Regression

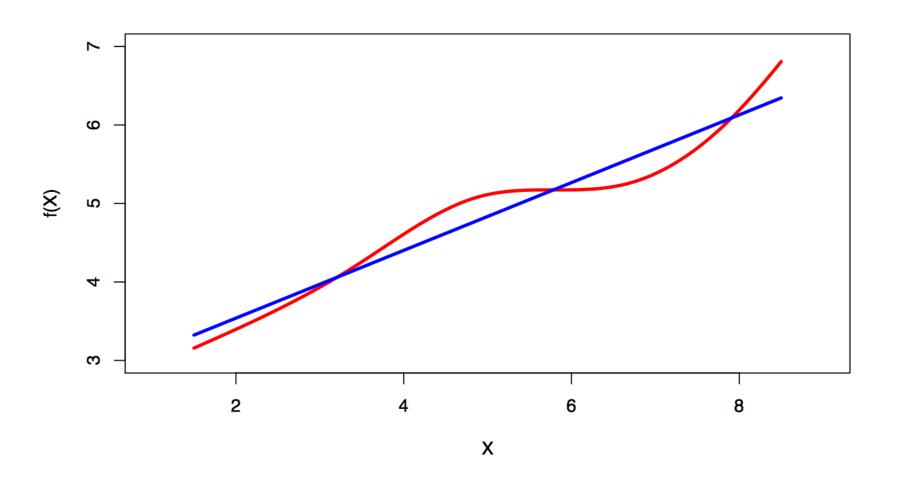
Statistical learning reading group

Tahira Jamil
17 November 2015

Linear Regression

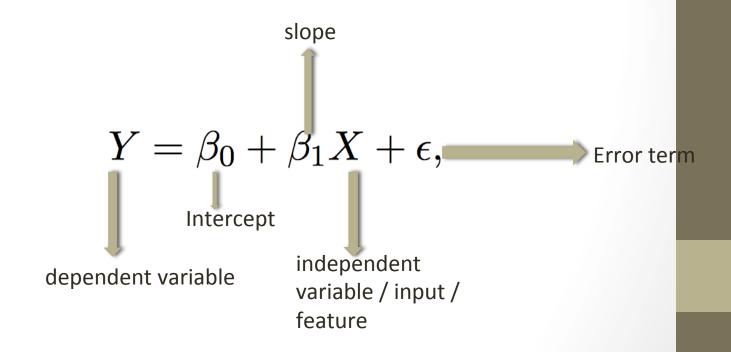
- Linear approach to supervise learning
- We seek to identify (or estimate) a continuous variable y associated with a given input vector x.
- They are simple, sometimes outperform fancier nonlinear model (in prediction)
- In modern data analysis, data are high dimensional and we need better regression techniques to handle

True regression function are never linear



REVIEW OF LINEAR Regression analysis

- Simple linear Regression formula
 - In regression we assume that y is a function of x . The exact nature of function is governed by unknown parameters
 - The simple regression model can be represented as follows:



Regression Analysis

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$$

$$e_i = y_i - \hat{y}_i$$

RSS =
$$e_1^2 + e_2^2 + \dots + e_n^2$$
,

RSS =
$$(y_1 - \hat{\beta}_0 - \hat{\beta}_1 x_1)^2 + (y_2 - \hat{\beta}_0 - \hat{\beta}_1 x_2)^2 + \dots + (y_n - \hat{\beta}_0 - \hat{\beta}_1 x_n)^2$$
.

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2},$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x},$$

Hypothesis testing

$$H_0: \beta_1 = 0$$
 \longrightarrow $Y = \beta_0 + \epsilon_1$

$$H_A: \beta_1 \neq 0, \longrightarrow Y = \beta_0 + \beta_1 X + \epsilon,$$

$$t = \frac{\hat{\beta}_1 - 0}{\operatorname{SE}(\hat{\beta}_1)} \sim \mathsf{t}_{(n-2)}$$

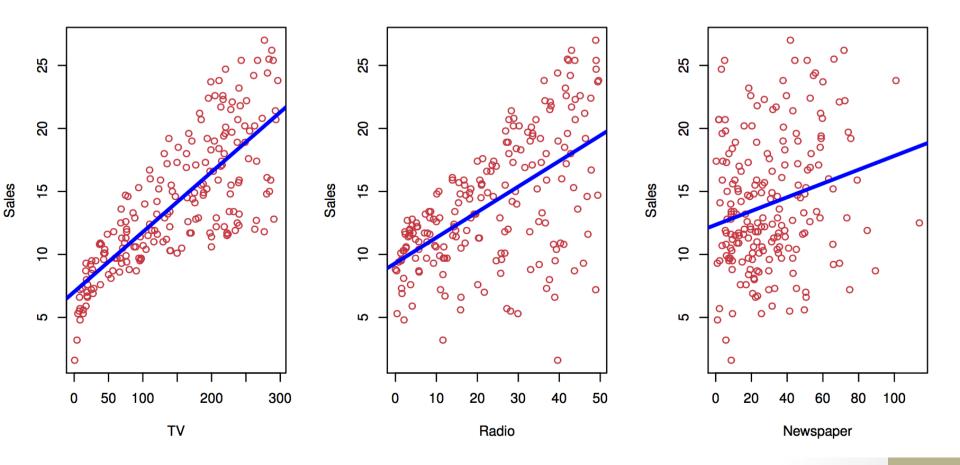
$$SE(\hat{\beta}_1)^2 = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

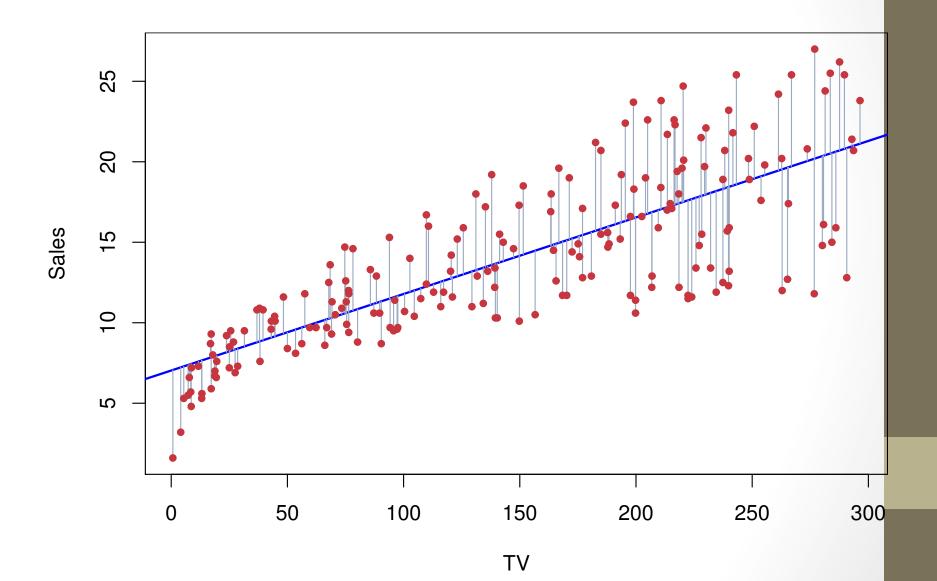
Regression Analysis

$$R^2 = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS}$$

$$TSS = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

RSE =
$$\sqrt{\frac{1}{n-2}}$$
RSS = $\sqrt{\frac{1}{n-2}} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$





Simple Linear Regression Analysis

The output of regression analysis will produce a coefficient table similar to the one below

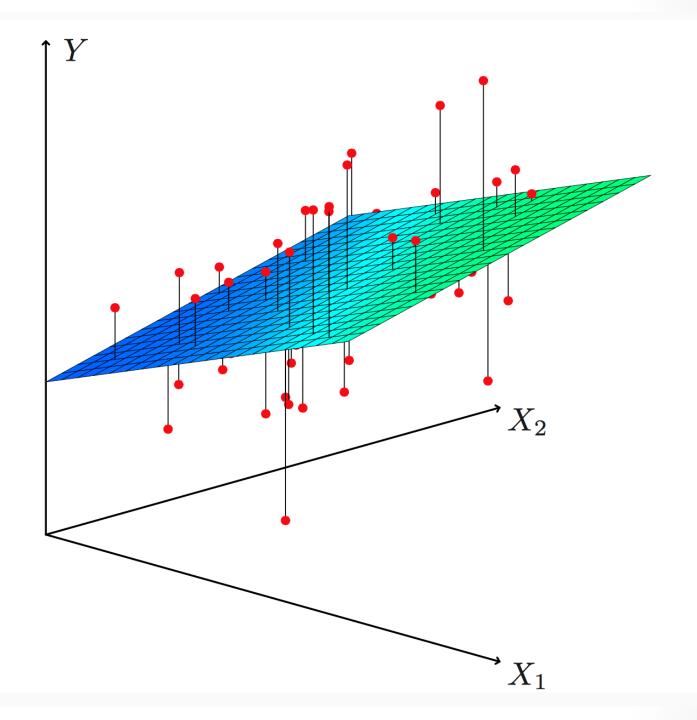
	Coefficient	Std. Error	t-statistic	p-value
Intercept	7.0325	0.4578	15.36	< 0.0001
TV	0.0475	0.0027	17.67	< 0.0001

Quantity	Value
Residual Standard Error	3.26
R^2	0.612
F-statistic	312.1

Multiple linear Regression

- A multiple linear regression is essentially the same the simple linear regression except there are multiple coefficients and independent variables
- Once we fit the function, we can use it to predict the y for new x

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \epsilon,$$



Multiple linear Regression

Once we fit the function, we can use it to predict the y for new x

$$X = \begin{pmatrix} X_1 \\ X_2 \\ X_3 \end{pmatrix} = \begin{pmatrix} \text{TV} \\ \text{Radio} \\ \text{Newspaper} \end{pmatrix}$$

$$Y = f(X) + \epsilon$$
.

$$\mathtt{sales} = \beta_0 + \beta_1 \times \mathtt{TV} + \beta_2 \times \mathtt{radio} + \beta_3 \times \mathtt{newspaper} + \epsilon_3$$

Results for advertising data

	Coefficient	Std. Error	t-statistic	p-value
Intercept	2.939	0.3119	9.42	< 0.0001
TV	0.046	0.0014	32.81	< 0.0001
radio	0.189	0.0086	21.89	< 0.0001
newspaper	-0.001	0.0059	-0.18	0.8599

Correlations:

	TV	radio	newspaper	sales
TV	1.0000	0.0548	0.0567	0.7822
radio		1.0000	0.3541	0.5762
newspaper			1.0000	0.2283
sales				1.0000

Best subset selection

- For each $k \in \{0, 1, 2, ..., p\}$ the subset of size k that gives smallest residual sum of squares
- The question of how to choose k involves the tradeoff between bias and variance, along with the more subjective desire for parsimony.
- There are a number of criteria that one may use; typically we choose the smallest model that minimizes an estimate of the expected prediction error.
- These include Mallow's Cp, Akaike information criterion (AIC), Bayesian information criterion (BIC), adjusted R2 and Crossvalidation (CV).

Forward- and Backward-Stepwise Selection

- Forward- stepwise selection starts with the intercept, and then sequentially adds into the model the predictor that most improves the fit.
- Computational; for large p we cannot compute the best subset sequence, but we can always compute the forward stepwise sequence (even when p \gg N).
- Statistical; a price is paid in variance for selecting the best subset of each size; forward stepwise is a more constrained search, and will have lower variance, but perhaps more bias.

Forward- and Backward-Stepwise Selection

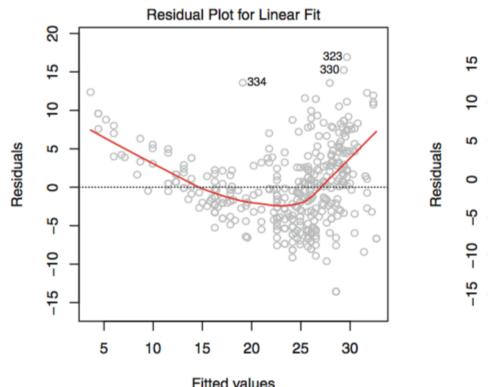
- Backward-stepwise selection starts with the full model, and sequentially deletes the predictor that has the least impact on the fit.
- Backward selection can only be used when N > p, while forward stepwise can always be used.
- Some software packages implement hybrid stepwise-selection strategies that consider both forward and backward moves at each step, and select the "best" of the two. For example in the R package the step function uses the AIC criterion for weighing the choices, which takes proper account of the number of parameters fit; at each step an add or drop will be performed that minimizes the AIC score.

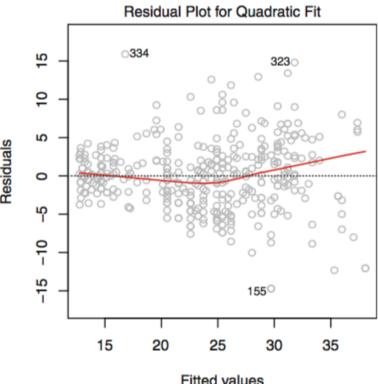
Potential Problems

- 1. Non-linearity of the response-predictor relationships
- 2. Correlation of error terms
- Non-constant variance of error terms.
 Outliers
- 4. High-leverage points
- 5. Collinearity

Non-linearity of the Data

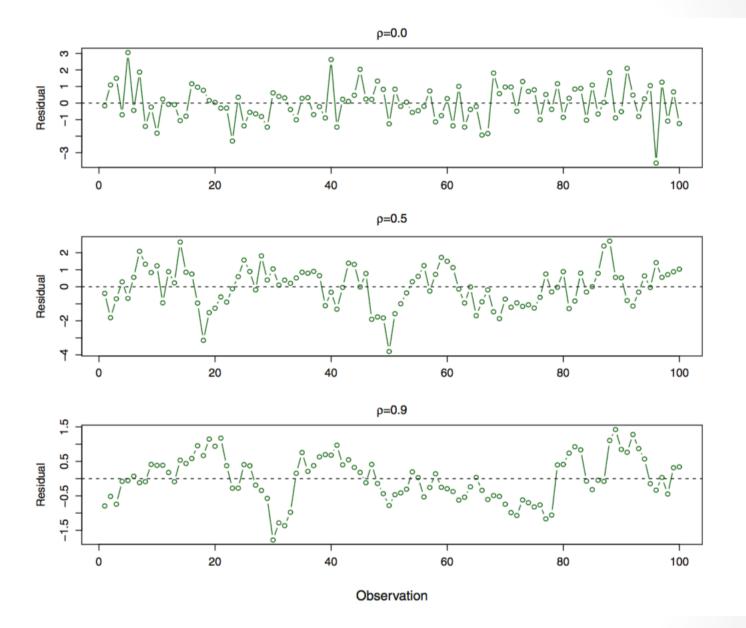
- The residual plot will show no discernible pattern
- If indication of non-linear associations, then a simple approach is to use non-linear transformations of the predictors





Correlation of error terms

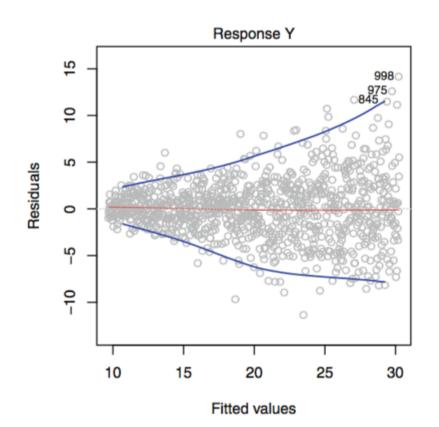
- The error terms, $\varepsilon_1, \varepsilon_2, ..., \varepsilon_n$, are uncorrelated
- If correlation among the error terms, then the estimated standard errors will tend to underestimate the true standard errors. As a result, confidence and prediction intervals will be narrower than they should be.
- Common in time series data

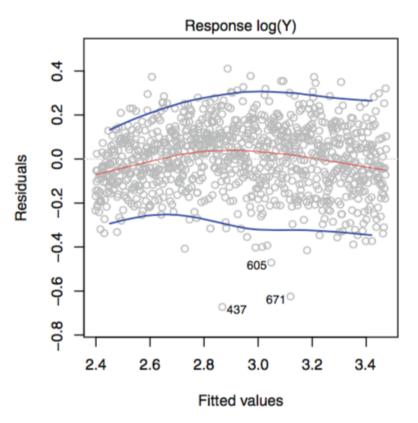


Non-constant Variance of Error Terms or heteroscedasticity

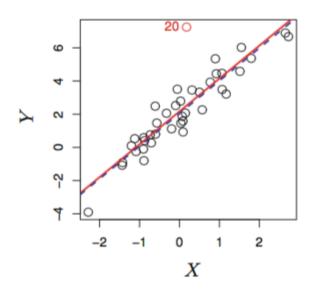
Remedy

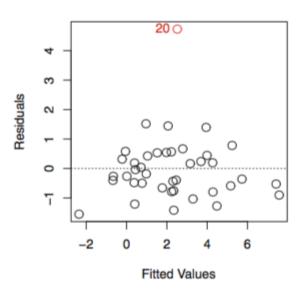
- Transformation of response
- weighted least squares,

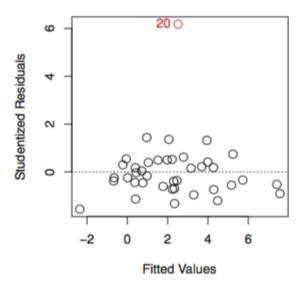




Outliers

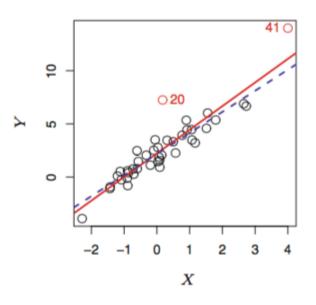


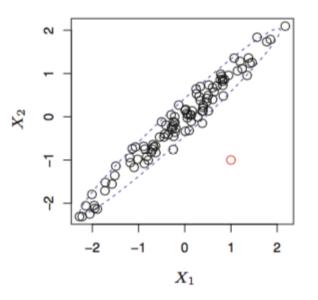


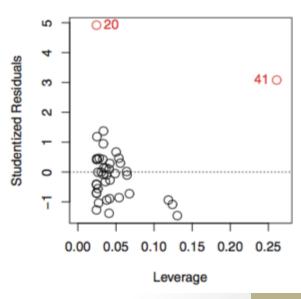


High Leverage Points

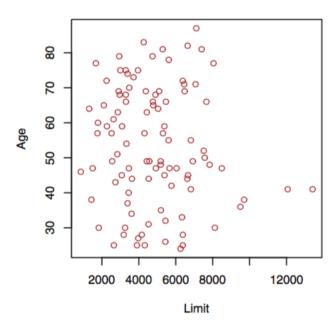
$$h_i = \frac{1}{n} + \frac{(x_i - \bar{x})^2}{\sum_{i'=1}^n (x_{i'} - \bar{x})^2}.$$

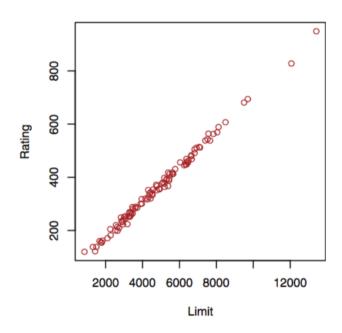






Collinearity





$$VIF(\hat{\beta}_j) = \frac{1}{1 - R_{X_j|X_{-j}}^2},$$

Collinearity

		Coefficient	Std. error	t-statistic	p-value
Model 1	Intercept	-173.411	43.828	-3.957	< 0.0001
	age	-2.292	0.672	-3.407	0.0007
	limit	0.173	0.005	34.496	< 0.0001
Model 2	Intercept	-377.537	45.254	-8.343	< 0.0001
	rating	2.202	0.952	2.312	0.0213
	limit	0.025	0.064	0.384	0.7012