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Example: Successful Replications?

Replication results:
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Take home message

Better method to asses hypotheses: Bayes factors that are
continuous and take into account all the data.

Better method to asses replications: Replication Bayes
factors.
Here instructions how to calculate them in JASP
(http://jasp-stats.org/).
Slides will be online www.Alexander-Ly.com.
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BF10(d) = 7, the data d are seven times more likely to be
generated from the alternative model M1

BF10(d) = 1/7, the data d are seven times more likely to
be generated from the null model M0, as BF01(d) = 7
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Basics of Bayesian learning

For each model (M0 and M1) do the following:
1 Prior: Express our uncertain about the parameter ✓.

2 Predictive: The uncertainty about ✓ yields expectations
about future data.

3 Observe data: Learn from the observed data, say, dorig.
4 Posterior: Revise our uncertainty about the parameter ✓.
5 Repeat Go to step 2.
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yielding y number of correct and n� y incorrect responses.

The participant’s ability ✓ drives the number of correct
responses y ; the closer the ability ✓ is to one, the closer
the number of correct responses y is to n.
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Example: Binomial case

Experimental set up
We plan to get the participant to respond another n = 10 items
yielding y number of correct and n � y incorrect responses.

The null model M0

Standard null hypothesis: The ability is known M0 : ✓ = 1/2
Implicit prior with zero uncertainty.

The alternative model M1

Standard alternative hypothesis: The ability is unknown: M1 : ✓
is in (0, 1). Choose a prior in JASP.



Relevance and context Bayes factors Replication Bayes factors 1 Replication Bayes factors 2 Conclusion

The default prior in JASP: 1. Load "binomialOri.csv"



Relevance and context Bayes factors Replication Bayes factors 1 Replication Bayes factors 2 Conclusion

The default prior in JASP: 1. Load "binomialOri.csv"



Relevance and context Bayes factors Replication Bayes factors 1 Replication Bayes factors 2 Conclusion

The default prior in JASP: 2. Choose "Bayesian
Binomial Test"



Relevance and context Bayes factors Replication Bayes factors 1 Replication Bayes factors 2 Conclusion

The default prior in JASP: 3. Setting



Relevance and context Bayes factors Replication Bayes factors 1 Replication Bayes factors 2 Conclusion

The default prior in JASP: 3. Setting



Relevance and context Bayes factors Replication Bayes factors 1 Replication Bayes factors 2 Conclusion

Meaning of the default prior: Beta a = 1, b = 1

Interpretation: Pre-experimentally, we saw a� 1 correct
and b � 1 incorrect responses before the data collection.

The default specification implies 0 correct and 0 incorrect
pre-responses.
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Binomial case: Alternative model M1 predictions
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Example: Binomial case

Bayes factor
A Bayes factor compares the predictions of the two models at
the observed data yorig
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The M0 vs M1 predictions
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Null model M0 "wins": BF10(dorig) < 1
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Alternative model M1 "wins": BF10(dorig) > 1
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a. Learning from the original data
dorig : yorig = 8, norig = 10

Experimental set up
After observing dorig, we plan to get the participant to respond
another n = 10 items yielding y number of correct and n � y

incorrect responses.

The null model M0

Revised null hypothesis: The ability is still known;
M0 : ✓ = 1/2. Same "no-uncertainty" prior.
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b. Revised: Null model M0 predictions
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a. Learning from the original data
dorig : yorig = 8, norig = 10

Experimental set up
After observing dorig, we plan to get the participant to respond
another n = 10 items yielding y number of correct and n � y

incorrect responses.

The null model M0

"Revised" null hypothesis: The ability is still known ✓ = 1/2 
Same prior.

The alternative model M1

Revised alternative hypothesis: The ability is still unknown and
M1 : ✓ in (0, 1), but we are less uncertain about it.
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a. Revising the prior in M1

Recall: Beta prior implies that we saw a� 1 correct and
b � 1 incorrect responses before the new data.

With yorig = 8 and norig � yorig = 2, this yields a = 9 and
b = 3, before seeing the replication data.
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Revising the prior in JASP: 2. Choose "Bayesian
Binomial Test"
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b. Revised: Alternative model M1 predictions
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Replication Bayes factor

Bayes factor
The replication Bayes factor compares the revised predictions
(based on dorig) of the two models at the observed data yrep
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b. Recall revised null model M0 predictions
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c. The revised M0 vs M1 predictions
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c. The revised null M0 wins: BF10(drep | dorig) < 1
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c. The revised alternative M1 wins:
BF10(drep | dorig) > 1

0 1 2 3 4 5 6 7 8 9 10

Number of successeses

C
h

a
n

c
e

0.00

0.05

0.10

0.15

0.20

0.25

0 1 2 3 4 5 6 7 8 9 10

0.00

0.05

0.10

0.15

0.20

0.25

Alexander Ly




Relevance and context Bayes factors Replication Bayes factors 1 Replication Bayes factors 2 Conclusion

Example A: yorig = 8, norig = 10 and yrep = 8, nrep = 10



Relevance and context Bayes factors Replication Bayes factors 1 Replication Bayes factors 2 Conclusion

Example A: yorig = 8, norig = 10 and yrep = 8, nrep = 10



Relevance and context Bayes factors Replication Bayes factors 1 Replication Bayes factors 2 Conclusion

Example A: yorig = 8, norig = 10 and yrep = 8, nrep = 10
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Example B: yorig = 8, norig = 10 and yrep = 2, nrep = 10

Load "binomialRepB.csv"
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Example C: yorig = 8, norig = 10 and yrep = 7, nrep = 10

Load "binomialRepC.csv"
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Alternative method of calculation

Replication Bayes factor as a two step method. First find
the posterior based on dorig, use this as prior for drep. Input
in "Prior" part of JASP

Prior is not always easily updated.
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Alternative method of calculation

Alternative: Calculate the replication Bayes factor as

BF10(drep | dorig) =
BF10(dorig, drep)

BF10(dorig)
(1)

Interpretation

BF10(dorig, drep) = BF10(drep | dorig)BF10(dorig) (2)

The replication Bayes factor is the additional evidence for
M1 in the new data drep given that we already know dorig.
BF10(drep | dorig) < 1, the contribution of drep to the total
evidence shrinks.
BF10(drep | dorig) > 1, the contribution of drep to the total
evidence grows.
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Example: Orig contingency table Dai et al. (2008)

Perceived

Endowed Fewer flowers Fewer birds Total

Flowers endowed 15 12 27
Birds endowed 8 21 29

Total 23 33 56

Table: Dai, Wertenbroch & Brendl (2008). "The Value Heuristic in
Judgments of Relative Frequency"

Result
Bayes factor BF10(dorig) = 2.880
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Example: Rep contingency table Fuchs et al. (2015)

Perceived

Endowed Fewer flowers Fewer birds Total

Flowers endowed 11 16 27
Birds endowed 14 10 24

Total 25 26 51

Table: Fuchs, Estel & Göllner (2015). Replication of Dai et al. (2008)
(https://osf.io/q7f6w/)

Result
Bayes factor BF10(drep) = 0.720
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Example: Combined contingency table

Perceived

Endowed Fewer flowers Fewer birds Total

Flowers endowed 26 28 54
Birds endowed 22 31 53

Total 48 59 107

Table: Fuchs et al. (2015) and Dai et al. (2008) (https://osf.io/q7f6w/)

Result
Bayes factor BF10(dorig, drep) = 0.298
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Results

Result

BF10(drep | dorig) ⇡ 0.10 (3)

thus,

BF01(drep | dorig) ⇡ 9.6 (4)

in favour of the null.
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1. Load "contingencyComb.csv"
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2. Choose "Bayesian Contingency Tables"
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3. Choose right analysis
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4. Fill in table
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5. Write down result
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1. Load "contingencyOri.csv"
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2. Choose "Bayesian Contingency Tables"



Relevance and context Bayes factors Replication Bayes factors 1 Replication Bayes factors 2 Conclusion

3. Choose right analysis



Relevance and context Bayes factors Replication Bayes factors 1 Replication Bayes factors 2 Conclusion

3. Choose right analysis



Relevance and context Bayes factors Replication Bayes factors 1 Replication Bayes factors 2 Conclusion

4. Fill in table



Relevance and context Bayes factors Replication Bayes factors 1 Replication Bayes factors 2 Conclusion

5. Write down result



Relevance and context Bayes factors Replication Bayes factors 1 Replication Bayes factors 2 Conclusion

Calculate

Combined data: BF10(dorig, drep) = 0.298
Original data: BF10(dorig) = 2.880

Calculate replication Bayes factor

BF10(drep | dorig) =
0.298
2.880

⇡ 0.10 (5)

Thus,

BF01(drep | dorig) =
1

BF10(drep | dorig)
⇡ 9.6 (6)

in favour of the null.
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Conclusion and future endeavours

You can already calculate replication Bayes factors in
JASP.

i. By changing the priors.
ii. Or by combining the data (this can be tricky).
Requires full data: Social problem (publish raw data).
Replication Bayes factors depend on the (quality) of the
data (pre-registration).
We need to automatise the calculation and develop an
interface for this.
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Workshop

Theory and Practice of Bayesian Hypothesis Testing
A JASP Workshop, August 22–23, 2016 Amsterdam

https://jasp-stats.org
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