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Definition of machine learning

Arthur Samuel (1959)
Field of study that gives computers the ability to learn without
being explicitly programmed

Tom M. Mitchell (1997)
A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P,
if its performance at tasks in T , as measured by P, improves
with experience E .
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History

Evolved from
Artificial intelligence
Pattern recognition

Success stories (from 1990s onwards):
Spam filters
Optical character recognition
Natural language processing (Search engines)
Recommender systems
Netflix challenge (2006) won by AT&T labs research
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Success stories (from 1990s onwards):
Spam filters
Optical character recognition
Natural language processing (Search engines)
Recommender systems
Netflix challenge (2006) won by AT&T labs research

Summary:
Success correlated with the rise of the internet and
reinvented statistics.
Machine learning terms for statistical concepts
Ignored by most statisticians, except for the Breiman and
Tibshirani, Hastie, Friedman (Efron, Stanford school)
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History

Summary:
Success correlated with the rise of the internet and
reinvented statistics.
Machine learning terms for statistical concepts
Ignored by most statisticians, except for the Breiman and
Tibshirani, Hastie, Friedman (Efron, Stanford school)

Statistics Machine learning
Estimation Learning
Data point Example/Instance
Regression Supervised learning
Classification Supervised learning
Covariate Feature
Response Label
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Breiman 1928 – 2005

Career: 1954 PhD in probability, 1960s Consulting, 1980s
onwards professor at UC Berkeley

Breiman’s consulting experience
Prediction problems
Live with the data before modelling
Solution should be either an algorithmic or a data model.
Predictive accuracy is the criterion for the quality of the
model
Computers necessary in practice

Examples of algorithmic techniques/models: Classification and
regression trees, bagging, random forest. In the paper Breiman
focusses on supervised learning
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Problem statement: Supervised learning

Problem setting

Based on n pairs of data
�

x1
y1

�
, . . . ,

�
x

n

y

n

�
, where x

i

are features
and y

i

are correct labels, predict future labels ynew given xnew.

Example (classification):
Features: x1 = (nose, mouth). Label: y1 = yes, face
Features: x2 = (doorbell, hinge). Label: y2 = no, face

The correct outcome y

i

is present to supervise the learning
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Problem statement: Supervised learning

Problem setting

Based on n pairs of data
�

x1
y1
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�
, where x

i

are features
and y

i

are correct labels, predict future labels ynew given xnew.

y = f (x) + ✏

For prediction: discover the unknown f that relates features
(covariates) to labels (dependent variables).
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Goal: Machine learning

Predict future instances based on already observed data
Prediction based on past data.
Example: "Based on previous data, I predict that it will rain
tomorrow"
Give a prediction accuracy.
Example: "Based on previous data, I’m 67% sure that it will
rain tomorrow"
Use data models or even algorithmic models to discover
the relationship f provided by nature
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Machine learning vs "standard" statistical inference
culture

Machine learning
Goal: Prediction of new data (learn f from the data)
Approach: Data are always right, there are no models, only
algorithms
Passive: Data are already collected
"Big" data

"Standard" approach in psychology
Goal: evaluation of theory (evaluate a known f )
Approach: The model is right, the data could be wrong.
Evaluate theory by comparing two models
Active: Confirmatory analysis based on the model: Design
of experiments, power analysis, etc etc
"Small" data
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"Standard" approach in psychology
Goal: evaluation of theory (evaluate a known f )

X Many time no theory, most research has an exploratory
flavour (80% according to Lakens)
Approach: The model is right, the data could be wrong.
Evaluate theory by comparing two models

X What if the model is wrong?
Active: Confirmatory analysis based on the model: Design
of experiments, power analysis, etc etc

X Design of experiments, power analysis, etc etc wrong if the
model assumption is wrong
"Small" data

X Mechanical turk, fMRI data, genetics, cito, OSF,
international collaboration many labs, etc.
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Breiman’s: Critique on the data modelling approach

Wrong presumption
Let data be generated according to the data model f , where f is
linear/logistic regression/...

Example: Uncritical use of linear regression to, for instance,
bimodal data.
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Breiman’s: Critique on the data modelling approach

Wrong presumption
Let data be generated according to the data model f , where f is
linear/logistic regression/...

x y

f is linear

f is logistic

f is a "network"
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Breiman’s: Critique on the data modelling approach

Wrong presumption
Let data be generated according to the data model f , where f is
linear/logistic regression/...

Focus on modelling the sampling distribution of the error not
the f :

y|{z}
obs

�
knownz}|{

f ( x|{z}
obs

) = ✏ ⇠ N (0,�2)

Example: in ANOVA, sums of squared error, R

2, etc. If the
errors are big, it is implied that the theory is bad. To quantify
"big" require sampling distribution.
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Breiman’s: Critique on the data modelling approach

Wrong presumption
Let data be generated according to the data model f , where f is
linear/logistic regression/...

To calculate sampling distributions stuck with simple
models (Linear)
Conclusion are about the model mechanism, not about
nature’s mechanism
If model is a poor emulation of nature, conclusions will be
wrong.
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Breiman’s experience from consulting

The classical (linear) models are tractable, but typically
yield bad predictions
Live with the data before modelling
Algorithmic models are also good
Predictive accuracy on test set is the criterion for how good
the model is
Computers are important
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Recall setting

Problem:

x yunknown f

input output
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Recall setting

Problem: With which f does nature generate data

y = f (x) + ✏

Goal:
Prediction based on past data. Learn (estimate) unknown f

Give a prediction accuracy.
"Live with the data before modelling". Data split in three parts:

Training set to learn f from the data

Validation set to do model selection
Test set to estimate the prediction accuracy
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Goal:
Prediction based on past data. Learn (estimate) unknown f

Give a prediction accuracy.
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Recall setting

Problem: With which f does nature generate data

y = f (x) + ✏

Goal:
Prediction based on past data. Learn (estimate) unknown f

Give a prediction accuracy.
"Live with the data before modelling". Data split in three parts:

Training set to learn f from the data
Validation set To do model selection
Test set to estimate the prediction accuracy
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General learning procedure

Recall data set consists of n pairs, say,
✓

x1
y1

◆
,

✓
x2
y2

◆
,

✓
x3
y3

◆
,

✓
x4
y4

◆
,

✓
x5

y5

◆
,

✓
x6
y6

◆
,

✓
x7

y7

◆
,

✓
x8
y8

◆
,

✓
x9
y9

◆
,

✓
x10
y10

◆
,

Training set is used to learn f from the data.
Test set is used to derive the prediction accuracy.

Corresponding formula

y = f (x) + ✏
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General learning procedure

Randomly select training samples, say,
✓

x1
y1

◆
,

✓
x2
y2

◆
,

✓
x3
y3

◆
,

✓
x4
y4

◆
,

✓
x5

y5

◆
,

✓
x6
y6

◆
,

✓
x7

y7

◆
,

✓
x8
y8

◆
,

✓
x9
y9

◆
,

✓
x10
y10

◆

Training set is used to learn f from the data.

Test set is used to derive the prediction accuracy.

Fill in the true xtrain,i , ytrain,i

ytrain,i = f (xtrain,i) + ✏

find that f for which the loss between

1
ntrain

ntrainX

i=1

Loss
⇣

ytrain,i , f (xtrain,i)
⌘

is smallest. Call the minimiser ftrained
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General learning procedure

Use the other samples as test samples, say,
✓

x1
y1

◆
,

✓
x2
y2

◆
,

✓
x3
y3

◆
,

✓
x4
y4

◆
,

✓
x5

y5

◆
,

✓
x6
y6

◆
,

✓
x7

y7

◆
,

✓
x8
y8

◆
,

✓
x9
y9

◆
,

✓
x10
y10

◆

Training set is used to learn f from the data.
Test set is used to derive the prediction accuracy.

Fill in ftrained and apply it to x to yield yimplied = ftrained(xtest,i) and
compare the estimate the error between yimplied with true ytest,i ,

✏estim =
1

ntest

ntestX

i=1

Loss
⇣

ytest,i , ftrained(xtest,i)
⌘

The error ✏estim so estimated serves as the prediction accuracy.
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General learning procedure

Generalise to a new instance
✓

x1
y1

◆
, . . . ,

✓
x9
y9

◆
,

✓
x10
y10

◆
,

✓
xnew

...

◆

Training set is used to learn f from the data.
Test set is used to derive the prediction accuracy.

Final answer for yet unseen features xnew use to generate ynew

ynew =

yimpliedz }| {
ftrained(xnew)± ✏estim| {z }

Generalisation error
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Remarks

Only assumption is that the data
�

x

i

y

i

�
are iid, that is, they

are generated with the same (true, fixed, but unknown) f

⇤.
The data are assumed to be true
No, specification of the Loss function. The loss function
replaces the assumptions on the error (typically, Gaussian
error in "standard" statistics)
No, specification of the collection F of functions f that we
believe to be viable
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Loss functions

For categorical data, typically, zero-one (all or nothing) loss:

Loss
⇣

y

i

, f (x
i

)
⌘
=

(
0 if y

i

= f (x
i

)

1 if y

i

6= f (x
i

)

Note the hard rule, here observation y

i

"supervise" the
learning.
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Loss functions

For categorical data, typically, zero-one (all or nothing) loss:

Loss
⇣

y

i

, f (x
i

)
⌘
=

(
0 if y

i

= f (x
i

)

1 if y

i

6= f (x
i

)

Note the hard rule, here observation y

i

"supervise" the learning.
For continuous data, typically, mean-squared error loss:

Loss
⇣

Y , f (x)
⌘
= E

h
Y � f (x)

i2

Here, E is the expectation (average) with respect to the true
relationship f

⇤ between X and Y .
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Loss functions

For categorical data, typically, zero-one (all or nothing) loss:

Loss
⇣

y

i

, f (x
i

)
⌘
=

(
0 if y

i

= f (x
i

)

1 if y

i

6= f (x
i

)

Note the hard rule, here observation y

i

"supervise" the
learning.
For continuous data, typically, mean-squared error loss:

Loss
⇣

Y , f (x)
⌘
=

1
n

nX

i=1

h
y

i

� f (x
i

)
i2

Here, the expectation E is replaced with the empirical average
with respect to the data being true.
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Bias-Variance trade-off and overfitting

For continuous data, typically, mean-squared error loss:

Loss
⇣

Y , f (x)
⌘
= E

h
Y � f (x)

i2

Here, E is the expectation (average) with respect to the true f

⇤.
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Bias-Variance trade-off and overfitting

For continuous data, typically, mean-squared error loss:

Loss
⇣

Y , f (x)
⌘
=E

h
Y � f (x)

i2

=Var(f (x)) +
h
Bias(f (x))

i2
+ Var(✏)

Both Var and E , thus, Bias, are with respect to the true f

⇤.



History Supervised learning Two cultures Learning Model complexity Conclusion

Bias-Variance trade-off and overfitting

For continuous data, typically, mean-squared error loss:

Var(f (x)) +
h
Bias(f (x))

i2

| {z }
Structural error

+ Var(✏)| {z }
Unavoidable error

Recall that ftrained is from minimising this loss. The more
complicated a candidate f , the smaller the unavoidable error, as
everything is seen as structural. Problem: overfitting.
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Overfitting

For continuous data, typically, mean-squared error loss:

Var(f (x)) +
h
Bias(f (x))

i2

| {z }
Structural error

+ Var(✏)| {z }
Unavoidable error

Overfitting occurs if the fs under consideration are too
complicated. An over complicated f generalises badly and is
recognised by low bias, high variance.
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Overfitting: Over complicated f : low bias, high
variance.

True data generating f

⇤(x) = x

2 + 2x + ✏, where ✏ is a Laplace
distribution (thicker tails than normal).
Raw data:

3 4 5 6 7

10

20

30

40

x

y
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Overfitting: Over complicated f : low bias, high
variance.

Raw data and true function f

⇤:

3 4 5 6 7

10

20

30

40

x

y
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Overfitting: Over complicated f : low bias, high
variance.

Fitted with a polynomial of order nine.

3 4 5 6 7

10

20

30

40

x

y
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Overfitting: Over complicated f : low bias, high
variance.

Observe new test sample/instance xtest = 6.5
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Overfitting: Over complicated f : low bias, high
variance.

Observe new test sample/instance xtest = 6.5 and ytest = 66
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Overfitting: Over complicated f : low bias, high
variance.

Large loss between ytest and yimplied:
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Overfitting: Over complicated f : low bias, high
variance.

3 4 5 6 7
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20

30
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50

60

70

x

y

6.5

Example conclusion: your expected survival years are 12 years
± 50 years. Meaningless prediction.
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Model complexity

True data generation was done with a polynomial of degree
2, polynomial of degree 9 is too complex. Hence, the
collection of candidate fs should be restricted to those fs
with max degree 2.
In reality, don’t know the "complexity" of the true. How to
choose the collection of candidates F?
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Two types of model complexity

The structure of f . Linear, polynomial (but still a summation
of terms, thus, linear) <- nothing new same as in statistics
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Two types of model complexity

The structure of f . Linear, polynomial (but still a summation
of terms, thus, linear). Neural networks (non-linear),
support vector machines, generalised additive models,
kernel smoothing, splines, reproducing kernel Hilbert
space, regression trees.
Number of features n < p.
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"Standard" setting

The functions fs in F are linear
More data than features p < n.
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Regularisation

The functions fs in F are linear
More features than data n < p. Hazard of overfitting
Control the complexity with additional tuning parameter �
(for instance, lasso) Hence, F = F�

Example:

f�(x) = ✓0 + ✓1x

1 + ✓2x

2 + . . .+ ✓
p

x

p

| {z }
Over complicated structure

+ �|{z}
tuning parameter

|✓| (1)

Here �|✓| acts as a penalty for complexity. How to tune �?
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Regularisation

The functions fs in F are linear
More features than data n < p. Hazard of overfitting
Control the complexity with additional tuning parameter �
(for instance, lasso) Hence, F = F�

Example:

f�(x) = ✓0 + ✓1x

1 + ✓2x

2 + . . .+ ✓
p

x

p

| {z }
Over complicated structure

+ �|{z}
tuning parameter

|✓| (1)

Here �|✓| acts as a penalty for complexity. Tune � with
validation set aka repeat the general procedure many times
with different (fixed) �.
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General learning procedure

Split data into three sets.
Training set is used to learn f from the data.
Validation set to tune � (model selection).
Test set is used to derive the prediction accuracy.

Partition �. For the lasso, � = 0 no regularisation, for � = 1
only the constant function is viable. Say, � = 0, 2, 22, . . . , 210.
For each fixed � follow the general procedure f�.
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General learning procedure

Training set is used to learn f from the data.
Validation set to tune � (model selection).
Test set is used to derive the prediction accuracy.

Say, � = 0, 2, 22, . . . , 210.
We get

F = f0,trained, f2,trained, f22,trained, . . . , f210,trained (2)
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General learning procedure

Training set is used to learn f from the data.
Validation set to tune � (model selection).
Test set is used to derive the prediction accuracy.

Say, � = 0, 2, 22, . . . , 210.
Pick f�,trained with lowest average loss on the validation set.

fval = arg min
1

nval

nvalX

i=1

loss
⇣

f�,trained(xi,val), yi,val

⌘
(2)
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General learning procedure

Training set is used to learn f from the data.
Validation set to tune � (model selection).
Test set is used to derive the prediction accuracy.

Say, � = 0, 2, 22, . . . , 210.
Estimate prediction accuracy by averaging the average loss on
the test set

✏est =
1

ntest

ntestX

i=1

loss
⇣

fval(xi,test), yi,test

⌘
(2)
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Gave general idea of supervised learning. Role of training,
validation and test set
Which specific classes of F to take. This seminar
discusses a couple of them: Neural networks (non-linear),
support vector machines, generalised additive models,
kernel smoothing, splines, reproducing kernel Hilbert
space, regression trees.
How to minimise? Technicallities
Selection method based on select the best. Other
methods, bagging and boosting
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Further organisation

Changed name from machine learning reading group to
statistical learning seminar
Reading groups die
Seminar does not require everyone to read everything
Requires a small peak in preparation of a talk
Not necessary to understand everything. Can be practical
and theoretical
Still good to read things in advanced. Also website with
youtube clips are available.


