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Abstract

This article outlines a Bayesian methodology to estimate and test the Kendall
rank correlation coefficient τ . The nonparametric nature of rank data implies the
absence of a generative model and the lack of an explicit likelihood function. These
challenges can be overcome by modeling test statistics rather than data (Johnson,
2005). We also introduce a method for obtaining a default prior distribution. The
combined result is an inferential methodology that yields a posterior distribution for
Kendall’s τ .
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1 Introduction

One of the most widely used nonparametric tests of dependence between two variables

is the rank correlation known as Kendall’s τ (Kendall, 1938). Compared to Pearson’s ρ,

Kendall’s τ is robust to outliers and violations of normality (Kendall and Gibbons, 1990).

Moreover, Kendall’s τ expresses dependence in terms of monotonicity instead of linearity

and is therefore invariant under rank-preserving transformations of the measurement scale

(Kruskal, 1958; Wasserman, 2006). As expressed by Harold Jeffreys (1961, p. 231): “(...)

it seems to me that the chief merit of the method of ranks is that it eliminates departure

from linearity, and with it a large part of the uncertainty arising from the fact that we do

not know any form of the law connecting X and Y ”. Here we apply the Bayesian inferential

paradigm to Kendall’s τ . Specifically, we define a default prior distribution on Kendall’s

τ , obtain the associated posterior distribution, and use the Savage-Dickey density ratio to

obtain a Bayes factor hypothesis test (Dickey and Lientz, 1970; Jeffreys, 1961; Kass and

Raftery, 1995).

1.1 Kendall’s τ

Let X = (x1, ..., xn) and Y = (y1, ..., yn) be two data vectors each containing measurements

of the same n units. For example, consider the association between French and math grades

in a class of n = 3 children: Tina, Bob, and Jim; let X = (8,7,5) be their grades for a French

exam and Y = (9,6,7) be their grades for a math exam. For 1 ≤ i < j ≤ n, each pair (i, j)

is defined to be a pair of differences (xi − xj) and (yi − yj). A pair is considered to be

concordant if (xi −xj) and (yi − yj) share the same sign, and discordant when they do not.

In our data example, Tina has higher grades on both exams than Bob, which means that

Tina and Bob are a concordant pair. Conversely, Bob has a higher score for French, but

a lower score for math than Jim, which means Bob and Jim are a discordant pair. The

observed value of Kendall’s τ , denoted τobs, is defined as the difference between the number

of concordant and discordant pairs, expressed as proportion of the total number of pairs:

τobs =
∑
n
1≤i<j≤nQ((xi, yi), (xj, yj))

n(n − 1)/2
, (1)
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where the denominator is the total number of pairs and Q is the concordance indicator

function:

Q((xi, yi)(xj, yj)) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

−1 if (xi − xj)(yi − yj) < 0

+1 if (xi − xj)(yi − yj) > 0
. (2)

Table 1 illustrates the calculation for our small data example. Applying Equation (1)

gives τobs = 1/3, an indication of a positive correlation between French and math grades.

i j (xi − xj) (yi − yj) Q

1 2 8-7 9-6 1
1 3 8-5 9-7 1
2 3 7-5 6-7 -1

Table 1: The pairs (i, j) for 1 ≤ i < j ≤ n and the concordance indicator function Q for the
data example where X = (8,7,5) and Y = (9,6,7).

When τobs = 1, all pairs of observations are concordant, and when τobs = −1, all pairs

are discordant. Kruskal (1958) provides the following interpretation of Kendall’s τ : in the

case of n = 2, suppose we bet that y1 < y2 whenever x1 < x2, and that y1 > y2 whenever

x1 > x2; winning $1 after a correct prediction and losing $1 after an incorrect prediction,

the expected outcome of the bet equals τ . Furthermore, Griffin (1958) has illustrated that

when the ordered rank-converted values of X are placed above the rank-converted values

of Y and lines are drawn between the same numbers, Kendall’s τobs is given by the formula:

1 − 4z
n(n−1) , where Z is the number of line intersections; see Figure 1 for an illustration of

this method using our example data of French and math grades. These tools make for a

straightforward and intuitive calculation and interpretation of Kendall’s τ .

Despite these appealing properties and the overall popularity of Kendall’s τ , a default

Bayesian inferential paradigm is still lacking because the application of Bayesian inference

to nonparametric data analysis is not trivial. The main challenge in obtaining posterior

distributions and Bayes factors for nonparametric tests is that there is no generative model

and no explicit likelihood function. In addition, Bayesian model specification requires the

specification of a prior distribution, and this is especially important for Bayes factor hy-

pothesis testing; however, for nonparametric tests it can be challenging to define a sensible

default prior. Though recent developments have been made in two-sample nonparamet-
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9 6 7Math grades ∶

1 2 3Ranks ∶

Ranks ∶ 1 3 2

Figure 1: A visual interpretation of Kendall’s τobs through the formula: 1− 4z
n(n−1) , where z

is the number of intersections of the lines. In this case, n = 3, z = 1, and τobs = 1/3.

ric Bayesian hypothesis testing with Dirichlet process priors (Borgwardt and Ghahramani,

2009; Labadi et al., 2014) and Pòlya tree priors (Chen and Hanson, 2014; Holmes et al.,

2015), this article will outline a different approach, one that permits an intuitive and direct

interpretation.

1.2 Modeling Test Statistics

In order to compute Bayes factors for Kendall’s τ we start with the approach pioneered

by Johnson (2005) and Yuan and Johnson (2008). These authors established bounds for

Bayes factors based on the sampling distribution of the standardized value of τ , denoted

by T ∗, which will be formally defined in section 2.1. Using the Pitman translation al-

ternative, where a non-centrality parameter is used to distinguish between the null and

alternative hypotheses (Randles and Wolfe, 1979), Johnson and colleagues specified the

following hypotheses:

H0 ∶ θ = θ0, (3)

H1 ∶ θ = θ0 +
∆
√
n
, (4)

where θ is the true underlying value of Kendall’s τ , θ0 is the value of Kendall’s τ under the

null hypothesis, and ∆ serves as the non-centrality parameter which can be assigned a prior

distribution. The limiting distribution of T ∗ under both hypotheses is normal (Hotelling
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and Pabs, 1936; Noether, 1955; Chernoff and Savage, 1958), with likelihoods

H0 ∶ T
∗ ∼ N(0,1)

H1 ∶ T
∗ ∼ N (

3∆

2
,1) .

The prior on ∆ is specified by Yuan and Johnson as

∆ ∼ N(0, κ2),

where κ is used to specify the expectation about the size of the departure from the null-value

of ∆. This leads to the following Bayes factor:

BF01 =

√

1 +
9

4
κ2 exp(−

κ2T ∗2

2κ2 + 8
9

) . (5)

Next, Yuan and Johnson calculated an upper bound on BF10, (i.e., a lower bound on BF01)

by maximizing over the parameter κ.

1.3 Challenges

Although innovative and compelling, the approach advocated by Yuan and Johnson (2008)

does have a number of non-Bayesian elements, most notably the data-dependent maximiza-

tion over the parameter κ that results in a data-dependent prior distribution. Moreover,

the definition of H1 depends on n: as n → ∞, H1 and H0 become indistinguishable and

lead to an inconsistent inferential framework.

Our approach, motivated by the earlier work by Johnson and colleagues, sought to elim-

inate κ not by maximization but by a method we call “parametric yoking” (i.e., matching

with a prior distribution for a parametric alternative). In addition, we redefined H1 such

that its definition does not depend on sample size. As such, ∆ becomes synonymous with

the true underlying value of Kendall’s τ when θ0 = 0.
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2 Methods

2.1 Defining T ∗

As mentioned above, Yuan and Johnson (2008) use the standardized version of τobs, denoted

T ∗ (Kendall, 1938) which is defined as follows:

T ∗ =
∑
n
1≤i<j≤nQ((xi, yi), (xj, yj))
√
n(n − 1)(2n + 5)/18

. (6)

Here the numerator contains the concordance indicator function Q. Thus, T ∗ is not nec-

essarily situated between the traditional bounds [-1,1] for a correlation; instead, T ∗ has

a maximum of
√

9n(n−1)
4n+10 and a minimum of −

√
9n(n−1)
4n+10 . This definition of T ∗ enables the

asymptotic normal approximation to the sampling distribution of the test statistic (Kendall

and Gibbons, 1990).

2.2 Prior Distribution through Parametric Yoking

In order to derive a Bayes factor for τ we first determine a default prior for τ through what

we term parametric yoking. In this procedure, a default prior distribution is constructed by

comparison to a parametric alternative. In this case, a convenient parametric alternative is

given by Pearson’s correlation for bivariate normal data. Ly et al. (2016) use a symmetric

beta prior distribution (α = β) on the domain [-1,1], that is:

p(ρ) =
21−2α

B(α,α)
× (1 − ρ2)(α−1), ρ ∈ (−1,1), (7)

where B is the beta function. For bivariate normal data, Kendall’s τ is related to Pearson’s

ρ by Greiner’s relation (Greiner, 1909; Kruskal, 1958):

τ =
2

π
arcsin(ρ). (8)

We can use this relationship to transform the beta prior in (7) on ρ to a prior on τ
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given by:

p(τ) = π
2−2α

B(α,α)
× cos(

πτ

2
)
(2α−1)

, τ ∈ (−1,1). (9)

In the absence of strong prior beliefs, Jeffreys (1961) proposed a uniform distribution on

ρ, that is, a stretched beta with α = β = 1. This induces a non-uniform distribution on τ ,

that is,

p(τ) =
π

4
cos(

πτ

2
) . (10)

Values of α ≠ 1 can be specified to induce different prior distributions on τ . In general,

values of α > 1 increase the prior mass near τ = 0, whereas values of α < 1 decrease the

prior mass near τ = 0. When the focus is on parameter estimation instead of hypothesis

testing, we may follow Jeffreys (1961) and use a stretched beta prior on ρ with α = β = 1/2.

As is easily confirmed by entering these values in (9), this choice induces a uniform prior

distribution for Kendall’s τ .1 The parametric yoking framework can be extended to other

prior distributions that exist for Pearson’s ρ (e.g., the inverse Wishart distribution; Berger

and Sun, 2008; Gelman et al., 2003), by transforming ρ with the inverse of the expression

given in (8):

ρ = sin(
πτ

2
) .

2.3 Posterior Distribution and Bayes Factor

Removing
√
n from the specification of H1 by substituting ∆

√
n for ∆, the likelihood

function under H1 equals a normal density with mean µ = 3
2∆
√
n and standard deviation

σ = 1:

p(T ∗∣θ0 +∆) =
1
√

2π
exp(−

(T ∗ − (3/2)∆
√
n)2

2
) . (11)

Combining this normal likelihood function with the prior from (9) yields the posterior

distribution for Kendall’s τ . Next, Bayes factors can be computed as the ratio of the prior

and posterior ordinate at the point under test (i.e., the Savage-Dickey density ratio, Dickey

and Lientz, 1970; Wagenmakers et al., 2010). In the case of testing independence, the point

1Additional examples and figures of the stretched beta prior, including cases where α ≠ β, are available
online at https://osf.io/b9qhj/.
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under test is τ = 0, leading to the following ratio: BF01 =
p(τ=0∣y)
p(τ=0) , which is analogous to:

BF01 =
p(T ∗∣θ0)

∫ p(T
∗∣θ0 +∆)p(∆)d∆

, (12)

and in the case of Kendall’s τ translates to

BF01 =
exp(−T

∗2

2 )

1

∫
−1

exp (− (T
∗−(3/2)τ

√
n)2

2 ) (π 2−2α

B(α,α) × cos (πτ2 )
(2α−1)

)dτ

. (13)

2.4 Verifying the Asymptotic Normality of T ∗

Our method relies on the asymptotic normality of T ∗, a property established mathemat-

ically by Hoeffding (1948). For practical purposes, however, it is insightful to assess the

extent to which this distributional assumption is appropriate for realistic sample sizes. By

considering all possible permutations of the data, deriving the exact cumulative density of

T ∗, and comparing the densities to those of a standard normal distribution, Ferguson et al.

(2000) concluded that the normal approximation holds under H0 when n ≥ 10. But what

if H0 is false?

Here we report a simulation study designed to assess the quality of the normal ap-

proximation to the sampling distribution of T ∗ when H1 is true. With the use of copulas,

100,000 synthetic data sets were created for each of several combinations of Kendall’s τ

and sample size n.2 For each simulated data set, the Kolmogorov-Smirnov statistic was

used to quantify the fit of the normal approximation to the sampling distribution of T ∗.3

Figure 2 shows the Kolmogorov-Smirnov statistic as a function of n, for various values

of τ when data sets were generated from a bivariate normal distribution (i.e., the normal

copula). Similar results were obtained using Frank, Clayton, and Gumbel copulas. As is

the case under H0 (e.g., Ferguson et al., 2000; Kendall and Gibbons, 1990), the quality of

the normal approximation increases exponentially with n. Furthermore, larger values of τ

necessitate larger values of n to achieve the same quality of approximation.

The means of the normal distributions fit to the sampling distribution of T ∗ are situated

2For more information on copulas see Nelsen (2006), Genest and Favre (2007), and Colonius (in press).
3R-code, plots, and further details are available online at https://osf.io/b9qhj/.
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Figure 2: Quality of the normal approximation to the sampling distribution of T ∗, as
assessed by the Kolmogorov-Smirnov statistic. As n grows, the quality of the normal
approximation increases exponentially. Larger values of τ necessitate larger values of n
to achieve the same quality of approximation. The grey horizontal line corresponds to
a Kolmogorov-Smirnov statistic of 0.038 (obtained when τ = 0 and n = 10), for which
Ferguson et al. (2000, p. 589) deemed the quality of the normal approximation to be
“sufficiently precise for practical purposes”.

at the point 3
2∆
√
n. The data sets from this simulation can also be used to examine the

variance of the normal approximation. Under H0 (i.e., τ = 0), the variance of these normal

distributions equals 1. As the population correlation grows (i.e., ∣τ ∣ → 1), the number of

permissible rank permutations decreases and so does the variance of T ∗. The upper bound

of the sampling variance of T ∗ is a function of the population value for τ (Kendall and

Gibbons, 1990):

σ2
T ∗ ≤

2.5n(1 − τ 2)

2n + 5
. (14)

As shown in the online appendix, our simulation results provide specific values for the

variance which respect this upper bound. This result has ramifications for the Bayes

factor. As the test statistic moves away from 0, the variance falls below 1, and the posterior

distribution will be more peaked on the value of the test statistic than when the variance is

assumed to equal 1. This results in increased evidence in favor of H1, so that our proposed

procedure is somewhat conservative. However, for n ≥ 20, the changes in variance will only

surface in cases where there already exists substantial evidence for H1 (i.e., BF10 ≥ 10).
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3 Results

3.1 Bayes Factor Behavior

Now that we have determined a default prior for τ and combined it with the specified

Gaussian likelihood function, computation of the posterior distribution and the Bayes factor

becomes feasible. For an uninformative prior on τ (i.e., α = β = 1), Figure 3 illustrates BF10

as a function of n, for three values of τobs. The lines for τobs = 0.2 and τobs = 0.3 show that

BF10 for a true H1 increases exponentially with n, as is generally the case. For τobs = 0, the

Bayes factor decreases as n increases.

n

τobs = 0.3

τobs = 0.2

τobs = 0
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Figure 3: Relation between BF10 and sample size (3 ≤ n ≤ 150) for three values of Kendall’s
τ .

3.2 Comparison to Pearson’s ρ

In order to put the result in perspective, the Bayes factors for Kendall’s tau (i.e., BFτ10) can

be compared to those for Pearson’s ρ (i.e., BFρ10). The Bayes factors for Pearson’s ρ are

based on Jeffreys (1961, see also Ly et al., 2016), who used the uniform prior on ρ. Figure

4 shows that the relationship between BFτ10 and BFρ10 for normal data is approximately

linear as a function of sample size. In addition, and as one would expect due to the loss

of information when continuous values are converted to coarser ranks, BFτ10 < BFρ10 in the
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case of evidence in favor of H1 (left panel of Figure 4). When evidence is in favor of H0,

i.e. τ = 0, BFτ10 and BFρ10 perform similarly (right panel of Figure 4).
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Figure 4: Relation between the Bayes factors for Pearsons ρ and Kendall’s τ = 0.2 (left)
and Kendall’s τ = 0 (right) as a function of sample size (i.e., 3 ≤ n ≤ 150). The data are
normally distributed. Note that the left panel shows BF10 and the right panel shows BF01.
The diagonal line indicates equivalence.

3.3 Real Data Example

Willerman et al. (1991) set out to uncover the relation between brain size and IQ. Across

20 participants, the authors observed a Pearson’s correlation coefficient of r = 0.51 between

IQ and brain size, measured in MRI count of gray matter pixels. The data are presented

in the top left panel of Figure 5. Bayes factor hypothesis testing of Pearson’s ρ yields

BFρ10 = 5.16, which is illustrated in the middle left panel. This means the data are 5.16

times as likely to occur under H1 than under H0. When applying a log-transformation on

the MRI counts (after subtracting the minimum value minus 1), however, the linear relation

between IQ and brain size is less strong. The top right panel of Figure 5 presents the effect

of this monotonic transformation on the data. The middle right panel illustrates how

the transformation decreases BFρ10 to 1.28. The bottom left panel presents our Bayesian

analysis on Kendall’s τ , which yields a BFτ10 of 2.17. Furthermore, the bottom right panel
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shows the same analysis on the transformed data, illustrating the invariance of Kendall’s

τ against monotonic transformations: the inference remains unchanged, which highlights

one of Kendall’s τ most appealing features.

4 Concluding Comments

This manuscript outlined a nonparametric Bayesian framework for inference about Kendall’s

tau. The framework is based on modeling test statistics and assigning a prior by means

of a parametric yoking procedure. The framework produces a posterior distribution for

Kendall’s tau, and –via the Savage-Dickey density ratio test– also yields a Bayes factor

that quantifies the evidence for the absence of a correlation.

Our general procedure (i.e., modeling test statistics and assigning a prior through para-

metric yoking) is relatively general and may be used to facilitate Bayesian inference for

other nonparametric tests as well. For instance, Serfling (1980) offers a range of test

statistics with asymptotic normality to which our framework may be expanded, whereas

Johnson (2005) has explored the modeling of test statistics that have non-Gaussian limiting

distributions.
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