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Introduction

> Application:

» Evaluate model performance
» Model selection

» Through estimating the error rate of the model in supervised
learning

» Categorization
> Regression

» Predict external validity of the model



Assessing Fit

» Mean squared error (MSE) consists of:
» Bias: failure to capture trends in the data - underfitting
> E[f(x)] - f(x)
» Variance: sensitivity to small fluctuations in the training set -
overfitting
> E[(F(x) - EFF ()]
> Irreducible error
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» There is a trade-off between bias and variance



Validation Set Approach

» Training set & validation set
» Training error: residuals in training data
» Validation error: residuals in validation data

» used to estimate test error rate (model performance)



Validation Set Approach
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» lllustration of the validation set approach
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Validation Set Approach: Drawbacks

» High variability depending on the random split
» Overestimation of test error

» Model not based on full data: generally less accurate

» How to improve this high bias and variance?



Leave One Out Cross-Validation (LOOCV)

» Use n — 1 observations as training set
» Test the model on the remaining observation

> Calculate MSE; = (y1 — 1)
> Repeat n times:

> test error estimate: CV(, = Y7 | MSE;



Leave One Out Cross-Validation (LOOCV)
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> lllustration of the LOOCV algorithm



LOOCV: Advantages

» Less bias: no overestimation of test error

» Use almost full data set

» No randomness in the splits



LOOCV: Drawbacks

» Computationally expensive: model has to be fit n times
» High variance of the individual fits that are averaged:

» Validation errors are based only on 1 data point



K-Fold Cross-Validation: the Generalization

Divide the data in k groups (=folds) of equal size
Use k — 1 groups as training set
Test the model on the remaining group
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Repeat k times:

> test error estimate: (CV(y)) = %Zf.;l MSE;



K-Fold Cross-Validation
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» lllustration of the K-fold cross-validation algorithm



K-Fold vs. LOOCV

» LOOCV is KFCV with k =n
» LOOCV fits the model n times, KFCV fits the model k times
» Trade-off between bias and variance
» LOOCV: low bias in test error estimation, high variance
> Highly correlated estimates, a lot of overlap between folds

» KFCV: higher bias, lower variance

» High number of permutations: estimates are all over the place



Extending to Classification

» Instead of MSE, classification error is used
> Errj = I(y; # %)

» The algorithm remains the same



Illustrating bias

## Shiny App



How to deal with the trade-off

» The higher k, the more risk of overfitting

» The lower k, the more uncertain the estimate of model fit
(MSE)

> Suggested to use k =5 or k=10

» Resampling as a powerful alternative to training/validation set
approach



However. . .
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FIGURE 5.6. True and estimated test MSE for the simulated data sets in Fig-

ures[Z2.9 (left), [2.10) (center), and[2.1]] (right). The true test MSE is shown in
blue, the LOOCYV estimate is shown as a black dashed line, and the 10-fold C'V

estimate is shown in orange. The crosses indicate the minimum of each of the
MSE curves.

» Depending on whether goal is model assessment or model
selection, the estimated value of MSE may not matter, only the
shape of the curve
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