## Replication Bayes factors from JASP output

Alexander Ly, Alexander Etz, Maarten Marsman, Quentin Gronau, Sacha Epskamp, Dora Matzke, Ravi Selker, Tahira Jamil and Eric-Jan Wagenmakers

Psychological Methods University of Amsterdam

Heidelberg, 21 March 2016

## Overview

(9) Relevance and context
(2) Bayes factors
(3) Replication Bayes factors 1
(4) Replication Bayes factors 2
(5) Conclusion

## Open Science Framework (OSF): Reproducibility project

- JEP:LMC, JPSP, and Psychological Science
- 167 replication attempts


## Open Science Framework (OSF): Reproducibility project

- JEP:LMC, JPSP, and Psychological Science
- 167 replication attempts
- Successful replication?


## Example: Successful Replications?

## Replication results:

- $p_{\text {orig }}=.032<.05$
- $p_{\text {rep }}=.032<.05$


## Example: Successful Replications?

## Replication results:

- $p_{\text {orig }}=.032<.05, r_{\text {orig }}=0.2$
- $p_{\text {rep }}=.032<.05, r_{\text {rep }}=-0.2$


## Example: Successful Replications?

## Replication results:

- $p_{\text {orig }}=.032<.05, r_{\text {orig }}=0.2$
- $p_{\text {rep }}=.032<.05, r_{\text {rep }}=0.2$

Conclusion: $p$-values and replications

- $p$-values alone not informative, also need the direction of the effect


## Example: Successful Replications?

## Replication results:

- $p_{\text {orig }}=.032<.05, r_{\text {orig }}=0.2$
- $p_{\text {rep }}=.032<.05, r_{\text {rep }}=0.2$

Conclusion: $p$-values and replications

- $p$-values alone not informative, also need the direction of the effect
- To what extend? Need: Continues measure of evidence


## Example: Successful Replications?

## Replication results:

- $p_{\text {orig }}=.032<.05, r_{\text {orig }}=0.2, n_{\text {orig }}=50$
- $p_{\text {rep }}=.046<.05, r_{\text {rep }}=0.1, n_{\text {rep }}=100$

Conclusion: $p$-values and replications

- $p$-values alone not informative, also need the direction of the effect
- To what extend? Need: Continues measure of evidence


## Example: Successful Replications?

## Replication results:

- $p_{\text {orig }}=.032<.05, r_{\text {orig }}=0.2, n_{\text {orig }}=50$
- $p_{\text {rep }}=.051>.05, r_{\text {rep }}=0.11, n_{\text {rep }}=101$

Conclusion: $p$-values and replications

- $p$-values alone not informative, also need the direction of the effect
- To what extend? Need: Continues measure of evidence
- Sample sizes are relevant.


## Example: Successful Replications?

## Replication results:

- $p_{\text {orig }}=.032<.05, r_{\text {orig }}=0.2, n_{\text {orig }}=50$
- $p_{\text {rep }}=.051>.05, r_{\text {rep }}=0.11, n_{\text {rep }}=101$

Conclusion: $p$-values and replications

- $p$-values alone not informative, also need the direction of the effect
- To what extend? Need: Continues measure of evidence
- Sample sizes are relevant.
- More general, use all data $d_{\text {orig }}$ and $d_{\text {rep }}$


## Take home message

- Better method to asses hypotheses: Bayes factors that are continuous and take into account all the data.


## Take home message

- Better method to asses hypotheses: Bayes factors that are continuous and take into account all the data.
- Better method to asses replications: Replication Bayes factors.


## Take home message

- Better method to asses hypotheses: Bayes factors that are continuous and take into account all the data.
- Better method to asses replications: Replication Bayes factors.
- Here instructions how to calculate them in JASP (http://jasp-stats.org/).


## Take home message

- Better method to asses hypotheses: Bayes factors that are continuous and take into account all the data.
- Better method to asses replications: Replication Bayes factors.
- Here instructions how to calculate them in JASP (http://jasp-stats.org/).
- Slides will be online www.Alexander-Ly.com.


## Bayes Factors

## The pros

- Evidence for $\mathcal{M}_{1}$ and $\mathcal{M}_{0}$


## Bayes Factors

## The pros

- Evidence for $\mathcal{M}_{1}$ and $\mathcal{M}_{0}$
- $\mathrm{BF}_{10}(d)=7$, the data $d$ are seven times more likely to be generated from the alternative model $\mathcal{M}_{1}$
- $\mathrm{BF}_{10}(d)=1 / 7$, the data $d$ are seven times more likely to be generated from the null model $\mathcal{M}_{0}$, as $\mathrm{BF}_{01}(d)=7$


## Bayes Factors

## The pros

- Evidence for $\mathcal{M}_{1}$ and $\mathcal{M}_{0}$
- $\mathrm{BF}_{10}(d)=7$, the data $d$ are seven times more likely to be generated from the alternative model $\mathcal{M}_{1}$
- $\mathrm{BF}_{10}(d)=1 / 7$, the data $d$ are seven times more likely to be generated from the null model $\mathcal{M}_{0}$, as $\mathrm{BF}_{01}(d)=7$


## The cons

- Comparative measure of evidence.


## Bayes Factors

## The pros

- Evidence for $\mathcal{M}_{1}$ and $\mathcal{M}_{0}$
- $\mathrm{BF}_{10}(d)=7$, the data $d$ are seven times more likely to be generated from the alternative model $\mathcal{M}_{1}$
- $\mathrm{BF}_{10}(d)=1 / 7$, the data $d$ are seven times more likely to be generated from the null model $\mathcal{M}_{0}$, as $\mathrm{BF}_{01}(d)=7$


## The cons

- Comparative measure of evidence.
- Computationally hard, but we can use computers and now JASP


## Bayes Factors

## The pros

- Evidence for $\mathcal{M}_{1}$ and $\mathcal{M}_{0}$
- $\mathrm{BF}_{10}(d)=7$, the data $d$ are seven times more likely to be generated from the alternative model $\mathcal{M}_{1}$
- $\mathrm{BF}_{10}(d)=1 / 7$, the data $d$ are seven times more likely to be generated from the null model $\mathcal{M}_{0}$, as $\mathrm{BF}_{01}(d)=7$


## The cons

- Comparative measure of evidence.
- Computationally hard, but we can use computers and now JASP
- Sensitive to prior choice


## Basics of Bayesian learning

For each model $\left(\mathcal{M}_{0}\right.$ and $\left.\mathcal{M}_{1}\right)$ do the following:
(1) Prior: Express our uncertain about the parameter $\theta$.

## Basics of Bayesian learning

For each model ( $\mathcal{M}_{0}$ and $\mathcal{M}_{1}$ ) do the following:
(1) Prior: Express our uncertain about the parameter $\theta$.
(2) Predictive: The uncertainty about $\theta$ yields expectations about future data.

## Basics of Bayesian learning

For each model ( $\mathcal{M}_{0}$ and $\mathcal{M}_{1}$ ) do the following:
(1) Prior: Express our uncertain about the parameter $\theta$.
(2) Predictive: The uncertainty about $\theta$ yields expectations about future data.
(3) Observe data: Learn from the observed data, say, $d_{\text {orig }}$.

## Basics of Bayesian learning

For each model ( $\mathcal{M}_{0}$ and $\mathcal{M}_{1}$ ) do the following:
(1) Prior: Express our uncertain about the parameter $\theta$.
(2) Predictive: The uncertainty about $\theta$ yields expectations about future data.
( Observe data: Learn from the observed data, say, dorig.
(9) Posterior: Revise our uncertainty about the parameter $\theta$.

## Basics of Bayesian learning

For each model ( $\mathcal{M}_{0}$ and $\mathcal{M}_{1}$ ) do the following:
(1) Prior: Express our uncertain about the parameter $\theta$.
(2) Predictive: The uncertainty about $\theta$ yields expectations about future data.
( Observe data: Learn from the observed data, say, dorig.
(9) Posterior: Revise our uncertainty about the parameter $\theta$.
(0) Repeat Go to step 2.

## The default prior kickstarts learning

Prior

## The default prior kickstarts learning

## Prior

Predictive

## The default prior kickstarts learning

Prior
Predictive


Data

## The default prior kickstarts learning

Prior
Predictive

Posterior
Data

## The default prior kickstarts learning

Prior
Predictive

Posterior
Data

## Example: Binomial case

## Experimental set up

- We plan to get a participant to respond to $n=10$ items yielding $y$ number of correct and $n-y$ incorrect responses.


## Example: Binomial case

## Experimental set up

- We plan to get a participant to respond to $n=10$ items yielding $y$ number of correct and $n-y$ incorrect responses.
- The participant's ability $\theta$ drives the number of correct responses $y$; the closer the ability $\theta$ is to one, the closer the number of correct responses $y$ is to $n$.


## Example: Binomial case

## Experimental set up

We plan to get the participant to respond another $n=10$ items yielding $y$ number of correct and $n-y$ incorrect responses.

## The null model $\mathcal{M}_{0}$

Standard null hypothesis: The ability is known $\mathcal{M}_{0}: \theta=1 / 2$

## Example: Binomial case

## Experimental set up

We plan to get the participant to respond another $n=10$ items yielding $y$ number of correct and $n-y$ incorrect responses.

The null model $\mathcal{M}_{0}$
Standard null hypothesis: The ability is known $\mathcal{M}_{0}: \theta=1 / 2$ Implicit prior with zero uncertainty.

## Binomial case: Null model $\mathcal{M}_{0}$ predictions



## Example: Binomial case

## Experimental set up

We plan to get the participant to respond another $n=10$ items yielding $y$ number of correct and $n-y$ incorrect responses.

The null model $\mathcal{M}_{0}$
Standard null hypothesis: The ability is known $\mathcal{M}_{0}: \theta=1 / 2$ Implicit prior with zero uncertainty.

The alternative model $\mathcal{M}_{1}$
Standard alternative hypothesis: The ability is unknown: $\mathcal{M}_{1}: \theta$ is in $(0,1)$. Choose a prior in JASP.

## The default prior in JASP: 1. Load "binomialOri.cSv"



## The default prior in JASP: 1. Load "binomialOri.cSv"



## The default prior in JASP: 2. Choose "Bayesian Binomial Test"



## The default prior in JASP: 3. Setting



## Prior

## Beta prior: parameter a <br> 1

## Beta prior: parameter b <br> 1

## Meaning of the default prior: Beta $a=1, b=1$

- Interpretation: Pre-experimentally, we saw a - 1 correct and $b-1$ incorrect responses before the data collection.


## Meaning of the default prior: Beta $a=1, b=1$

- Interpretation: Pre-experimentally, we saw a - 1 correct and $b-1$ incorrect responses before the data collection.
- The default specification implies 0 correct and 0 incorrect pre-responses.


## Meaning of the default prior: Beta $a=1, b=1$



## Binomial case: Alternative model $\mathcal{M}_{1}$ predictions



## Example: Binomial case

## Bayes factor

A Bayes factor compares the predictions of the two models at the observed data $y_{\text {orig }}$

## Recall: Null model $\mathcal{M}_{0}$ predictions



## Recall: Alternative model $\mathcal{M}_{1}$ predictions



## The $\mathcal{M}_{0}$ vs $\mathcal{M}_{1}$ predictions



## Null model $\mathcal{M}_{0}$ "wins": $\mathrm{BF}_{10}\left(d_{\text {orig }}\right)<1$



## Alternative model $\mathcal{M}_{1}$ "wins": $\mathrm{BF}_{10}\left(d_{\text {orig }}\right)>1$



## Observing data: $y_{\text {orig }}=8$ correct and $n_{\text {orig }}-Y_{\text {orig }}=2$ incorrect responses



## Observing data: $y_{\text {orig }}=8$ correct and $n_{\text {orig }}-Y_{\text {orig }}=2$ incorrect responses



## Observing data: $y_{\text {orig }}=8$ correct and $n_{\text {orig }}-Y_{\text {orig }}=2$ incorrect responses



## Explaining the result



## Explaining the result



## Default Bayes factor $\mathrm{BF}_{10}\left(d_{\text {orig }}\right)$



## Default Bayes factor $\mathrm{BF}_{10}\left(d_{\text {orig }}\right)$

Prior

## Predictive

$\mathrm{d}_{\text {orig }}$

## Replication Bayes factor $\mathrm{BF}_{10}\left(d_{\text {orig }} \mid d_{\text {rep }}\right)$

## Prior

Predictive

Posterior Data

## a. Revise the prior: Learn from the original data

Posterior $\longleftarrow \mathrm{d}_{\text {orig }}$

## b. Revise the predictions



## a. Learning from the original data <br> $d_{\text {orig }}: y_{\text {orig }}=8, n_{\text {orig }}=10$

## Experimental set up

After observing $d_{\text {orig }}$, we plan to get the participant to respond another $n=10$ items yielding $y$ number of correct and $n-y$ incorrect responses.

The null model $\mathcal{M}_{0}$
Revised null hypothesis: The ability is still known; $\mathcal{M}_{0}: \theta=1 / 2$. Same "no-uncertainty" prior.

## b. Revised: Null model $\mathcal{M}_{0}$ predictions



# a. Learning from the original data <br> $d_{\text {orig }}: y_{\text {orig }}=8, n_{\text {orig }}=10$ 

## Experimental set up

After observing $d_{\text {orig, }}$, we plan to get the participant to respond another $n=10$ items yielding $y$ number of correct and $n-y$ incorrect responses.

## The null model $\mathcal{M}_{0}$

"Revised" null hypothesis: The ability is still known $\theta=1 / 2 \leftarrow$ Same prior.

The alternative model $\mathcal{M}_{1}$
Revised alternative hypothesis: The ability is still unknown and $\mathcal{M}_{1}: \theta$ in $(0,1)$, but we are less uncertain about it.

## a. Revising the prior in $\mathcal{M}_{1}$

- Recall: Beta prior implies that we saw a-1 correct and $b-1$ incorrect responses before the new data.


## a. Revising the prior in $\mathcal{M}_{1}$

- Recall: Beta prior implies that we saw a-1 correct and $b-1$ incorrect responses before the new data.
- With $y_{\text {orig }}=8$ and $n_{\text {orig }}-y_{\text {orig }}=2$, this yields $a=9$ and $b=3$, before seeing the replication data.


## a. Revising the prior in $\mathcal{M}_{1}$



## a. Revising the prior in $\mathcal{M}_{1}$



## Revising the prior in JASP: 1. Load "binomialRepA.csv"



## Revising the prior in JASP: 1. Load "binomialRepA.csv"



## Revising the prior in JASP: 2. Choose "Bayesian Binomial Test"



## Revising the prior in JASP: 3. Change the prior



## Revising the prior in JASP: 3. Change the prior

## Prior

## Beta prior: parameter a 9

Beta prior: parameter b 3

## b. Revised: Alternative model $\mathcal{M}_{1}$ predictions



## Replication Bayes factor

## Bayes factor

The replication Bayes factor compares the revised predictions (based on $d_{\text {orig }}$ ) of the two models at the observed data $y_{\text {rep }}$

## b. Recall revised null model $\mathcal{M}_{0}$ predictions



## b. Recall revised alternative model $\mathcal{M}_{1}$ predictions



## c. The revised $\mathcal{M}_{0}$ vs $\mathcal{M}_{1}$ predictions



## c. The revised null $\mathcal{M}_{0}$ wins: $\mathrm{BF}_{10}\left(d_{\text {rep }} \mid d_{\text {orig }}\right)<1$


c. The revised alternative $\mathcal{M}_{1}$ wins:
$B F_{10}\left(d_{\text {rep }} \mid d_{\text {orig }}\right)>1$


## Example A: $y_{\text {orig }}=8, n_{\text {orig }}=10$ and $y_{\text {rep }}=8, n_{\text {rep }}=10$



## Example A: $y_{\text {orig }}=8, n_{\text {orig }}=10$ and $y_{\text {rep }}=8, n_{\text {rep }}=10$



## Example A: $y_{\text {orig }}=8, n_{\text {orig }}=10$ and $y_{\text {rep }}=8, n_{\text {rep }}=10$



## Example B: $y_{\text {orig }}=8, n_{\text {orig }}=10$ and $y_{\text {rep }}=2, n_{\text {rep }}=10$

## Load "binomialRepB.csv"



## Example B: $y_{\text {orig }}=8, n_{\text {orig }}=10$ and $y_{\text {rep }}=2, n_{\text {rep }}=10$



## Example B: $y_{\text {orig }}=8, n_{\text {orig }}=10$ and $y_{\text {rep }}=2, n_{\text {rep }}=10$



## Example B: $y_{\text {orig }}=8, n_{\text {orig }}=10$ and $y_{\text {rep }}=2, n_{\text {rep }}=10$



## Example B: $y_{\text {orig }}=8, n_{\text {orig }}=10$ and $y_{\text {rep }}=2, n_{\text {rep }}=10$



## Example C: $y_{\text {orig }}=8, n_{\text {orig }}=10$ and $y_{\text {rep }}=7, n_{\text {rep }}=10$

## Load "binomialRepC.csv"



## Example C: yorig $=8, n_{\text {orig }}=10$ and $y_{\text {rep }}=7, n_{\text {rep }}=10$



## Example C: $y_{\text {orig }}=8, n_{\text {orig }}=10$ and $y_{\text {rep }}=7, n_{\text {rep }}=10$



## Example C: yorig $=8, n_{\text {orig }}=10$ and $y_{\text {rep }}=7, n_{\text {rep }}=10$



## Example C: $y_{\text {orig }}=8, n_{\text {orig }}=10$ and $y_{\text {rep }}=7, n_{\text {rep }}=10$



## Alternative method of calculation

- Replication Bayes factor as a two step method. First find the posterior based on $d_{\text {orig }}$, use this as prior for $d_{\text {rep }}$. Input in "Prior" part of JASP


## Alternative method of calculation

- Replication Bayes factor as a two step method. First find the posterior based on $d_{\text {orig }}$, use this as prior for $d_{\text {rep }}$. Input in "Prior" part of JASP
- Prior is not always easily updated.


## Alternative method of calculation

- Alternative: Calculate the replication Bayes factor as

$$
\begin{equation*}
\mathrm{BF}_{10}\left(d_{\text {rep }} \mid d_{\text {orig }}\right)=\frac{\mathrm{BF}_{10}\left(d_{\text {orig }}, d_{\text {rep }}\right)}{\mathrm{BF}_{10}\left(d_{\text {orig }}\right)} \tag{1}
\end{equation*}
$$

## Alternative method of calculation

- Alternative: Calculate the replication Bayes factor as

$$
\begin{equation*}
\mathrm{BF}_{10}\left(d_{\text {rep }} \mid d_{\text {orig }}\right)=\frac{\mathrm{BF}_{10}\left(d_{\text {orig }}, d_{\text {rep }}\right)}{\mathrm{BF}_{10}\left(d_{\text {orig }}\right)} \tag{1}
\end{equation*}
$$

- Interpretation

$$
\begin{equation*}
\mathrm{BF}_{10}\left(d_{\text {orig }}, d_{\text {rep }}\right)=\mathrm{BF}_{10}\left(d_{\text {rep }} \mid d_{\text {orig }}\right) \mathrm{BF}_{10}\left(d_{\text {orig }}\right) \tag{2}
\end{equation*}
$$

The replication Bayes factor is the additional evidence for $\mathcal{M}_{1}$ in the new data $d_{\text {rep }}$ given that we already know $d_{\text {orig }}$.

## Alternative method of calculation

- Alternative: Calculate the replication Bayes factor as

$$
\begin{equation*}
\mathrm{BF}_{10}\left(d_{\text {rep }} \mid d_{\text {orig }}\right)=\frac{\mathrm{BF}_{10}\left(d_{\text {orig }}, d_{\text {rep }}\right)}{\mathrm{BF}_{10}\left(d_{\text {orig }}\right)} \tag{1}
\end{equation*}
$$

- Interpretation

$$
\begin{equation*}
\mathrm{BF}_{10}\left(d_{\text {orig }}, d_{\text {rep }}\right)=\mathrm{BF}_{10}\left(d_{\text {rep }} \mid d_{\text {orig }}\right) \mathrm{BF}_{10}\left(d_{\text {orig }}\right) \tag{2}
\end{equation*}
$$

The replication Bayes factor is the additional evidence for $\mathcal{M}_{1}$ in the new data $d_{\text {rep }}$ given that we already know $d_{\text {orig }}$.

- $\mathrm{BF}_{10}\left(d_{\text {rep }} \mid d_{\text {orig }}\right)<1$, the contribution of $d_{\text {rep }}$ to the total evidence shrinks.


## Alternative method of calculation

- Alternative: Calculate the replication Bayes factor as

$$
\begin{equation*}
\mathrm{BF}_{10}\left(d_{\text {rep }} \mid d_{\text {orig }}\right)=\frac{\mathrm{BF}_{10}\left(d_{\text {orig }}, d_{\text {rep }}\right)}{\mathrm{BF}_{10}\left(d_{\text {orig }}\right)} \tag{1}
\end{equation*}
$$

- Interpretation

$$
\begin{equation*}
\mathrm{BF}_{10}\left(d_{\text {orig }}, d_{\text {rep }}\right)=\mathrm{BF}_{10}\left(d_{\text {rep }} \mid d_{\text {orig }}\right) \mathrm{BF}_{10}\left(d_{\text {orig }}\right) \tag{2}
\end{equation*}
$$

The replication Bayes factor is the additional evidence for $\mathcal{M}_{1}$ in the new data $d_{\text {rep }}$ given that we already know $d_{\text {orig }}$.

- $\mathrm{BF}_{10}\left(d_{\text {rep }} \mid d_{\text {orig }}\right)<1$, the contribution of $d_{\text {rep }}$ to the total evidence shrinks.
- $\mathrm{BF}_{10}\left(d_{\text {rep }} \mid d_{\text {orig }}\right)>1$, the contribution of $d_{\text {rep }}$ to the total evidence grows.


## Total Bayes factor $\mathrm{BF}_{10}\left(d_{\text {orig }}, d_{\text {rep }}\right)$

## Prior

## Predictive

Posterior
Data

## Default Bayes factor $\mathrm{BF}_{10}\left(d_{\text {orig }}\right)$



## Replication Bayes factor $\mathrm{BF}_{10}\left(d_{\text {orig }} \mid d_{\text {rep }}\right)$

Prior
Predictive

Posterior Data

## Example: Orig contingency table Dai et al. (2008)

## Perceived

## Endowed

Flowers endowed Birds endowed

Total

Fewer flowers Fewer birds Total
15
12
27
21 29

33 56

Table: Dai, Wertenbroch \& Brendl (2008). "The Value Heuristic in Judgments of Relative Frequency"

## Result

Bayes factor $\mathrm{BF}_{10}\left(d_{\text {orig }}\right)=2.880$

## Example: Rep contingency table Fuchs et al. (2015)

## Perceived

| Endowed | Fewer flowers | Fewer birds | Total |
| :---: | :---: | :---: | :---: |
| Flowers endowed | 11 | 16 | 27 |
| Birds endowed | 14 | 10 | 24 |
| Total | 25 | 26 | 51 |

Table: Fuchs, Estel \& Göllner (2015). Replication of Dai et al. (2008) (https://osf.io/q7f6w/)

## Result

Bayes factor $\mathrm{BF}_{10}\left(d_{\text {rep }}\right)=0.720$

## Example: Combined contingency table

|  | Perceived |  |  |
| :--- | :---: | :---: | ---: |
|  | Endowed |  | Fewer flowers |
|  | Fewer birds | Total |  |
| Flowers endowed | 26 | 28 | 54 |
| Birds endowed | 22 | 31 | 53 |
| Total | $\mathbf{4 8}$ | 59 | $\mathbf{1 0 7}$ |

Table: Fuchs et al. (2015) and Dai et al. (2008) (https://osf.io/q7f6w/)

## Result

Bayes factor $\mathrm{BF}_{10}\left(d_{\text {orig }}, d_{\text {rep }}\right)=0.298$

## Results

## Result

$$
\begin{equation*}
\mathrm{BF}_{10}\left(d_{\text {rep }} \mid d_{\text {orig }}\right) \approx 0.10 \tag{3}
\end{equation*}
$$

thus,

$$
\begin{equation*}
\mathrm{BF}_{01}\left(d_{\text {rep }} \mid d_{\text {orig }}\right) \approx 9.6 \tag{4}
\end{equation*}
$$

in favour of the null.

## 1. Load "contingencyComb.csv"



## 2. Choose "Bayesian Contingency Tables"



## 3. Choose right analysis



## 3. Choose right analysis



## Results

## Bayesian Contingency Tables

Bayesian Contingency Tables

|  | $\cdot$ |  |
| :--- | :---: | :---: |
|  | $\cdot$ | $\cdot$ |
| Total |  |  |
| $\cdot$ | $\cdot$ | $\cdot$ |
| $\cdot$ | $\cdot$ | $\cdot$ |
| Total | $\cdot$ | $\cdot$ |

Bayesian Contingency Tables Tests
Value
$\mathrm{BF}_{10}$ independent multinomial N

## 4. Fill in table



## 5. Write down result



## 1. Load "contingencyOri.csv"



## 2. Choose "Bayesian Contingency Tables"



## 3. Choose right analysis



## 3. Choose right analysis



## 4. Fill in table



## 5. Write down result



## Calculate

- Combined data: $\mathrm{BF}_{10}\left(d_{\text {orig }}, d_{\text {rep }}\right)=0.298$
- Original data: $\mathrm{BF}_{10}\left(d_{\text {orig }}\right)=2.880$


## Calculate

- Combined data: $\mathrm{BF}_{10}\left(d_{\text {orig }}, d_{\text {rep }}\right)=0.298$
- Original data: $\mathrm{BF}_{10}\left(d_{\text {orig }}\right)=2.880$
- Calculate replication Bayes factor

$$
\begin{equation*}
\mathrm{BF}_{10}\left(d_{\text {rep }} \mid d_{\text {orig }}\right)=\frac{0.298}{2.880} \approx 0.10 \tag{5}
\end{equation*}
$$

## Calculate

- Combined data: $\mathrm{BF}_{10}\left(d_{\text {orig }}, d_{\text {rep }}\right)=0.298$
- Original data: $\mathrm{BF}_{10}\left(d_{\text {orig }}\right)=2.880$
- Calculate replication Bayes factor

$$
\begin{equation*}
\mathrm{BF}_{10}\left(d_{\text {rep }} \mid d_{\text {orig }}\right)=\frac{0.298}{2.880} \approx 0.10 \tag{5}
\end{equation*}
$$

- Thus,

$$
\begin{equation*}
\mathrm{BF}_{01}\left(d_{\text {rep }} \mid d_{\text {orig }}\right)=\frac{1}{\mathrm{BF}_{10}\left(d_{\text {rep }} \mid d_{\text {orig }}\right)} \approx 9.6 \tag{6}
\end{equation*}
$$

in favour of the null.

## Conclusion and future endeavours

- You can already calculate replication Bayes factors in JASP.


## Conclusion and future endeavours

- You can already calculate replication Bayes factors in JASP.
- i. By changing the priors.


## Conclusion and future endeavours

- You can already calculate replication Bayes factors in JASP.
- i. By changing the priors.
- ii. Or by combining the data (this can be tricky).


## Conclusion and future endeavours

- You can already calculate replication Bayes factors in JASP.
- i. By changing the priors.
- ii. Or by combining the data (this can be tricky).
- Requires full data: Social problem (publish raw data).


## Conclusion and future endeavours

- You can already calculate replication Bayes factors in JASP.
- i. By changing the priors.
- ii. Or by combining the data (this can be tricky).
- Requires full data: Social problem (publish raw data).
- Replication Bayes factors depend on the (quality) of the data (pre-registration).


## Conclusion and future endeavours

- You can already calculate replication Bayes factors in JASP.
- i. By changing the priors.
- ii. Or by combining the data (this can be tricky).
- Requires full data: Social problem (publish raw data).
- Replication Bayes factors depend on the (quality) of the data (pre-registration).
- We need to automatise the calculation and develop an interface for this.


## Workshop

Theory and Practice of Bayesian Hypothesis Testing A JASP Workshop, August 22-23, 2016 Amsterdam https://jasp-stats.org

