History	Supervised learning	Two cultures	Learning	Model complexity	Conclusion
	Breiman, L (2 Stati	2001). Sta two cu istical learnin	atistical r Itures og reading g	nodeling: Th ^{group}	ie

History	Supervised learning	Two cultures	Learning	Model complexity	Conclusion
Definit	ion of machir	ne learning	9		

Arthur Samuel (1959)

Field of study that gives computers the ability to learn without being explicitly programmed

Tom M. Mitchell (1997)

A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.

History	Supervised learning	Two cultures	Learning	Model complexity	Conclusion		
Over	view						
1	History of statist	ical/machine	learning				
2	Supervised learn	ning					
3	Two approaches to supervised learning						
4	The general lear	ning procedu	ire				
5	Model complexit	у					
6	Conclusion						

History	Supervised learning	Two cultures	Learning	Model complexity	Conclusion
History					

Evolved from

- Artificial intelligence
- Pattern recognition

Success stories (from 1990s onwards):

- Spam filters
- Optical character recognition
- Natural language processing (Search engines)
- Recommender systems
- Netflix challenge (2006) won by AT&T labs research

History	Supervised learning	Two cultures	Learning	Model complexity	Conclusion
History	V				

Success stories (from 1990s onwards):

- Spam filters
- Optical character recognition
- Natural language processing (Search engines)
- Recommender systems
- Netflix challenge (2006) won by AT&T labs research Summary:
 - Success correlated with the rise of the internet and reinvented statistics.
- Machine learning terms for statistical concepts
- Ignored by most statisticians, except for the Breiman and Tibshirani, Hastie, Friedman (Efron, Stanford school)

History	Supervised learning	Two cultures	Learning	Model complexity	Conclusion
Breim	an 1928 – 20	005			

Career: 1954 PhD in probability, 1960s Consulting, 1980s onwards professor at UC Berkeley

Breiman's consulting experience

- Prediction problems
- Live with the data before modelling
- Solution should be either an algorithmic or a data model.
- Predictive accuracy is the criterion for the quality of the model
- Computers necessary in practice

Examples of algorithmic techniques/models: Classification and regression trees, bagging, random forest. In the paper Breiman focusses on supervised learning

History	Supervised learning	Two cultures	Learning	Model complexity	Conclusion

History

Summary:

- Success correlated with the rise of the internet and reinvented statistics.
- Machine learning terms for statistical concepts
- Ignored by most statisticians, except for the Breiman and Tibshirani, Hastie, Friedman (Efron, Stanford school)

Statistics	Machine learning
Estimation	Learning
Data point	Example/Instance
Regression	Supervised learning
Classification	Supervised learning
Covariate	Feature
Response	Label

History	Supervised learning	Two cultures	Learning	Model complexity	Conclusion
Probl	em statemer	it: Superv	ised lear	rning	

Problem setting

Based on *n* pairs of data $\binom{x_1}{y_1}, \ldots, \binom{x_n}{y_n}$, where x_i are features and y_i are correct labels, predict future labels y_{new} given x_{new} .

Example (classification):

- Features: $x_1 = (nose, mouth)$. Label: $y_1 = yes$, face
- Features: $x_2 =$ (doorbell, hinge). Label: $y_2 =$ no, face

History	Supervised learning	Two cultures	Learning	Model complexity	Conclusion

Problem statement: Supervised learning

Problem setting

Based on *n* pairs of data $\binom{x_1}{y_1}, \ldots, \binom{x_n}{y_n}$, where x_i are features and y_i are correct labels, predict future labels y_{new} given x_{new} .

History	Supervised learning	Two cultures	Learning	Model complexity	Conclusion
Goal:	Machine lea	rning			

Predict future instances based on already observed data

- Prediction based on past data.
- Example: "Based on previous data, I predict that it will rain tomorrow"
- Give a prediction accuracy.
- Example: "Based on previous data, I'm 67% sure that it will rain tomorrow"
- Use data models or even algorithmic models to discover the relationship *f* provided by nature

History	Supervised learning	Two cultures	Learning	Model complexity	Conclusion

Problem statement: Supervised learning

Problem setting

Based on *n* pairs of data $\binom{x_1}{y_1}, \ldots, \binom{x_n}{y_n}$, where x_i are features and y_i are correct labels, predict future labels y_{new} given x_{new} .

 $y = f(x) + \epsilon$

For prediction: discover the unknown *f* that relates features (covariates) to labels (dependent variables).

History Supervised learning Two cultures Learning Model complexity Conclusion Machine learning vs "standard" statistical inference culture

Machine learning

- Goal: Prediction of new data (learn f from the data)
- Approach: Data are always right, there are no models, only algorithms
- Passive: Data are already collected
- "Big" data

"Standard" approach in psychology

- Goal: evaluation of theory (evaluate a known f)
- Approach: The model is right, the data could be wrong. Evaluate theory by comparing two models
- Active: Confirmatory analysis based on the model: Design of experiments, power analysis, etc etc
- "Small" data

"Standard" approach in psychology

- Goal: evaluation of theory (evaluate a known *f*)
- ✓ Many time no theory, most research has an exploratory flavour (80% according to Lakens)
- Approach: The model is right, the data could be wrong. Evaluate theory by comparing two models
- ✓ What if the model is wrong?
- Active: Confirmatory analysis based on the model: Design of experiments, power analysis, etc etc
- ✓ Design of experiments, power analysis, etc etc wrong if the model assumption is wrong
- "Small" data
- Mechanical turk, fMRI data, genetics, cito, OSF, international collaboration many labs, etc.

History Supervised learning Two cultures Learning Model complexity Conclusion

Breiman's: Critique on the data modelling approach

Wrong presumption

Let data be generated according to the data model *f*, where *f* is linear/logistic regression/...

History	Supervised learning	Two cultures	Learning	Model complexity	Conclus

Breiman's: Critique on the data modelling approach

Wrong presumption

Let data be generated according to the data model *f*, where *f* is linear/logistic regression/...

Example: Uncritical use of linear regression to, for instance, bimodal data.

istory Supervised learning Two cultures Learning Model complexity Conclu

Breiman's: Critique on the data modelling approach

Wrong presumption

Let data be generated according to the data model *f*, where *f* is linear/logistic regression/...

Focus on modelling the sampling distribution of the error not the *f*:

$$\underbrace{y}_{\text{obs}} - \underbrace{f}_{\text{obs}} (\underbrace{x}_{\text{obs}}) = \epsilon \sim \mathcal{N}(0, \sigma^2)$$

Example: in ANOVA, sums of squared error, R^2 , etc. If the errors are big, it is implied that the theory is bad. To quantify "big" require sampling distribution.

Breiman's: Critique on the data modelling approach

Wrong presumption

Let data be generated according to the data model *f*, where *f* is linear/logistic regression/...

- To calculate sampling distributions stuck with simple models (Linear)
- Conclusion are about the model mechanism, not about nature's mechanism
- If model is a poor emulation of nature, conclusions will be wrong.

History	Supervised learning	Two cultures	Learning	Model complexity	Conclusion
Recall	setting				

Problem:

	History	Supervised learning	Two cultures	Learning	Model complexity	Conclusion
--	---------	---------------------	--------------	----------	------------------	------------

Breiman's experience from consulting

- The classical (linear) models are tractable, but typically yield bad predictions
- Live with the data before modelling
- Algorithmic models are also good
- Predictive accuracy on test set is the criterion for how good the model is
- Computers are important

History	Supervised learning	Two cultures	Learning	Model complexity	Conclusion
Recall	setting				

Problem: With which *f* does nature generate data

$$y = f(x) + \epsilon$$

Goal:

- Prediction based on past data. Learn (estimate) unknown f
- Give a prediction accuracy.

"Live with the data before modelling". Data split in three parts:

• Training set to learn f from the data

History	Supervised learning	Two cultures	Learning	Model complexity	Conclusion

Recall setting

Problem: With which f does nature generate data

$$y = f(x) + \epsilon$$

Goal:

- Prediction based on past data. Learn (estimate) unknown f
- Give a prediction accuracy.
- "Live with the data before modelling". Data split in three parts:
 - Training set to learn *f* from the data
 - Validation set to do model selection

History	Supervised learning	Two cultures	Learning	Model complexity	Conclusion
Recal	ll setting				

Problem: With which f does nature generate data

 $y = f(x) + \epsilon$

Goal:

- Prediction based on past data. Learn (estimate) unknown f
- Give a prediction accuracy.

"Live with the data before modelling". Data split in three parts:

- Training set to learn f from the data
- Validation set To do model selection
- Test set to estimate the prediction accuracy

History	Supervised learning	Two cultures	Learning	Model complexity	Conclusion
Gene	eral learning p	procedure			

Recall data set consists of *n* pairs, say,

 $\binom{x_1}{y_1}, \binom{x_2}{y_2}, \binom{x_3}{y_3}, \binom{x_4}{y_4}, \binom{x_5}{y_5}, \binom{x_6}{y_6}, \binom{x_7}{y_7}, \binom{x_8}{y_8}, \binom{x_9}{y_9}, \binom{x_{10}}{y_{10}},$

Corresponding formula

$$y = f(x) + \epsilon$$

Randomly select training samples, say,

 $\binom{x_1}{y_1}, \binom{x_2}{y_2}, \binom{x_3}{y_3}, \binom{x_4}{y_4}, \binom{x_5}{y_5}, \binom{x_6}{y_6}, \binom{x_7}{y_7}, \binom{x_8}{y_8}, \binom{x_9}{y_9}, \binom{x_{10}}{y_{10}}$

• Training set is used to learn *f* from the data.

Fill in the true *x*train,*i*, *y*train,*i*

$$\mathbf{y}_{\text{train},i} = f(\mathbf{x}_{\text{train},i}) + \epsilon$$

find that f for which the loss between

$$\frac{1}{n_{\text{train}}} \sum_{i=1}^{n_{\text{train}}} \text{Loss}\left(y_{\text{train},i}, f(\mathbf{x}_{\text{train},i}) \right)$$

is smallest. Call the minimiser f_{trained}

History	Supervised learning	Two cultures	Learning	Model complexity	Conclusion

General learning procedure

Use the other samples as test samples, say,

$$\binom{x_1}{y_1}, \binom{x_2}{y_2}, \binom{x_3}{y_3}, \binom{x_4}{y_4}, \binom{x_5}{y_5}, \binom{x_6}{y_6}, \binom{x_7}{y_7}, \binom{x_8}{y_8}, \binom{x_9}{y_9}, \binom{x_{10}}{y_{10}}$$

- Training set is used to learn f from the data.
- Test set is used to derive the prediction accuracy.

Fill in f_{trained} and apply it to x to yield $y_{\text{implied}} = f_{\text{trained}}(x_{\text{test},i})$ and compare the estimate the error between y_{implied} with true $y_{\text{test},i}$,

$$\epsilon_{\text{estim}} = \frac{1}{n_{\text{test}}} \sum_{i=1}^{n_{\text{test}}} \text{Loss}\left(y_{\text{test},i}, f_{\text{trained}}(x_{\text{test},i})\right)$$

The error ϵ_{estim} so estimated serves as the prediction accuracy.

History	Supervised learning	Two cultures	Learning	Model complexity	Conclusion
Rema	ırks				

History Supervised learning	Two cultures	Learning	Model complexity	Conclusion

General learning procedure

Generalise to a new instance

$$\begin{pmatrix} x_1 \\ y_1 \end{pmatrix}, \dots, \begin{pmatrix} x_9 \\ y_9 \end{pmatrix}, \begin{pmatrix} x_{10} \\ y_{10} \end{pmatrix}, \begin{pmatrix} x_{new} \\ \dots \end{pmatrix}$$

- Training set is used to learn *f* from the data.
- Test set is used to derive the prediction accuracy.

Final answer for yet unseen features x_{new} use to generate y_{new}

$$y_{\text{new}} = \overbrace{f_{\text{trained}}(x_{\text{new}})}^{y_{\text{implied}}} \pm \underbrace{\epsilon_{\text{estim}}}_{\text{Generalisation error}}$$

History	Supervised learning	Two cultures	Learning	Model complexity	Conclusion
Loss	functions				

- Only assumption is that the data ^(x_i)/_{y_i} are iid, that is, they are generated with the same (true, fixed, but unknown) *f**.
- The data are assumed to be true
- No, specification of the Loss function. The loss function replaces the assumptions on the error (typically, Gaussian error in "standard" statistics)
- No, specification of the collection \mathcal{F} of functions *f* that we believe to be viable

For categorical data, typically, zero-one (all or nothing) loss:

$$\operatorname{Loss}(y_i, f(x_i)) = \begin{cases} 0 \text{ if } y_i = f(x_i) \\ 1 \text{ if } y_i \neq f(x_i) \end{cases}$$

Note the hard rule, here observation y_i "supervise" the learning.

History	Supervised learning	Two cultures	Learning	Model complexity	Conclusion
Loss	functions				

For categorical data, typically, zero-one (all or nothing) loss:

$$\text{Loss}(\mathbf{y}_i, f(\mathbf{x}_i)) = \begin{cases} 0 \text{ if } \mathbf{y}_i = f(\mathbf{x}_i) \\ 1 \text{ if } \mathbf{y}_i \neq f(\mathbf{x}_i) \end{cases}$$

Note the hard rule, here observation y_i "supervise" the learning. For continuous data, typically, mean-squared error loss:

$$\operatorname{Loss}(Y, f(x)) = E[Y - f(x)]^2$$

Here, *E* is the expectation (average) with respect to the true relationship f^* between *X* and *Y*.

History	Supervised learning	Two cultures	Learning	Model complexity	Conclusion
Bias-	Variance trac	le-off and	overfittir	ng	

History	Supervised learning	Two cultures	Learning	Model complexity	Conclusion

Loss functions

For categorical data, typically, zero-one (all or nothing) loss:

$$\mathsf{Loss}(y_i, f(x_i)) = \begin{cases} 0 \text{ if } y_i = f(x_i) \\ 1 \text{ if } y_i \neq f(x_i) \end{cases}$$

Note the hard rule, here observation y_i "supervise" the learning.

For continuous data, typically, mean-squared error loss:

$$\operatorname{Loss}\left(\frac{\mathbf{Y}}{n}, f(\mathbf{x})\right) = \frac{1}{n} \sum_{i=1}^{n} \left[\frac{\mathbf{y}_{i}}{n} - f(\mathbf{x}_{i})\right]^{2}$$

Here, the expectation E is replaced with the empirical average with respect to the data being true.

History	Supervised learning	Two cultures	Learning	Model complexity	Conclusion
Bias-'	Variance trac	le-off and	overfittir	ng	

For continuous data, typically, mean-squared error loss:

$$Loss(\mathbf{Y}, f(\mathbf{x})) = E[\mathbf{Y} - f(\mathbf{x})]^{2}$$
$$= Var(f(\mathbf{x})) + [Bias(f(\mathbf{x}))]^{2} + Var(\epsilon)$$

Both Var and *E*, thus, Bias, are with respect to the true f^* .

For continuous data, typically, mean-squared error loss:

$$\operatorname{Loss}(Y, f(x)) = E[Y - f(x)]^2$$

Here, *E* is the expectation (average) with respect to the true f^* .

History	Supervised learning	Two cultures	Learning	Model complexity	Conclusion
Bias-'	Variance trad	e-off and	overfittir	ng	

History	Supervised learning	Two cultures	Learning	Model complexity	Conclusion
Overf	itting				

For continuous data, typically, mean-squared error loss:

 $\underbrace{\operatorname{Var}(f(\boldsymbol{x})) + \left[\operatorname{Bias}(f(\boldsymbol{x}))\right]^{2}}_{\operatorname{Structural error}} + \underbrace{\operatorname{Var}(\epsilon)}_{\operatorname{Unavoidable error}}$

Recall that f_{trained} is from minimising this loss. The more complicated a candidate *f*, the smaller the unavoidable error, as everything is seen as structural. Problem: overfitting.

For continuous data, typically, mean-squared error loss:

$$\underbrace{\operatorname{Var}(f(\boldsymbol{x})) + \left[\operatorname{Bias}(f(\boldsymbol{x}))\right]^{2}}_{\operatorname{Structural error}} + \underbrace{\operatorname{Var}(\epsilon)}_{\operatorname{Unavoidable error}}$$

Overfitting occurs if the *f*s under consideration are too complicated. An over complicated *f* generalises badly and is recognised by low bias, high variance.

True data generating $f^*(x) = x^2 + 2x + \epsilon$, where ϵ is a Laplace distribution (thicker tails than normal). Raw data:

Raw data and true function f^* :

Fitted with a polynomial of order nine.

History	Supervised learning	Two cultures	Learning	Model complexity	Conclusion
Overfit varian	ting: Over co ce.	mplicated	f: low b	ias, high	

Observe new test sample/instance $x_{test} = 6.5$ and $y_{test} = 66$

History	Supervised learning	Two cultures	Learning	Model complexity	Conclusion
Overfit variand	ting: Over co ce.	mplicated	f: low b	ias, high	

Observe new test sample/instance $x_{test} = 6.5$

Large loss between y_{test} and y_{implied}:

Example conclusion: your expected survival years are 12 years \pm 50 years. Meaningless prediction.

History	Supervised learning	Two cultures	Learning	Model complexity	Conclusion
Two t	ypes of mode	el complex	kity		

History	Supervised learning	Two cultures	Learning	Model complexity	Conclusion
Mode	el complexity				

- True data generation was done with a polynomial of degree 2, polynomial of degree 9 is too complex. Hence, the collection of candidate *f*s should be restricted to those *f*s with max degree 2.
- In reality, don't know the "complexity" of the true. How to choose the collection of candidates \mathcal{F} ?

History	Supervised learning	Two cultures	Learning	Model complexity	Conclusion
Two t	ypes of mode	el comple:	xity		

• The structure of *f*. Linear, polynomial (but still a summation of terms, thus, linear) <- nothing new same as in statistics

- The structure of *f*. Linear, polynomial (but still a summation of terms, thus, linear). Neural networks (non-linear), support vector machines, generalised additive models, kernel smoothing, splines, reproducing kernel Hilbert space, regression trees.
- Number of features n < p.

History	Supervised learning	Two cultures	Learning	Model complexity	Conclusion
"Star	ndard" setting				

- The functions fs in \mathcal{F} are linear
- More data than features p < n.

History	Supervised learning	Two cultures	Learning	Model complexity	Conclusion
Rear	Ilarisation				

- The functions fs in \mathcal{F} are linear
- More features than data *n* < *p*. Hazard of overfitting
- Control the complexity with additional tuning parameter λ (for instance, lasso) Hence, F = F_λ

Example:

$$f_{\lambda}(x) = \underbrace{\theta_0 + \theta_1 x^1 + \theta_2 x^2 + \ldots + \theta_p x^p}_{\text{Over complicated structure}} + \underbrace{\lambda}_{\text{tuning parameter}} |\theta| \quad (1)$$

Here $\lambda |\theta|$ acts as a penalty for complexity. How to tune λ ?

History	Supervised learning	Two cultures	Learning	Model complexity	Conclusion
Regu	larisation				

- The functions fs in \mathcal{F} are linear
- More features than data *n* < *p*. Hazard of overfitting
- Control the complexity with additional tuning parameter λ (for instance, lasso) Hence, $\mathcal{F} = \mathcal{F}_{\lambda}$

Example:

$$f_{\lambda}(x) = \underbrace{\theta_0 + \theta_1 x^1 + \theta_2 x^2 + \ldots + \theta_p x^p}_{\text{Over complicated structure}} + \underbrace{\lambda}_{\text{tuning parameter}} |\theta| \quad (1)$$

Here $\lambda|\theta|$ acts as a penalty for complexity. Tune λ with validation set aka repeat the general procedure many times with different (fixed) λ .

History	Supervised learning	Two cultures	Learning	Model complexity	Conclusion
Gene	eral learning p	procedure			

Split data into three sets.

- Training set is used to learn *f* from the data.
- Validation set to tune λ (model selection).
- Test set is used to derive the prediction accuracy.

Partition λ . For the lasso, $\lambda = 0$ no regularisation, for $\lambda = \infty$ only the constant function is viable. Say, $\lambda = 0, 2, 2^2, \dots, 2^{10}$. For each fixed λ follow the general procedure f_{λ} .

History	Supervised learning	Two cultures	Learning	Model complexity	Conclusion
Gener	al learning p	orocedure			

• Training set is used to learn *f* from the data.

- Validation set to tune λ (model selection).
- Test set is used to derive the prediction accuracy.

Say, $\lambda = 0, 2, 2^2, \dots, 2^{10}.$ We get

$\mathcal{F} = f_{0,\text{trained}}, f_{2,\text{trained}}, f_{2^2,\text{trained}}, \dots, f_{2^{10},\text{trained}}$ (2)

History	Supervised learning	Two cultures	Learning	Model complexity	Conclusion

General learning procedure

- Training set is used to learn *f* from the data.
- Validation set to tune λ (model selection).
- Test set is used to derive the prediction accuracy.

Two cultures

Say, $\lambda = 0, 2, 2^2, \dots, 2^{10}$. Pick $f_{\lambda,\text{trained}}$ with lowest average loss on the validation set.

$$f_{\text{val}} = \arg\min\frac{1}{n_{\text{val}}} \sum_{i=1}^{n_{\text{val}}} \text{loss}\Big(f_{\lambda,\text{trained}}(x_{i,\text{val}}), y_{i,\text{val}}\Big)$$
(2)

Model complexity

Conclusion

History	Supervised learning	Two cultures	Learning	Model complexity	Conclusion
Gene	ral learning p	orocedure			

- Training set is used to learn *f* from the data.
- Validation set to tune λ (model selection).
- Test set is used to derive the prediction accuracy.

Say, $\lambda = 0, 2, 2^2, \dots, 2^{10}$.

Estimate prediction accuracy by averaging the average loss on the test set

$$\epsilon_{\text{est}} = \frac{1}{n_{\text{test}}} \sum_{i=1}^{n_{\text{test}}} \text{loss}\Big(f_{\text{val}}(x_{i,\text{test}}), y_{i,\text{test}}\Big)$$
(2)

- Gave general idea of supervised learning. Role of training, validation and test set
- Which specific classes of \mathcal{F} to take. This seminar discusses a couple of them: Neural networks (non-linear), support vector machines, generalised additive models, kernel smoothing, splines, reproducing kernel Hilbert space, regression trees.
- How to minimise? Technicallities
- Selection method based on select the best. Other methods, bagging and boosting

History	Supervised learning	Two cultures	Learning	Model complexity	Conclusion

Further organisation

- Changed name from machine learning reading group to statistical learning seminar
- Reading groups die
- Seminar does not require everyone to read everything
- Requires a small peak in preparation of a talk
- Not necessary to understand everything. Can be practical and theoretical
- Still good to read things in advanced. Also website with youtube clips are available.