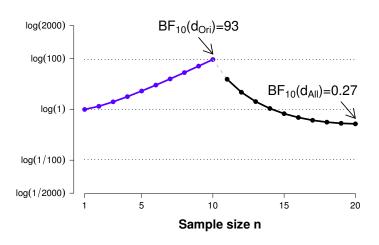
Recall

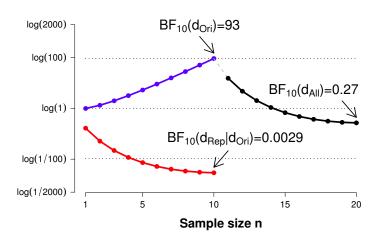
$$\mathsf{BF}_{\mathsf{r0}}(d_{\mathsf{rep}}) = \mathsf{BF}_{\mathsf{10}}(d_{\mathsf{rep}} \,|\, d_{\mathsf{orig}}) = \frac{\mathsf{BF}_{\mathsf{10}}(d_{\mathsf{all}})}{\mathsf{BF}_{\mathsf{10}}(d_{\mathsf{orig}})}$$

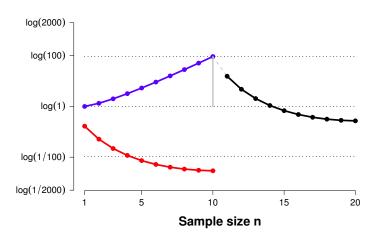
Taking the logarithm

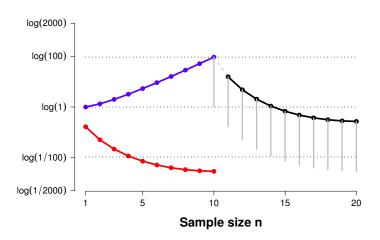
$$\log \mathsf{BF}_{10}(d_{\mathsf{rep}} \,|\, d_{\mathsf{orig}}) = \log \mathsf{BF}_{10}(d_{\mathsf{all}}) - \overbrace{\log \mathsf{BF}_{10}(d_{\mathsf{orig}})}^{\mathsf{penalty}}$$

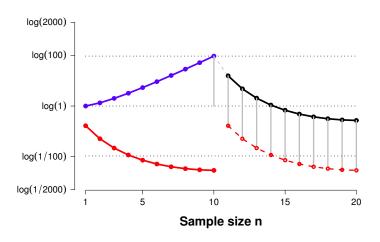












Correlation Test

Default Bayes factor (Jeffreys, 1948; Ly, Verhagen & Wagenmakers, in press), scaled-beta prior on $\theta = \rho$, Jeffreys prior on μ_X , σ_X , μ_Y , σ_Y (nuisance).

$$\mathsf{BF}_{10}(d) = \sqrt{\frac{\pi}{2}} \frac{\Gamma\left(\frac{n-1}{2}\right)}{\Gamma\left(\frac{n+2}{2}\right)} {}_{2}F_{1}\left(\frac{n-1}{2}, \frac{n-1}{2}; \frac{n+2}{2}; r^{2}\right)$$

 Good theoretical behaviour: Model selection consistent and more.

Correlation Test

Default Bayes factor (Jeffreys, 1948; Ly, Verhagen & Wagenmakers, in press), scaled-beta prior on $\theta=\rho$, Jeffreys prior on $\mu_{x},\sigma_{x},\mu_{y},\sigma_{y}$ (nuisance).

$$\mathsf{BF}_{10}(n,r) = \mathsf{bf10Corrie}(\mathsf{n},\mathsf{r})$$

- Implemented in R and used in JASP
- Need: r_{orig} , n_{orig} and and r_{all} , n_{all}

Donellan et al. (2015). Lonely people do NOT shower longer

Replication of a null hypothesis

Data

- d_{orig} : $(n_{\text{orig}} = 1153, r_{\text{orig}} = -0.03)$
- d_{rep} : $(n_{\text{rep}} = 1920, r_{\text{rep}} = 0.01)$

Donellan et al. (2015). Lonely people do NOT shower longer

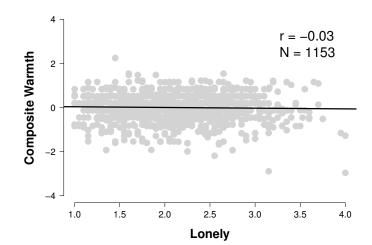
Replication of a null hypothesis

Data

- d_{orig} : $(n_{\text{orig}} = 1153, r_{\text{orig}} = -0.03)$
- $d_{\text{rep}}: (n_{\text{rep}} = 1920, r_{\text{rep}} = 0.01)$
- d_{all} : $(n_{\text{all}} = 3073, r_{\text{all}} = -0.001)$ (Raw data thanks to Donellan et al.)

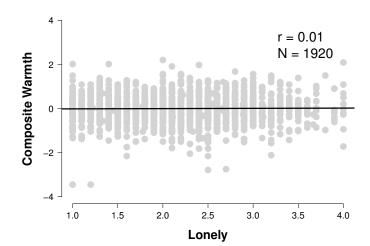
Donellan et al. (2015). Lonely people do NOT shower longer

Replication of a null hypothesis



Donellan et al. (2015). Lonely people do NOT shower longer

Replication of a null hypothesis



Donellan et al. (2015). Lonely people do NOT shower longer

Replication of a null hypothesis

Data

- d_{orig} : $(n_{\text{orig}} = 1153, r_{\text{orig}} = -0.03)$
- $d_{\text{rep}}: (n_{\text{rep}} = 1920, r_{\text{rep}} = 0.01)$
- d_{all} : $(n_{\text{all}} = 3073, r_{\text{all}} = -0.001)$ (Raw data thanks to Donellan et al.)

Donellan et al. (2015). Lonely people do NOT shower longer

Replication of a null hypothesis

Data

- d_{orig} : $(n_{\text{orig}} = 1153, r_{\text{orig}} = -0.03)$
- d_{rep} : $(n_{\text{rep}} = 1920, r_{\text{rep}} = 0.01)$
- d_{all} : $(n_{\text{all}} = 3073, r_{\text{all}} = -0.001)$ (Raw data thanks to Donellan et al.)

Bayes factors

• $BF_{01}(d_{orig}) = 16.17$

Donellan et al. (2015). Lonely people do NOT shower longer

Replication of a null hypothesis

Data

- d_{orig} : $(n_{\text{orig}} = 1153, r_{\text{orig}} = -0.03)$
- d_{rep} : $(n_{\text{rep}} = 1920, r_{\text{rep}} = 0.01)$
- d_{all} : $(n_{\text{all}} = 3073, r_{\text{all}} = -0.001)$ (Raw data thanks to Donellan et al.)

- $BF_{01}(d_{orig}) = 16.17$
- $BF_{01}(d_{all}) = 44.08$
- BF₀₁($d_{all} \mid d_{orig}$) = 2.73. Hence, evidence for a replication of the null hypothesis

Conclusion and Future Endeavours

 Replication Bayes factor: Inherit all good properties of the default Bayes factor

Conclusion

Conclusion and Future Endeavours

- Replication Bayes factor: Inherit all good properties of the default Bayes factor
- No need for complicated calculation, only the test statistic over the combined data $d_{\rm all}$

Conclusion

- Replication Bayes factor: Inherit all good properties of the default Bayes factor
- No need for complicated calculation, only the test statistic over the combined data d_{all}
- Requires full data: Social problem, publish raw data(!!)

Conclusion and Future Endeavours

- Replication Bayes factor: Inherit all good properties of the default Bayes factor
- No need for complicated calculation, only the test statistic over the combined data $d_{\rm all}$
- Requires full data: Social problem, publish raw data(!!)
- Requires full data: Quantify loss of information for insufficient statistics

Conclusion

- Replication Bayes factor: Inherit all good properties of the default Bayes factor
- No need for complicated calculation, only the test statistic over the combined data $d_{\rm all}$
- Requires full data: Social problem, publish raw data(!!)
- Requires full data: Quantify loss of information for insufficient statistics
- Implementation in JASP