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Relevance and context

Example: Successful Replications?

Replication results:

@ Porig = 032 < .05, rorig = 0.2, Norig = 50
@ Prep = .046 < .05, rep = 0.1, Nyep = 100

Conclusion: p-values and replications

@ p-values alone not informative, also need the direction of
the effect

@ To what extend? Need: Continues measure of evidence

A
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Example: Successful Replications?

Replication results:

® Porig = -032 < .05, Forig = 0.2, Morig = 50
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Relevance and context

Example: Successful Replications?

Replication results:

® Porig = -032 < .05, Forig = 0.2, Morig = 50
@ Prep = .051 > .05, rep = 0.11, Nyep = 101

Conclusion: p-values and replications

@ p-values alone not informative, also need the direction of
the effect

@ To what extend? Need: Continues measure of evidence
@ Sample sizes are relevant.
@ More general, use all data dorig and afep

A
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Relevance and context

Take home message

@ Better method to asses hypotheses: Bayes factors that are
continuous and take into account all the data.

@ Better method to asses replications: Replication Bayes
factors.

@ Here instructions how to calculate them in JASP
(http://jasp-stats.org/).
@ Slides will be online www.Alexander-Ly.com.
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Bayes Factors

@ Evidence for My and M,

@ BFqo(d) =7, the data d are seven times more likely to be
generated from the alternative model M

@ BF(d) = 1/7, the data d are seven times more likely to
be generated from the null model My, as BFp1(d) =7

@ Comparative measure of evidence.

@ Computationally hard, but we can use computers and now
JASP

@ Sensitive to prior choice
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Bayes factors

Basics of Bayesian learning

For each model (M and M) do the following:

@ Prior: Express our uncertain about the parameter 6.

@ Predictive: The uncertainty about ¢ yields expectations
about future data.

© Observe data: Learn from the observed data, say, dyrig-
© Posterior: Revise our uncertainty about the parameter 6.
© Repeat Go to step 2.
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Example: Binomial case

Experimental set up

@ We plan to get a participant to respond to n = 10 items
yielding y number of correct and n— y incorrect responses.
@ The participant’s ability 6 drives the number of correct

responses y; the closer the ability 6 is to one, the closer
the number of correct responses y is to n.
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Bayes factors

Example: Binomial case

Experimental set up

We plan to get the participant to respond another n = 10 items
yielding y number of correct and n — y incorrect responses.

The null model M,

Standard null hypothesis: The ability is known Mg : 0 = 1/2
Implicit prior with zero uncertainty.

| \

A
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Bayes factors

Example: Binomial case

Experimental set up

We plan to get the participant to respond another n = 10 items
yielding y number of correct and n — y incorrect responses.

| A

The null model M

Standard null hypothesis: The ability is known Mg : 6§ =1/2
Implicit prior with zero uncertainty.

| A

The alternative model M

Standard alternative hypothesis: The ability is unknown: M : 6
isin (0,1). Choose a prior in JASP.

V.




Bayes factors

The default prior in JASP: 1. Load "binomialOri.csv"

800 binomialA

Variables Common SEM R11t Learn

3 Py P - I
v v oy v v
‘ iy it Lz %= ‘ i3
Descriptives T-Tests ANOVA  Regression  Frequencies BF from t
Outcome
1 | Correct
— r
2 | Correct
3 | Incorrect Welcome to JASP!
4 | Correct Version 0.7.
s | Correct Hi and welcome to JASP, a fresh and new way to do
statistics that we're sure you'll like
6 | Correct JASP aims to be a complete and full featured
1 alternative to SPSS, and it's well on its way there! In
7 | Correct fact, it aims to be a lot more than SPSS, which is
— why it implements some of the latest Bayesian
8 | Correct analyses. So load up a data file, and také  look
9 | Incorrect Also remember, this is an early preview release and
& there are a number of features missing. So if it
10 | Correct doesn't do all you need today, then check back
tomorrow; JASP is being developed at break-neck
speed!
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The default prior in JASP: 1. Load "binomialOri.csv"

800 binomialA

Variables Common SEM R11t Learn
1 P
2§ |§1 M

Descriptives ‘ T-Tests ANOVA Regression | Frequencies 8F from t

& Outcome
1 | Correct
— r
2 | Correct
3 | Incorrect Welcome to JASP!
4 | Correct Version 0.7.
s | Correct Hi and welcome to JASP, a fresh and new way to do
statistics that we're sure you'll like
6 | Correct JASP aims to be a complete and full featured
1 alternative to SPSS, and it's well on its way there! In
7 | Correct fact, it aims to be a lot more than SPSS, which is
— why it implements some of the latest Bayesian
8 | Correct analyses. So load up a data file, and také  look
9 | Incorrect Also remember, this is an early preview release and
& there are a number of features missing. So if it
10 | Correct doesn't do all you need today, then check back
tomorrow; JASP is being developed at break-neck
speed!




Bayes factors

The default prior in JASP: 2. Choose "Bayesian

Binomial Test"

binomialA*

8 006
O e |
‘ ! .:
Descriptives T-Tests

& Outcome

Test value: 0.5

Hypothesis
(e) # Test value
> Test value
< Test value
Bayes Factor
(®) BFyo
BFo1
Log( BFyo)

Common SEM
rY R4 - v
1120 g
ANOVA Regression Frequencies
Plots

[ Prior and posterior
Additional info
[ Sequential analysis
Prior
Beta prior: parametera |1

Beta prior: parameter b |1

R11t Learn

BF from t

oK

Results

Bayesian Binomial Test

Level Counts Total Proportion BFo

Note. Proportions tested against value: 0.5.



Bayes factors

The default prior in JASP: 3. Setting

®00 binomialA*

File Variables Common SEM R11t Learn
W | L B e e | [i

Descriptives T-Tests ANOVA  Regression  Frequencies 8F from t
4 Outcome 2ok | |Results
Bayesian Binomial Test
Bayesian Binomial Test
Level Counts Total Proportion BF1o
Test value: 0.5
Hypothesis Plots. Note. Proportions tested against value: 0.5.

@ = Test value [ Prior and posterior

Additional info

> Test value
<Test value [ Sequential analysis
Bayes Factor Prior
Fio Beta prior: parametera 1
BFoy Beta prior: parameter b 1
Log( BF10)




Bayes factors

The default prior in JASP: 3. Setting

Prior

Beta prior: parametera 1

Beta prior: parameter b 1



Bayes factors

Meaning of the default prior: Betaa=1,b=1

@ Interpretation: Pre-experimentally, we saw a — 1 correct
and b — 1 incorrect responses before the data collection.



Bayes factors

Meaning of the default prior: Betaa=1,b=1

@ Interpretation: Pre-experimentally, we saw a — 1 correct
and b — 1 incorrect responses before the data collection.

@ The default specification implies 0 correct and 0 incorrect
pre-responses.



Bayes factors

Meaning of the default prior: Betaa=1,b=1

Probabilty
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Binomial case: Alternative model M predictions
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Bayes factors

Example: Binomial case

Bayes factor

A Bayes factor compares the predictions of the two models at
the observed data yqyig
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Bayes factors

Recall: Alternative model M predictions

0.25 +

0.20 4

0.05 +

0.00 -
0 1 2 3 4 5 6 7 8 9 10
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Bayes factors

Observing data: yorig = 8 correct and Nyrig — Yorig = 2
incorrect responses

8 006 binomialA*

B veriables | Common SEM R11t Learn

Descriptives ‘ T-Tests ANOVA Regression  Frequencies BF from t

0K | lesults

> . . .
jayesian Binomial Test

ayesian Binomial Test

Level Counts Total Proportion BF1o

Test value: 0.5

Hypothesis Plots Jote. Proportions tested against value: 0.5.

Prior and posterior

(o) # Test value
Additional info

> Test value
< Test value [ Sequential analysis
Bayes Factor Prior
® BFyo Beta prior: parametera |1
BFo: Beta prior: parameter b |1
Log(BF1o)



Bayes factors

Observing data: yorig = 8 correct and Nyrig — Yorig = 2
incorrect responses

8 006 binomialA*

B variables | Common SEM R11t Learn

Descriptives ‘ T-Tests ANOVA Regression  Frequencies BF from t

0K | lesults

Zl jayesian Binomial Test

ayesian Binomial Test

Level Counts Total Proportion BF1o

Test value: 0.5

Hypothesis Plots Jote. Proportions tested against value: 0.5.

Prior and posterior

(e) # Test value
Additional info

> Test value
< Test value [ Sequential analysis
Bayes Factor Prior
© BFyo Beta prior: parametera |1
BFo: Beta prior: parameter b |1
Log(BF1o)



Bayes factors

Observing data: yorig = 8 correct and Nyrig — Yorig = 2
incorrect responses

binomialA*

.
Variables Common SEM R11t Learn
| Fie | [

Descriptives ‘ T-Tests ANOVA

Regression Frequencies BF from t
& Outcome [ ok tesults
» ) . N N
jayesian Binomial Test
ayesian Binomial Test
Level Counts __ Total __ Proportion | BFs
o 8 Outcome  Correct 8 10 0.800 2.069
Incorrect 2 10 0.200 2.069
Hypothesis Plots
o EEEE = ey ) sy Jote. Proportions tested against value: 0.5.
o TRl Additional info
AT Rvale [ Sequential analysis
Bayes Factor Prior
® BFio Beta prior: parametera |1
BFo: Beta prior: parameter b |1
Log(BFyo)
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Replication Bayes factors 1

Default Bayes factor BF1o(dorig)

Pr;ior

Pred\i/ctive

Posterior ~_ Data
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Default Bayes factor BF1o(dorig)

Pr;ior

Pred\i/ctive

orig



Replication Bayes factors 1

Replication Bayes factor BF1o(orig | drep)

Pr;ior

Pred‘i/ctive

osterior<y \ Data
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Replication Bayes factors 1

a. Revise the prior: Learn from the original data

Posterior dorig



Replication Bayes factors 1

b. Revise the predictions

Predictive

Posterior rep



Replication Bayes factors 1

a. Learning from the original data
dorig - Yorig = 8; Norig = 10

Experimental set up

After observing dyig, We plan to get the participant to respond
another n = 10 items yielding y number of correct and n— y
incorrect responses.

The null model Mg

Revised null hypothesis: The ability is still known;
My : 6 =1/2. Same "no-uncertainty" prior.
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Replication Bayes factors 1

a. Learning from the original data

dorig - Yorig = 87 Norig = 10

Experimental set up

After observing dorig, We plan to get the participant to respond
another n = 10 items yielding y number of correct and n— y
incorrect responses.

The null model M

"Revised" null hypothesis: The ability is still known 6 = 1/2 «
Same prior.

The alternative model M

Revised alternative hypothesis: The ability is still unknown and
M,y :6in (0, 1), but we are less uncertain about it.
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a. Revising the prior in M

@ Recall: Beta prior implies that we saw a — 1 correct and
b — 1 incorrect responses before the new data.



Replication Bayes factors 1

a. Revising the prior in M

@ Recall: Beta prior implies that we saw a — 1 correct and
b — 1 incorrect responses before the new data.

@ With yorig = 8 and nyrig — Yorig = 2, this yields a = 9 and
b = 3, before seeing the replication data.
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a. Revising the prior in M

Probabilty

0.0 0.2

0.4 0.6
Ability 8
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a. Revising the prior in M
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Replication Bayes factors 1

Revising the prior in JASP: 1. Load
"binomialRepA.csv"

® 00

N variables | common SEM R11t Learn

Descriptives T-Tests. ANOVA Regression  Frequencies BF from t
&) Outcome
1 |Incorrect
-
2 | Correct
3 | Correct
4 | Correct
5 | Correct
6 | Correct
7 | Correct
8 | Correct
T Correct
? Incorrect

Welcome to JASP!
Version 0.7.5.5

Hi and welcome to JASP, a fresh and new way to do
statistics that we're sure you'll like,

JASP aims to be a complete and full featured
alternative to S| d it's well on its way there! In
fact, it aims to be a lot more than SPSS, which is
why it implements some of the latest Bayesian
analyses. So load up a data file, and take a look

Also remember, this is an early preview release and
there are a number of features missing. So if it
doesn't do all you need today, then check back
tomorrow; JASP is being developed at break-neck
speed!




Replication Bayes factors 1

Revising the prior in JASP: 1. Load
"binomialRepA.csv"

® 00

N variables | common SEM R11t Learn

My | [2E- s L1t -

Descriptives T-Tests ANOVA Regression | Frequencies BF from t
& outcome
1 |Incorrect
,
2 | Correct
3 | Correct
4 | Correct
5 | Correct
6 | Correct
7 | Correct
8 | Correct
| 5 | Correct
| 10 | Incorrect

Welcome to JASP!
Version 0.7.5.5

Hi and welcome to JASP, a fresh and new way to do
statistics that we're sure you'll like,

JASP aims to be a complete and full featured
alternative to S| d it's well on its way there! In
fact, it aims to be a lot more than SPSS, which is
why it implements some of the latest Bayesian
analyses. So load up a data file, and take a look

Also remember, this is an early preview release and
there are a number of features missing. So if it
doesn't do all you need today, then check back
tomorrow; JASP is being developed at break-neck
speed!




Replication Bayes factors 1

Revising the prior in JASP: 2. Choose "Bayesian

Binomial Test"

8 006
O e |
‘ ! .x
Descriptives T-Tests

& Outcome

Test value: 0.5

Hypothesis
(®) # Test value
> Test value

< Test value

Bayes Factor

Fio
BFoy

Log( BF10)

Common SEM R11t Learn
= 2 B
(2SN b ¥
ANOVA Regression Frequencies BF from t
ok
Plots

[ Prior and posterior
Additional info
| Sequential analysis
Prior
Beta prior: parametera |1

Beta prior: parameter b 1

Results v

Bayesian Binomial Test

Level Counts Total Proportion

Note. Proportions tested against value: 0.5.



Replication Bayes factors 1

Revising the prior in JASP: 3. Change the prior

000 2
File Variables | Common SEM R11t Learn
25 o P .. . Rse o
Mt | L& [ Lx 123
Descriptives T-Tests ANOVA  Regression  Frequencies BF from t
& Outcome [ ok Results
< B . N
Bayesian Binomial Test
Bayesian Binomial Test
Level  Counts  Total _ Proportion  BF
Test value: 0.5
Hypothesis Plots

(o) # Test value
> Test value
< Test value

Bayes Factor

(s) BF1o
BFoy
Log( BFs0)

[ Prior and posterior
Additional info

| Sequential analysis

Prior

Beta prior: parametera 9

Beta prior: parameter b 3

Note. Proportions tested against value: 0.5.



Replication Bayes factors 1

Revising the prior in JASP: 3. Change the prior

Prior

Beta prior: parametera 9

Beta prior: parameter b 3
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b. Revised: Alternative model M predictions

0.25 +

0.20 4

0.05 +

—
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Replication Bayes factors 1

Replication Bayes factor

Bayes factor

The replication Bayes factor compares the revised predictions
(based on dyrig) of the two models at the observed data yrep
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Replication Bayes factors 1

b. Recall revised alternative model M predictions

0.25 +

0.20 4

0.05 +

—

0 1 2 3 4 5 6 7 8 9 10
Number of successeses

0.00 -
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Replication Bayes factors 1

Example A: Yorig = 8, Norig = 10 and Yyep = 8, Nygp = 10

8 006 2
File Variables | Common SEM R11t Learn
b v Iz~ ik v v b v
[iul |38~ i |20 g I3
Descriptives T-Tests ANOVA Regression  Frequencies BF from t

| % outcome | [ok Results

IZI Bayesian Binomial Test

Bayesian Binomial Test

Level Counts Total Proportion BF

Test value: 0.5

Hypothesis Plots Note. Proportions tested against value: 0.5.

(o) # Test value [ Prior and posterior

Additional info

> Test value
< Test value [ Sequential analysis
Bayes Factor Prior
®) BFo Beta prior: parameter a |9
BFo1 Beta prior: parameter b 3
Log(BFo)



Replication Bayes factors 1

Example A: Yorig = 8, Norig = 10 and Yyep = 8, Nygp = 10

800

%
File Variables | Common SEM R11t Learn
25 o P .. . Rse o
Mt | L& [ Lx 123
Descriptives T-Tests ANOVA  Regression  Frequencies BF from t
& Outcome [ oKk esults
» . " .
ayesian Binomial Test
Vesian Binomial Test
Level  Counts _ Total _ Proportion | BFs
je=talco.s Dutcome  Correct 8 10 0.800 4.982
Incorrect 2 10 0.200 0.131
Hypothesis Plots

(o) # Test value
> Test value
< Test value

Bayes Factor

(s) BF1o
BFoy
Log( BFs0)

() Prior and posterior bte. Proportions tested against value: 0.5.

Additional info

| Sequential analysis
Prior

Beta prior: parametera 9

Beta prior: parameter b 3
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Replication Bayes factors 1

Example B. yorig = 87 norig = 10 and yrep = 27 nrep = 10

Load "binomialRepB.csv"

eo0o e =
N variables | Common SEM R11t Learn
3 v 3z~ ’ v | v 3 v
L Bl e Sgr | L
Descriptives T-Tests ANOVA Regression  Frequencies BF from t
Outcome
1 | Incorrect
—— ,
2 | Incorrect
3 | Incorrect Welcome to JASP!
4 | Incorrect Version 0.7.5.5
s | Incorrect Hi and welcome to JASP, a fresh and new way to do
statistics that we're sure you'll like.
6 | Correct JASP aims to be a complete and full featured
alternative to SPSS, and it's well on its way there! In
7 | Incorrect f aims to be a lot more than SPSS, which is
— why it implements some of the latest Bayesian
8 | Incorrect yses. So load up a data file, and take a look
9 | incorrect Also remember, this is an early preview release and
| there are a number of features missing. So if it
10 | Correct doesn't do all you need today, then check back
tomorrow; JASP is being developed at break-neck
spee




Example B. yorig = 8, norig = 10 and yrep = 27 nrep = 10

Replication Bayes factors 1

® 00
File Variables | Common SEM R11t Learn
b v Iz~ ‘v b v
Mt | i~ [ L* £33
Descriptives T-Tests ANOVA Regression  Frequencies BF from t
& Outcome oK Results
Bayesian Binomial Test
Bayesian Binomial Test
Level Counts Total Proportion BF
Test value: 0.5
Hypothesis Plots ‘Note. Proportions tested against value: 0.5.

(o) # Test value
> Test value

< Test value

[~ Prior and posterior
Additional info

[ Sequential analysis

Bayes Factor
®) BFio
BFo1

Prior

Beta prior: parameter a9

Beta prior: parameter b 3|

Log(BFo)



Example B. yorig = 8, norig = 10 and yrep = 27 nrep = 10

Replication Bayes factors 1

® 00
File Variables | Common SEM R11t Learn
TR Iz~ Lo e o
M ‘ ? 3¢ </ X}
Descrptves ToTests ANOVA  Regression Frequencies oF from ¢

¢ Outcome

Test value: 0.5
Hypothesis
(o) # Test value
> Test value
< Test value
Bayes Factor
(©) BF1o
BFo1
Log( BFy, )

[-]

Plots
[~ Prior and posterior
Additional info
[ Sequential analysis
Prior
Beta prior: parameter a9

Beta prior: parameter b 3|

oK

Results

Bayesian Binomial Test

Bayesian Binomial Test

Level Counts Total _Proportion

Note. Proportions tested against value: 0.5.
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Example B. yorig = 8, norig = 10 and yrep = 27 nrep = 10

File Variables | Common SEM R11t Learn

Descrptives Torests ANOVA  Regression  Frequencies oF from ¢
& Outcome oK sults
> yesian Binomial Test
’sian Binomial Test

Level Counts Total Proportion BF1o
Test value: 0.5 Ltcome  Correct 2 10 0200 |0.131

Incorrect 8 10 0.800 4.982
Hypothesis Plots

£ Proportions tested against value: 0.5.

(o) # Test value [ Prior and posterior

Additional info

> Test value
< TvEle [ Sequential analysis
Bayes Factor Prior
®) BFo Beta prior: parametera |9
BFo1 Beta prior: parameter b 3
Log(BFo)



27 nrep = 10

o

o

NN
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C
©
o
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I

= 8, Norig

B: Yorig

Example

1 2 3
Number of successeses
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Example C: Yorig = 8, Norig = 10 and Yrep = 7, Mrgp = 10

Load "binomialRepC.csv"

eo0o T =
N variables | Common SEM R11t Learn
3 v 3z~ ’ v o v 3 v
L Bl e Sgt | i
Descriptives T-Tests ANOVA Regression  Frequencies BF from t
Outcome
1 | Incorrect
1 -
2 | Incorrect
3 | Correct Welcome to JASP!
4 | Correct Version 0.7.5.5
s | correct Hi and welcome to JASP, a fresh and new way to do
statistics that we're sure you'll like
el Correct JASP aims to be a complete and full featured
alternative to SPSS, and it's well on its way there! In
7 | Correct f aims to be a lot more than SPSS, which is
— why it implements some of the latest Bayesian
8 | Correct yses. So load up a data file, and take a look.
9 | Incorrect Also remember, this is an early preview release and
| there are a number of features missing. So if it
10 | Correct doesn't do all you need today, then check back
tomorrow; JASP is being developed at break-neck
spee




Replication Bayes factors 1

Example C: Yorig = 8, Norig = 10 and Yrep = 7, Mrgp = 10

® 0 0 i T *
File Variables | Common SEM R11t Learn
I . 11, P Rse o
Descriptives T-Tests ANOVA Regression  Frequencies BF from t
& Outcome .ok Results
Bayesian Binomial Test
Bayesian Binomial Test
Level Counts Total Proportion BF
Test value: 0.5
Hypothesis Plots Note. Proportions tested against value: 0.5.
@ » Test value [~ Prior and posterior
> TRl Additional info
< Testvalle [ Sequential analysis
Bayes Factor Prior
@ B0 Beta prior: parameter a9
BFox Beta prior: parameter b 3
Log( BFy0)




Example C: Yorig = 8, Norig = 10 and Yrep = 7, Mrgp = 10

Replication Bayes factors 1

File Variables

| common SEM R11t Learn

™

Descriptives

- Lz S

ANOVA Regression  Frequencies

¢ Outcome

Test value: 0.5

Hypothesis
(®) # Test value
> Test value
< Test value
Bayes Factor
(®) BF1o
BFo1
Log(BFyo)

]

Plots
[ Prior and posterior
Additional info
[ Sequential analysis
Prior
Beta prior: parametera 9

Beta prior: parameter b 3

Results

Bayesian Binomial Test

Bayesian Binomial Test

Level Counts Total _Proportion

‘Note. Proportions tested against value: 0.5.
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800 inomialRepC* 2
P variables | Common SEM R11t Learn
P P .. . Rst o
ot | LR~ [ | 14
Descriptives T-Tests ANOVA Regression Frequencies BF from t
& Outcome ok sults
> yesian Binomial Test
»sian Binomial Test
Level Counts  Total _ Proportion | B
Test value: 0.5 utcome Correct 7 10 0.700 1.557
Incorrect 3 10 0.300 0.144
Hypothesis Plots

i i & Proportions tested against value: 0.5
(®) # Test value [__ Prior and posterior

Additional info

> Test value
< Test value [ Sequential analysis
Bayes Factor Prior
@ BF1o Beta prior: parameter a9
BFo: Beta prior: parameter b 3
Log(BF1o)
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— 87 Norig

C: Yorig

Example

1 2 3
Number of successeses
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Replication Bayes factors 2

Alternative method of calculation

@ Replication Bayes factor as a two step method. First find
the posterior based on dyyig, use this as prior for drep. INput
in "Prior" part of JASP

@ Prior is not always easily updated.
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Replication Bayes factors 2

Alternative method of calculation

@ Alternative: Calculate the replication Bayes factor as

BF1O(dorig7 drep)
BF1O(dorig)

BI:10(drep | dorig) =

@ Interpretation
BI:1O(dorig; drep) = BF10(drep | dorig)BFm(dorig) (2)

The replication Bayes factor is the additional evidence for
My in the new data drep given that we already know dyyig.
@ BFqo(drep | dorig) < 1, the contribution of djep to the total
evidence shrinks.
@ BFqo(arep | dorig) > 1, the contribution of ajep to the total
evidence grows.
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Default Bayes factor BF1o(dorig)

Pr;ior

Pred\i/ctive

Posterior ~_ Data
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Replication Bayes factor BF1o(orig | drep)

Pr;ior

Pred‘i/ctive

osterior<y \ Data



Alexander Ly
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Replication Bayes factors 2

Example: Orig contingency table Dai et al. (2008)

Perceived
Endowed Fewer flowers Fewer birds Total
Flowers endowed 15 12 27
Birds endowed 8 21 29
Total 23 33 56

Table: Dai, Wertenbroch & Brendl (2008). "The Value Heuristic in
Judgments of Relative Frequency"

Bayes factor BF1o(dbrig) = 2.880




Replication Bayes factors 2

Example: Rep contingency table Fuchs et al. (2015)

Perceived
Endowed Fewer flowers Fewer birds Total
Flowers endowed 11 16 27
Birds endowed 14 10 24
Total 25 26 51

Table: Fuchs, Estel & Géllner (2015). Replication of Dai et al. (2008)
(https://ost.io/q7f6w/)

Bayes factor BFo(diep) = 0.720




Replication Bayes factors 2

Example: Combined contingency table

Perceived
Endowed Fewer flowers Fewer birds Total
Flowers endowed 26 28 54
Birds endowed 22 31 53
Total 48 59 107

Table: Fuchs et al. (2015) and Dai et al. (2008) (https://osf.io/q7f6w/)

Bayes factor BF1o(Qbrig, Orep) = 0.298




Replication Bayes factors 2

Results

BF10(drep | dOfig) =~ 010 (3)

thus,

BFo1 (drep | dorig) ~ 9.6 (4)

in favour of the null.




Replication Bayes factors 2

1. Load "contingencyComb.csV'

8006 ContingencyComb

“ Variables Common SEM R11t Learn
[EX 12N +‘ ig -

Descriptives ‘ T-Tests ANOVA Regression

b o from ¢
& Endowed & Perceived Count |
1| Flowers endowed | Fewer flowers
2 Birds endowed | Fewer birds 31 1
'3 Flowers endowed | Fewer birds 28 Welcome to JASP!
4 Birds endowed | Fewer flowers | 22

Version 0.7

Hi and welcome to JASP, a fresh and new way to do
statistics that we're sure you'll like

JASP aims to be a complete and full featured
alternative to SPSS, and it's well on its way there! In
t aims to be a lot more than SPSS, which is
why it implements some of the latest Bayesian
analyses. So load up a data file, and take a look.

Also remember, this is an early preview release and
there are a number of features missing. So if it
doesn't do all you need today, then check back
tomorrow; JASP is being developed at break-neck
speed!
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2. Choose "Bayesian Contingency Tables"

ContingencyComb*

.
ile Variables Common SEM R11t Learn
LBi- B8 kX == | [

T-Tests ANOVA Regression  Frequencies

BF from t
& Endowed Rows ok | Results
& Perceived
& Count IBayesian Contingency Tables
Bayesian Contingency Tables
Columns
Total
Counts Total
Layers
Bayesian Contingency Tables Tests
Value
BF 1 joint multinomial
N
» | Statistics

e ——
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3. Choose right analysis

ContingencyComb* ]

Variables Common SEM R11t Learn
1 1 + 1
Ir v Iil' If"v I It v

Descriptives ‘ T-Tests ANOVA Regression  Frequencies BF from t

& Endowed Rows ok | Results
& Perceived
& Count Bayesian Contingency Tables
Bayesian Contingency Tables
Columns
Total
Counts Total
Layers
Bayesian Contingency Tables Tests
Value
BF 1 joint multinomial
N
» | Statistics |

e ——



3. Choose right analysis

Replication Bayes factors 2

8 06

ContingencyComb*

Variables Common SEM R11t Learn
11~ Iz~ oy 11~
[iul ‘ : £ L~ - X}
ezl et anovat rearemionFrapoercis L BErort

v | Statistics

Sampling
Poisson
Joint

indep. multinomial, rows fixed

Indep. multinomial, columns fixed
Hypergeometric (2x2 only)

Hypothesis.

Group one # Group two
Group one > Group two
) Group one < Group two

Bayes Factor
BF1o

BFoy

_) Log(BF10)

» | Options

|
Additional Statistics
| Log odds ratio (2x2 only)
Credible interval 95 %
| Cramer's V
Credible interval 95 %
Plots

__| Log odds ratio (2x2 only)
Additional info
| Cramer's V.
Prior

Prior concentration 1

OK

Results

Bayesian Contingency Tables
Bayesian Contingency Tables

Total

Total

Bayesian Contingency Tables Tests

Value

BF.o independent multinomial
N




Replication Bayes factors 2

4. Fill in table

ContingencyComb*

Variables Common SEM R11t Learn
1 1 . 1
II v 3137 D7 v It v

Descriptives ‘ T-Tests ANOVA Regression  Frequencies BF from t

Rows {ox | Results

>

Bayesian Contingency Tables

Bayesian Contingency Tables

Columns _
Perceived
: “Fevrbes reverow
e Endowed Fewer birds Fewer flowers Tota
Birds endowed 31 22 50
Flowers endowed 28 26 5¢
Counts Total 59 48 10:
»
Layers
re Bayesian Contingency Tables Tests
Value
BF o independent multinomial 0.298
N 107

~ | Statistics
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5. Write down result

ContingencyComb*

Variables Common SEM R11t Learn
I P . I
‘ I" Iii' v v I"
Descriptives T-Tests ANOVA  Regression  Frequencies 8F from t
Rows o Results
» & Endowed
Bayesian Contingency Tables
Bayesian Contingency Tables
Columns
Perceived
> & Perceived
e Endowed Fewer birds Fewer flowers Tota
Birds endowed 31 22 50
Flowers endowed 28 26 5¢
Counts Total 59 48 10:
» | & Count
Layers
re Bayesian Contingency Tables Tests
Value
|BFm independent multinomial 0.298 |
N 10
~ | Statistics
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1. Load "contingencyQOri.csv"

8006 ContingencyOri

“ Variables Common SEM R11t Learn
: .
[EXR 112

Descriptives ‘ T-Tests ANOVA

Regression oF from ¢
& Endowed & Perceived [& count |
1| Flowers endowed | Fewer flowers 15
2 Birds endowed | Fewer birds 21 1
3| Flowers endowed | Fewer birds 12 Welcome to JASP!
4 Birds endowed | Fewer flowers 8

Version 0.7

Hi and welcome to JASP, a fresh and new way to do
statistics that we're sure you'll like

JASP aims to be a complete and full featured
alternative to SPSS, and it's well on its way there! In
fact, it aims to be a lot more than SPSS, which is
why it implements some of the latest Bayesian
analyses. So load up a data file, and take a look

Also remember, this is an early preview release and
there are a number of features missing. So if it
doesn't do all you need today, then check back
tomorrow; JASP is being developed at break-neck




Replication Bayes factors 2

2. Choose "Bayesian Contingency Tables"

ContingencyOri*

Variables Common SEM R11t Learn

T-Tests ANOVA  Regression  Frequencies 8F from t
& Endowed Rows ok Results
& Perceived
Count N -
“ Bayesian Contingency Tables
Bayesian Contingency Tables
Columns
Total
Counts Total
Layers.
Bayesian Contingency Tables Tests
Value
BF)0 joint multinomial
N
» | Statistics




3. Choose right analysis

Replication Bayes factors 2

ContingencyOri*

Variables Common SEM R11t Learn
b v Iz~ v n| v b v
Ll e Set | i
Descriptives T-Tests ANOVA  Regression  Frequencies 8F from t
& Endowed Rows ok Results
& Perceived
& Count B .
Bayesian Contingency Tables
Bayesian Contingency Tables
Columns /'
Total
Counts Total
Layers.
Bayesian Contingency Tables Tests
Value
BF)0 joint multinomial
N
| » | Statistics




3. Choose right analysis

Replication Bayes factors 2

[cXeXs) ContingencyOri*
Variables Common SEM R11t Learn
I~ I3 oy v I~
Mt | LBi- [ L2 Se- | [B
Descriptives T-Tests ANOVA Regression  Frequencies BF from t
Results
~ | Statistics =
Sampling Additional Statistics Bayesian Contingency Tables
) Poisson | Log odds ratio (2x2 only)
Joint multinomial Credible interval 95 % Bayesian Contingency Tables
Indep. multinomial, rows fixed — -
_ Indep. multinomial, columns fixed Jetamensiy
Hypergeometric (2x2 only) Credible interval 95 % Total

Hypothesis

Group one # Group two
Group one > Group two
Group one < Group two

Bayes Factor
(#) BFo
) By
Log( BFyo)

» | Options

Plots
| Log odds ratio (2x2 only)
Additional info
| Cramer's V.
Prior

Prior concentration 1

Total

Bayesian Contingency Tables Tests

Value

BF10 independent multinomial
N
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4. Fill in table

ContingencyOri* P

Variables Common SEM R11t Learn
1 s + 1
Ir v Iiiv If"v I I)< v

Descriptives ‘ T-Tests ANOVA Regression  Frequencies BF from t

Rows ok | Results

,

Bayesian Contingency Tables

Bayesian Contingency Tables

Columns _
B Endowed Fewer birds Fewer flowers Tota
Birds endowed 21 8 29
Flowers endowed 12 15 27
Counts Total 33 23 56
.
Layers
> Bayesian Contingency Tables Tests
Value
BF 10 independent multinomial 2.880
N 56

~ | Statistics




5. Write down result

Replication Bayes factors 2

ContingencyOri*

Variables Common SEM R11t Learn
I P . I
‘ i B x- v L3t~
Descriptives T-Tests ANOVA  Regression  Frequencies 8F from t
Rows ok Results
» & Endowed
Bayesian Contingency Tables
Bayesian Contingency Tables
Columns _
> & Perceived Perceived
E— Endowed Fewer birds Fewer flowers Tota
Birds endowed 21 8 29
Flowers endowed 12 15 27
Counts Total 33 23 56
» | & Count
Layers.
> Bayesian Contingency Tables Tests

~ | Statistics

N




Replication Bayes factors 2

Calculate

@ Combined data: BF1o(0brig, Orep) = 0.298
@ Original data: BFo(dorig) = 2.880



Replication Bayes factors 2

Calculate

@ Combined data: BF1o(0brig, Orep) = 0.298
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0.298
BF1O(drep | dorig) = 5880 ~ 0.10 (5)



Replication Bayes factors 2

Calculate

@ Combined data: BF1o(0brig, Orep) = 0.298
@ Original data: BFo(dorig) = 2.880
@ Calculate replication Bayes factor

0.298
BF1O(drep | dorig) = 5880 ~ 0.10 (5)

@ Thus,

1

= ~ 9.6 6
BF10(drep | dorig) ( )

BI:01 (drep ‘ dorig)

in favour of the null.
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Conclusion

Conclusion and future endeavours

@ You can already calculate replication Bayes factors in
JASP.

@ i. By changing the priors.
@ ii. Or by combining the data (this can be tricky).
@ Requires full data: Social problem (publish raw data).

@ Replication Bayes factors depend on the (quality) of the
data (pre-registration).

@ We need to automatise the calculation and develop an
interface for this.



Conclusion

Workshop

Theory and Practice of Bayesian Hypothesis Testing
A JASP Workshop, August 22—-23, 2016 Amsterdam
https://jasp-stats.org
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