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Linear Regression

* Linear approach to supervise learning

* We seek to identify ( or estimate) a continuous variable y
associated with a given input vector x.

* They are simple, sometimes outperform fancier nonlinear
model (in prediction)

* In modern data analysis, data are high dimensional and we
need better regression techniques to handle




True regression function are never
linear




REVIEW OF LINEAR Regression
analysis

* Simple linear Regression formula

* In regression we assume that y is a function of x . The exact nature of
function is governed by unknown parameters

*  The simple regression model can be represented as follows
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Regression Analysis
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Hypothesis testing
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Regression Analysis
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Simple Linear Regression Analysis

The output of regression analysis will produce a coefficient
table similar to the one below

Coefficient Std. Error t-statistic p-value

Intercept 7.0325 0.4578 15.36 < 0.0001
TV 0.0475 0.0027 17.67 < 0.0001
Quantity Value
Residual Standard Error | 3.26
R? 0.612
F-statistic 312.1




Multiple linear Regression

* A multiple linear regression is essentially the same the simple linea

regression except there are multiple coefficients and independent
variables

* Once we fit the function, we can use it to predict the y for new x

Y =By + 1 X1+ o Xo+ -+ BpXp + e,







Multiple linear Regression

* Once we fit the function, we can use it to predict the y for new x

X, TV
X = C{Xz> = ( Radio )
3 Newspaper

Y =f(X)+e.

sales = By + B1 X TV+ B9 X radio + (B3 X newspaper + €




Results for advertising data

Coefficient Std. Error t-statistic p-value
Intercept 2.939 0.3119 9.42 < 0.0001
TV 0.046 0.0014 32.81 < 0.0001
radio 0.189 0.0086 21.89 < 0.0001
newspaper -0.001 0.0059 -0.18 0.8599
Correlations:
TV radio newspaper sales
TV 1.0000 0.0548 0.0567 0.7822
radio 1.0000 0.3541 0.5762
newspaper 1.0000 0.2283
sales 1.0000




Best subset selection

* Foreachk €10, 1, 2, ..., p} the subset of size k that gives
smallest residual sum of squares

* The question of how to choose k involves the tradeoff
between bias and variance, along with the more subjective
desire for parsimony.

* There are a number of criteria that one may use; typically we
choose the smallest model that minimizes an estimate of the
expected prediction error.

* These include Mallow’s Cp, Akaike information criterion (AIC),
Bayesian information criterion (BIC), adjusted R2 and Cross-
validation (CV).




Forward- and Backward-Stepwise
Selection

* Forward- stepwise selection starts with the intercept, and
then sequentially adds into the model the predictor that most
improves the fit.

* Computational; for large p we cannot compute the best
subset sequence, but we can always compute the forward

stepwise sequence (even when p > N).

* Statistical; a price is paid in variance for selecting the best
subset of each size; forward stepwise is a more constrained
search, and will have lower variance, but perhaps more bias.




Forward- and Backward-Stepwise
Selection

* Backward-stepwise selection starts with the full model, and

sequentially deletes the predictor that has the least impact on
the fit.

* Backward selection can only be used when N > p, while
forward stepwise can always be used.

* Some software packages implement hybrid stepwise-selection
strategies that consider both forward and backward moves at
each step, and select the “best” of the two. For example in
the R package the step function uses the AIC criterion for
weighing the choices, which takes proper account of the
number of parameters fit; at each step an add or drop will be
performed that minimizes the AIC score.




Potential Problems

Non-linearity of the response-predictor relationships
Correlation of error terms

Non-constant variance of error terms.
Outliers

High-leverage points
5. Collinearity




Non-linearity of the Data

 The residual plot will show no discernible pattern
e If indication of non-linear associations, then a simple appro
is to use non-linear transformations of the predictors
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Correlation of error terms

* The error terms, €,,¢,,...,€,,, are uncorrelated

* If correlation among the error terms, then the estimated
standard errors will tend to underestimate the true standard

errors. As a result, confidence and prediction intervals will be
narrower than they should be.

* Common in time series data
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Residuals

Non-constant Variance of Error
Terms or heteroscedasticity

Remedy
e Transformation of response
* weighted least squares,
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Outliers
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High Leverage Points

w 1 020

o - 410

Studentized Residuals
1
|
dd

T T T T T T
0.00 0.05 0.10 0.15 0.20 0.25

X X1 Leverage




Collinearity
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Collinearity

Coefficient Std. error t-statistic p-value

Intercept —173.411 43.828 —-3.957 < 0.0001

Model 1 age —2.292 0.672 —3.407 0.0007
limit 0.173 0.005 34.496 < 0.0001

Intercept —377.537 45.254 —8.343 < 0.0001

Model 2 rating 2.202 0.952 2.312 0.0213
limit 0.025 0.064 0.384 0.7012




