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Overview

0 Recap: Statistical learning theory
e Basis functions
Q Smoothing and the number of parameters

e Smoothing splines
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@ There exists a true function * such that y = *(x) +e.
Goal: Give a single best guess f(x) of f*(x) based on finite
samples ( 1) I (X")

@ Step 1: Deflne "best guess" aka define a loss function

E(f*(x) — F(x))? (1)
@ Step 2: Define a candidate collection of functions F
@ Step 3: Calculate the (empirical) loss for each single
candidate f in F
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Regression

@ There exists a true function * such that y = *(x) +e.
Goal: Give a single best guess f(x) of f*(x) based on finite
samples ( 1) I (X")

@ Step 1: Deflne "best guess" aka define a loss function

E(f(x) — 1(x))? (1)
@ Step 2: Define a candidate collection of functions F
@ Step 3: Calculate the (empirical) loss for each single
candidate f in F
1 .
— > = Fa)? @
i=1
@ Step 4: Minimise: Take as best guess:
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Example of F: Linear regression

Trick: frame problem in terms of matrix algebra:
y=X0+¢ (4)

observed y € R", observed design Matrix X € R™P,
parameters 6 € RP
Pro:

@ Computationally: No need to caAIcuIate the loss for each
f € F. Solve by matrix algebra § = (X" X)Xy

@ Unique minimiser: is the plugin ?(xnew) = OXnew
Con:

@ Misspecification The true f* is most likely not linear, thus,
f*¢F
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Other examples of F:

The p < n“regime” (i.e., matrix trick is okay):
@ Polynomials Fp, := {f(x) =0 X"+ Ox + 00}
with m parameters
@ Piecewise polynomials F, x with mK 4+ m parameters
@ Polynomial splines with m + K parameters
@ Natural splines with K parameters

@ Spoiler: Relationship number of parameters and
smoothing

The n <« p “regime” (i.e., no uniqueness):
@ Smoothing splines with “uncountably many parameters”

@ Spoiler: Relationship degree of freedom and tuning
parameter



Basis functions

Key in the p < nregime

To apply the “matrix trick” in case of p < n (polynomials,
piecewise polynomials, polynomial splines and natural splines)
use basis functions (i.e., transform x).

@ Use powers of x for non-linear behaviour:

gi(x)=x (9)
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Basis functions

Key in the p < nregime

To apply the “matrix trick” in case of p < n (polynomials,
piecewise polynomials, polynomial splines and natural splines)
use basis functions (i.e., transform x).

@ Use powers of x for non-linear behaviour:
gi(x) =x (5)
@ Use indicator functions for local behaviour:

1 if x € (§-1, 1

gi(x) (g-1.61(X) {o otherwise ©

@ Combination of the two
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Basis functions

Polynomial regression

thus gj(x) = x/. Solution: Take f with
0= (XTX)"'XTy (7)
where the design matrix is

9(x1) g1(x1) .. Gm-1(x1) 1 x] X
go(x2) gi(x2) ... Gm-1(X2) 1 X X

X =

9(Xn) 91(Xn) .. Gm-1(xn) 1 X1 . xT



Basis functions

Polynomial regression

Solution: Take f with
0=X"X)"XTy (7)

where the design matrix is

g(x1) g1(x1) ... gm-1(x1) 1 X11 e X{n_1
y_ | PR gibe) .o gmale) | 11 X} X!
9o(Xn) Gi(Xn) ... Gm-1(Xn) 1 X1 . xT

Pick the order m by hand or by cross validation
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Basis functions

Target: 2x+x72 with n=50
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Basis functions

Polynomial regression:

Poly: M=3: estimate 2x+x"2 with n=50
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Basis functions

Polynomial regression:

Poly: M=4: estimate 2x+x"2 with n=50
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Basis functions

Polynomial regression:

Poly: M=5: estimate 2x+x"2 with n=50
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Basis functions

Polynomial regression:

Poly: M=6: estimate 2x+x"2 with n=50
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Basis functions

Polynomial regression:

Poly: M=7: estimate 2x+x"2 with n=50
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Basis functions

Polynomial regression:

Poly: M=8: estimate 2x+x"2 with n=50
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Basis functions

Polynomial regression:

Poly: M=8: estimate 2x+x"2 with n=50
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Great in the middle (low bias), bad in the tails (high variance).



Basis functions

Example: Piecewise constants

Introduce knots &1, ..., £k yielding K + 1 bins. Fit a constant
function locally.

1 knots: estimate 2x+x*2 with n=50
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Basis functions

Example: Piecewise constants

Introduce knots &1, ..., £k yielding K + 1 bins. Fit a constant
function locally.

2 knots: estimate 2x+x"2 with n=50
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Basis functions

Example: Piecewise constants

Introduce knots &1, ..., £k yielding K + 1 bins. Fit a constant
function locally.

3 knots: estimate 2x+x"2 with n=50
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Basis functions

Example: Piecewise constants

Introduce knots &1, ..., £k yielding K + 1 bins. Fit a constant
function locally.

4 knots: estimate 2x+x"2 with n=50
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Basis functions

Example: Piecewise constants

Depends on K and where

1 knots: estimate 2x+x*2 with n=50
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Basis functions

Example: Piecewise constants

Depends on K and where

2 knots: estimate 2x+x"2 with n=50
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Basis functions

Example: Piecewise constants

Depends on K and where

3 knots: estimate 2x+x"2 with n=50
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Basis functions

Example: Piecewise constants

Depends on K and where

4 knots: estimate 2x+x"2 with n=50
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Basis functions

Basis functions

Piecewise constants:
K
Fic = {100 =3 tkgr(x) },
k=0

thus gi(x) = 1(¢,_, (X)- Solution: Take f with

0=X"X)""XTy (8)
where the design matrix is
Go(x1) g1(x1) ... Gm-1(x1) o1 ..0
X Go(x2) g1(x2) .. gm-1(x)| [1 0 ... 0
9o(xn) 91(Xn) .. Gm-1(Xn) 00 .. 1

each row has only one “1”.



Basis functions

Global function, local modification

Piecewise constants:
K
Fic = {10x) = D 0kgu(0)}.
k=0
thus gk(x) = 1(§k717§k](x)'

@ Take the go(x) just the whole range with a global
parameter 6.



Basis functions

Global function, local modification

Piecewise constants:
K
Fic = {10x) = D 0kgu(0)}.
k=0

thus gk(x) = 1(§k717§k](x)'
@ Take the go(x) just the whole range with a global
parameter 6.
@ Consider 0, only the local modification of the kth interval

(&k—1, k]



Basis functions

Global function, local modification

1 knots: estimate 2x+x72 with n=50
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@ Local: 64 =~ 39 on the first interval



Basis functions

Global function, local modification

1 knots: estimate 2x+x72 with n=50
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@ Global: 69 ~ 22 on the global interval
@ Local: 64 =~ 17 modification on the first interval



Basis functions

Piecewise polynomials

(S0 axd i x < &
—1 i .
St OiexX if & <x <&

Fok = Fx) =14 o 9
mk = 1x) Ejl?; Ojpx it &g < x < & ®)
(7" Ohkx if kot < x < &k
with m(K + 1) parameters. Thus,
m—-1,K
Fmk = {f(X) = ) 9j,kgj,k(X)} (10)
j=0,k=1

where gj x(x) = X/ 1(¢,_, ¢ (%).
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Basis functions

Piecewise polynomials

= {101~ S,
f,k

thus gj,k(X) = Xj1(§k71yfk](x)'



Basis functions

Basis functions

Piecewise polynomials

FmK = {f(x) = Zej’kgj’k(x)}
jok

thus gj x(X) = X1(¢,_, £1(X). Solution: Take f with

0=(XTX)""xTy (11)
where the design matrix is
Go(x1) g1(x1) ... gm-1(x1) 0 x . 0
[ 900e) g10R) .o gm1(e) | [1 O . 0
9o(Xn) Gi(Xn) ... Gm-1(Xn) 00 .. xm!

each row has only one monomial “x/”.



Basis functions

Example: Piecewise polynomials
K =1 knot

Piece poly M=2, K=1
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Example: Piecewise polynomials
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Example: Piecewise polynomials

K =1 knot

Piece poly M=5, K=1
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Example: Piecewise polynomials
Depends on K and where

Piece poly M=2, K=2
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Example: Piecewise polynomials
Depends on K and where
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Basis functions

Example: Piecewise polynomials
Depends on K and where

Piece poly M=4, K=2
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Basis functions

Example: Piecewise polynomials

Depends on K and where

Piece poly M=5, K=2

1 1 P
!




Smoothing

Splines

Splines are piecewise polynomials that are smooth.

Piece poly M=4, K=1
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Splines

Splines are piecewise polynomials that are smooth. A
polynomial spline of order m with K number of knots is has the
basis functions:

@ Global polynomial of order m

Go(x) =x°, ..., gm_1(x) = x™! (12)
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polynomial spline of order m with K number of knots is has the
basis functions:

@ Global polynomial of order m
9o(x) = x°, ... gm-1(x) = X" (12)
@ Local modifications:
Imi1(X) = (x =&)L gmek(X) = (x = &)T (13)

thus, m + K parameters.



Smoothing

Splines

Splines are piecewise polynomials that are smooth. A
polynomial spline of order m with K number of knots is has the
basis functions:

@ Global polynomial of order m
9o(x) = x°, ... gm-1(x) = X" (12)
@ Local modifications:
Imi1(X) = (x =&)L gmek(X) = (x = &)T (13)

thus, m + K parameters.

@ Note m+ K < m(K + 1). Example cubic spline with two
knots: 4 + 2 vs 12 parameters.



Smoothing

Example: Basis functions M =2, K = 1

Knotat ¢y = 0.4
Global 91 = 1

Spline M=2, K=1: Basis functions
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Smoothing

Example: Basis functions M =2, K = 1

Knotat ¢y = 0.4
Global 61 = 1 and local #1,1 = 0.4

Spline M=2, K=1: Basis functions
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Smoothing

Example: Basis functions M =2, K = 1

Knotat ¢y = 0.4
Modification: subtract 1,1 = 0.4 locally

Spline M=2, K=1: Basis functions

T
-0.5 0.0 0.5 1.0 1.5



Smoothing

Example: Basis functions M =3, K = 1

Knotat ¢y = 0.4
Global 0, = 1

Spline M=3, K=1: Basis functions
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Smoothing

Example: Basis functions M =3, K = 1

Knotat ¢y = 0.4
Global 6, = 1 and local 02,1 = 2.3

Spline M=3, K=1: Basis functions
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Smoothing

Example: Basis functions M =3, K = 1

Knotat ¢y = 0.4
Modification: subtract 6,1 = 2.3 locally

Spline M=3, K=1: Basis functions

> 05

0.0

-0.5 -

T
-0.5 0.0 0.5 1.0 1.5



Smoothing

Example: Basis functions M =4, K = 1

Knotat ¢y = 0.4
Global 05 = 1

Spline M=3, K=1: Basis functions
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Smoothing

Example: Basis functions M =4, K = 1

Knotat ¢ = 0.4
Global 63 = 1 and local 3,1 =6

Spline M=3, K=1: Basis functions

> 05

0.0

-0.5 -
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Smoothing

Example: Basis functions M =4, K = 1

Knotat ¢y = 0.4
Modification: subtract 63,1 = 6 locally

Spline M=3, K=1: Basis functions

> 05

0.0

-0.5 -

T
-0.5 0.0 0.5 1.0 1.5



Smoothing

Example: Basis functions M =4, K =2

Knotat & =0.4and & =0.8
Global 65 = 1

Spline M=4, K=2: Basis functions
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-0.5 0.0 0.5 1.0 1.5



Smoothing

Example: Basis functions M =4, K =2

Knotat & =0.4and & =0.8
Global 5 = 1 and local 93+1 =6, 03+2 =12

Spline M=4, K=2: Basis functions

> 05

0.0

-0.5 -

T
-0.5 0.0 0.5 1.0 1.5



Smoothing

Example: Basis functions M =4, K =2

Knotat & =0.4and & =0.8
Modification: subtract 63,1 = 6 “locally” from &; onwards

Spline M=4, K=2: Basis functions

> 05

0.0

-0.5 -

T
-0.5 0.0 0.5 1.0 1.5



Smoothing

Example: Basis functions M =4, K =2

Knotat &y =0.4and & =0.8
Modification: add 3., = 12 “locally” from &, onwards

Spline M=4, K=2: Basis functions

> 05

'
1
1
1
1
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1
1
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Smoothing

Example: Polynomials splines

K =1 knot
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Smoothing

Example: Polynomials splines

Depends on K and where

Spline M=2, K=2
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Smoothing

Example: Polynomials splines

Depends on K and where

Spline M=3, K=2
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Smoothing

Example: Polynomials splines

Depends on K and where

Spline M=4, K=2
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Smoothing

Example: Polynomials splines

Depends on K and where

Spline M=5, K=2
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Smoothing

Natural splines

@ Tail behaviour still bad. (high variance)
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parameters)
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Natural splines

@ Tail behaviour still bad. (high variance)

@ Natural spline: Take polynomial of lower order M/2 — 1 for
function past the end points

@ Natural spline has K parameters! Whatever M may be

@ “Solves”: How many knots. (specify the number of
parameters)

@ Solution to where: use quantile of observed X



Smoothing

Natural splines

@ Tail behaviour still bad. (high variance)

@ Natural spline: Take polynomial of lower order M/2 — 1 for
function past the end points

@ Natural spline has K parameters! Whatever M may be

@ “Solves”: How many knots. (specify the number of
parameters)

@ Solution to where: use quantile of observed X
@ Still have to choose the order M



Smoothing

Natural splines basis

Natural splines are polynomial splines that have lower order
“tails” A natural spline of order m with K number of knots is has
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Natural splines basis

Natural splines are polynomial splines that have lower order
“tails” A natural spline of order m with K number of knots is has
K number of basis functions:

@ Global polynomial of order m
No(x) = x°, ..., Np_a(x) = x™3 (14)
@ Local modifications:

Niy2(x) = d(x, &) — dk—1(X, k1) fork =1,..., K —m+1

where

(x—&)% — (x — k)3

Ek — &k

dk(X7€k) =
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Natural spline M=2, K=1
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Example: Natural splines

Natural spline M=3, K=1
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Natural spline M=4, K=1
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Example: Natural splines

Natural spline M=5, K=50
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@ Problem: when p > nthen also have Y = X (o + u) + ¢,
where Xu = 0. There are many u s.t. Xu = 0, thus,
non-uniqueness.

@ Solution: Choose the solution s.t. 6y + u is small. In other
words, instead of minimising >, (y; — f(x;))? minimise
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for some fixed A > 0.



Smoothing splines

Uniqueness and regularisation

@ Previous: p < nregime. Matrix “trick”: small to big with
limit at p = n and note the interpolation.

@ Problem: when p > nthen also have Y = X (o + u) + ¢,
where Xu = 0. There are many u s.t. Xu = 0, thus,
non-uniqueness.

@ Solution: Choose the solution s.t. 6y + u is small. In other
words, instead of minimising >, (y; — f(x;))? minimise
the following instead

= argmin Z — f(x,))? + Apenalty(7). (17)
fe]: =1
for some fixed A > 0.

@ Example: Lasso/ridge/elastic nets. Here: smoothing
splines (directly on the function, not on the parameters).
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Smoothing splines

Smoothing spline set-up

@ Big to small, start with n < p and regularise:
F(x) = argmin > " (y; — F(x))? + A / [F(™/2)(x)]2dx  (18)

@ Candidate set: F, are all functions that have a bounded
squared m/2 derivative.

@ Problem: Infinite-dimensional optimisation problem over all

functions f
@ Remarkable: There is unique minimiser: an m order
natural spline with knots at the observations xi, ..., Xs.

@ Note: This spline is sum of finite number of basis functions
(i.e., n = K parameters). These basis functions are
decided by the data x4, ..., Xn.
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Smoothing splines

Smoothing splines basis

A smoothing spline has basis functions decided by the data
X1 g oo ey Xn
@ Global polynomial of order m

No(x) = x°, ..., Np_g(x) = x™3 (19)
@ Local modifications:

Nii2(x) = di(x, Xi) — dp—1(X, Xp—q) fori=1,....n—m+1
(20)

where

- R




Smoothing splines

Return of the “matrix trick”

Thus the candidate solution is of the form

f(x)=>" Ni(x)0; (22)
i=1
hence
MSE(f) = (y — NO)T (y — NO) + X070, (23)

where N is the design matrix {N;} = N;(x;) and

{Qn}j,'z//\/j-(m/z)(X)N,-(m/Z)(X)dX (24)



Smoothing splines

Return of the “matrix trick”

Thus the candidate solution is of the form
1(x)=>" Ni(x)0; (22)

hence
MSE(f) = (y — NO) (y — NO) + X607 Q,0, (23)
where N is the design matrix {N;} = N;(x;) and
Q) = / N™2 ()N (x)dx (24)
Minimisation

O=(N"TN+X2,)" 'NTy (25)
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Example: Smoothing spline with cross validation

Smoothing spline with cv
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Choosing the A and degrees of freedom

@ Recall: n < p regime solution: Natural splines f(X) = X4
with K knots:
f(X)=X(XTX)"'XTy (26)
~——
He

where H; is a symmetric, positive semidefinite matrix.
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Smoothing splines

Choosing the A and degrees of freedom

@ Recall: n < p regime solution: Natural splines f(X) = X4
with K knots:

f(X) = XXTX)"'XTy (26)
He
where H; is a symmetric, positive semidefinite matrix.
@ Compare: Smoothing spline
F(INY = N(NTN +XQ,) 'NT y (27)
SN

where S, is a symmetric, positive semidefinite matrix.
@ trace(H;) = K, the dimension of the space H; projects to
@ Take df = trace(S,). Note as A — oo this lowers the
dimension.



Smoothing splines

Further relationships

@ Projections

@ RKHS

@ Gaussian processes

@ Bayesian nonparametric regression
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