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Origin of the Term ”Bootstrap”

derives from ”to pull oneself up
by one’s bootstrap”

widely thought to be based on
18th century adventures of
Baron Munchausen by R. E.
Raspe

Baron had fallen to bottom of
deep lake and rescued himself by
picking up himself by his own
bootstraps

however, it appears that this is a
misattribution: in the original
story, he picks up himself by his
hair
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Bootstrapping in Statistics

Efron & Tibshirani (1994), An Introduction to the Bootstrap:

The bootstrap is a computer-based method for assigning
measures of accuracy to statistical estimates.

in principle available no matter how mathematically complicated the
estimator is

when it is very hard or impossible to obtain formulas for standard
error of estimator analytically, we can still use bootstrapping to assess
the accuracy of the estimator

to motivate the bootstrapping algorithm, we will briefly review the
”plug-in” principle
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The ”Plug-In” Principle

in statistics, we are interested in population parameters which are
functions of the population distribution F (F denotes the population
cumulative distribution function)

For instance, we are interested in the population mean

µ = EF (X ) =

∫
x dF (x). (1)

this is the Riemann-Stieltjes integral notation

if cdf F differentiable everywhere, i.e., a pdf f exists, equivalent to∫
x f (x)dx

advantage of the Riemann-Stieltjes integral notation: also holds when
only valid cdf, but no pdf which will be handy for the following
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The ”Plug-In” Principle: Continued 1

More generally, most quantities we are interested in can be written in the
form:

EF (g(x)) =

∫
g(x) dF (x). (2)
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The ”Plug-In” Principle: Continued 2

we do not know F , the population distribution, in real applications

”plug-in”principle simply replaces the unknown distribution F with the
empirical distribution function F̂n which assigns probability 1

n to each
observed data point xi

F̂n(x) =
number of xi ≤ x

n
=

1

n

n∑
i=1

I (xi ≤ x). (3)
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The ”Plug-In” Principle: Continued 3

Then the estimator for the population mean is:

x̄ = EF̂n
(x) =

∫
x dF̂n(x) =

1

n

n∑
i=1

xi . (4)

More generally:

EF̂n
(g(x)) =

∫
g(x) dF̂n(x) =

1

n

n∑
i=1

g(xi ). (5)
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Bootstrapping: Using the ”Plug-In” Principle to
Approximate the Sampling Distribution

to assess accuracy of estimator, we need to know its sampling
distribution

suppose we knew population distribution F

then, we could construct sampling distribution by repeatedly sampling
from the population and calculating the statistic of interest for each
sample

bootstrapping simply replaces the population distribution F by the
empirical distribution F̂n (”plug-in” principle)
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Bootstrapping: Using the ”Plug-In” Principle to
Approximate the Sampling Distribution Continued
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The Bootstrap Algorithm

1 Obtain B independent bootstrap
samples each of size n by
sampling from F̂n. This simply
means, sampling with
replacement from the observed
data values.

2 Calculate the statistic of interest
for each of the B bootstrap
samples.
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Why does it work? – A Little Intuition

why possible to replace unknown population distribution F with
empirical distribution F̂n?

one reason: has been proven that empirical distribution function F̂n
converges to population distribution F

Theorem (Glivenko-Cantelli theorem)

supx∈R |F̂n(x)− F (x)| −→ 0 almost surely as n −→∞.
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A Toy Example: Bootstrapping the Mean

### generate data ###

set.seed(123456)

n <- 100 # number of observations

data <- rnorm(n, mean = 2)

### bootstrapping ###

B <- 100000 # number of bootstrap replicates

boot.means <- numeric(B)

for (i in seq_len(B)) {

indices <- sample(seq_len(n), n, replace = TRUE)

boot.data <- data[indices]

boot.means[i] <- mean(boot.data)

}
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A Toy Example: Bootstrapping the Mean Continued

1.6 1.8 2 2.2 2.4 2.6

D
en

si
ty

x

Bootstrapped Sampling Distribution 
(True Sampling Distribution Superimposed)
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Bootstrapping Confidence Intervals in Principle Component
Analysis

assume we are interested in assessing accurracy of proportion of
variance explained by principle components via confidence intervals

to the best of my knowledge, no easy formula for doing this exists

we can use bootstrapping to obtain approximate confidence intervals
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Data Generation

### generate data ###

library(mvtnorm)

# standard deviations

sds <- c(5, 15, 7, 4)

# correlation matrix

R <- matrix(c(

1, .2, .8, -.2,

.2, 1, .2, .8,

.8, .2, 1, -.2,

-.2, .8, -.2, 1

), 4, 4, byrow = TRUE)

# covariance matrix

Sigma <- diag(sds) %*% R %*% diag(sds)

# data

set.seed(2343457)

n <- 100

data <- rmvnorm(n, mean = rep(0, 4), sigma = Sigma)
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Data Visualization
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Bootstrapping: R Code

### bootstrapping ###

library(boot)

B <- 100000 # number of bootstrap replicates

boot.func <- function(data, indices) {

pca <- prcomp(data[indices, ])

summary(pca)$importance["Proportion of Variance", ]

}

boot.result <- boot(data, boot.func, B)

boot.samples <- boot.result$t
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Population and Bootstrapped Sampling Distribution
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Eigendecomposition of Covariance Matrix to Obtain True
Variance Proportions

Σ = VΛVᵀ =
∑
i

λiviv
ᵀ
i (6)

Eigenvalues λi correspond to variances explained by different components.
Hence, proportion of variance explained by i-th component is given by

λi∑
i λi

. (7)

eigen(Sigma)$values / sum(eigen(Sigma)$values)

## [1] 0.758087539 0.211362100 0.020937298 0.009613063
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Population and Bootstrapped Sampling Distribution with
”True” Value
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Population CI and Percentile Bootstrapped CI

PC1

0.50 0.60 0.70 0.80 0.90

0

5

10

15

population
bootstrapped
pop. value

Variance Proportion Explained by PC1

D
en

si
ty

PC2

0.05 0.15 0.25 0.35 0.45

0

5

10

15

Variance Proportion Explained by PC2

D
en

si
ty

PC3

0.00 0.01 0.02 0.03 0.04 0.05 0.06

0

20

40

60

80

100

120

140

Variance Proportion Explained by PC3

D
en

si
ty

PC4

0.000 0.005 0.010 0.015 0.020 0.025

0

50

100

150

200

250

300

350

Variance Proportion Explained by PC4

D
en

si
ty

Quentin F. Gronau Nonparametric Bootstrapping January, 12, 2016 22 / 26



Bootstrapping Confidence Intervals in Principle Component
Analysis: BCa Intervals

Also use percentiles of bootstrap distribution, but they are acceleration
and bias-corrected.

p1 = Φ

(
ẑ0 +

ẑ0 + zα/2

1− α̂(ẑ0 + zα/2)

)
(8)

p2 = Φ

(
ẑ0 +

ẑ0 + z1−α/2

1− α̂(ẑ0 + z1−α/2)

)
(9)

where Φ is the standard normal cdf and zα is the 100αth percentile of a
standard normal distribution. α̂ is the acceleration and ẑ0 is the bias
correction.
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Bootstrapping Confidence Intervals in Principle Component
Analysis: BCa Intervals Continued

acceleration α̂ corrects for fact that standard error might be different
for different population values

ẑ0 corrects for bias by considering proportion of bootstrap samples
smaller than original estimate

if 50% of bootstrapped values smaller than original estimate, no bias
correction

In R:

# bias-corrected and accelerated bootstrapped confidence intervals

boot.ci.bca <- matrix(ncol = 4, nrow = 2)

boot.ci.bca[ ,1] <- boot.ci(boot.out = boot.result, type = "bca", index = 1)$bca[4:5]

boot.ci.bca[ ,2] <- boot.ci(boot.out = boot.result, type = "bca", index = 2)$bca[4:5]

boot.ci.bca[ ,3] <- boot.ci(boot.out = boot.result, type = "bca", index = 3)$bca[4:5]

boot.ci.bca[ ,4] <- boot.ci(boot.out = boot.result, type = "bca", index = 4)$bca[4:5]

Quentin F. Gronau Nonparametric Bootstrapping January, 12, 2016 24 / 26



Population CI, Percentile Bootstrapped CI, and BCa CI
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