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Regression

There exists a true function f ∗ such that y = f ∗(x) + ε.
Goal: Give a single best guess f̂ (x) of f ∗(x) based on finite
samples

(x1
y1

)
, . . . ,

(xn
yn

)
.

Step 1: Define "best guess" aka define a loss function

E(f ∗(x)− f̂ (x))2 (1)

Step 2: Define a candidate collection of functions F
Step 3: Calculate the (empirical) loss for each single
candidate f̃ in F

1
n

n∑
i=1

(yi − f̃ (xi))2 (2)

Step 4: Minimise: Take as best guess:

f̂ (x) = argmin
f̃∈F

1
n

n∑
i=1

(yi − f̃ (xi))2 (3)
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Example of F : Linear regression

Trick: frame problem in terms of matrix algebra:

y = Xθ + ε (4)

observed y ∈ Rn, observed design Matrix X ∈ Rn×p,
parameters θ ∈ Rp

Pro:

Computationally: No need to calculate the loss for each
f ∈ F . Solve by matrix algebra θ̂ = (X T X )−1X T y
Unique minimiser: is the plugin f̂ (xnew) = θ̂xnew

Con:

Misspecification The true f ∗ is most likely not linear, thus,
f ∗ 6∈ F
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Other examples of F :

The p � n “regime” (i.e., matrix trick is okay):

Polynomials Fm :=
{

f (x) = θm−1xm−1 + . . .+ θ1x + θ0

}
with m parameters
Piecewise polynomials Fm,K with mK + m parameters
Polynomial splines with m + K parameters
Natural splines with K parameters
Spoiler: Relationship number of parameters and
smoothing

The n� p “regime” (i.e., no uniqueness):

Smoothing splines with “uncountably many parameters”
Spoiler: Relationship degree of freedom and tuning
parameter
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Key in the p � n regime

To apply the “matrix trick” in case of p � n (polynomials,
piecewise polynomials, polynomial splines and natural splines)
use basis functions (i.e., transform x).

Use powers of x for non-linear behaviour:

gj(x) = x j (5)

Use indicator functions for local behaviour:

gj(x) = 1(ξj−1,ξj ](x) :=

{
1 if x ∈ (ξj−1, ξj ]

0 otherwise
(6)

Combination of the two
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Polynomial regression

Fm :=
{

f (x) = θm−1xm−1 + . . .+ θ0

}
=
{

f (x) =
m−1∑
j=0

θjgj(x)
}
,

thus gj(x) = x j .
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Polynomial regression

Fm :=
{

f (x) = θm−1xm−1 + . . .+ θ0

}
=
{

f (x) =
m−1∑
j=0

θjgj(x)
}
,

thus gj(x) = x j . Solution: Take f̂ with

θ̂ = (X T X )−1X T y (7)

where the design matrix is

X =


g0(x1) g1(x1) . . . gm−1(x1)
g0(x2) g1(x2) . . . gm−1(x2)

...
...

. . .
...

g0(xn) g1(xn) . . . gm−1(xn)

 =


1 x1

1 . . . xm−1
1

1 x1
2 . . . xm−1

2
...

...
. . .

...
1 x1

n . . . xm−1
n
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Polynomial regression

Solution: Take f̂ with

θ̂ = (X T X )−1X T y (7)

where the design matrix is

X =


g0(x1) g1(x1) . . . gm−1(x1)
g0(x2) g1(x2) . . . gm−1(x2)

...
...

. . .
...

g0(xn) g1(xn) . . . gm−1(xn)

 =


1 x1

1 . . . xm−1
1

1 x1
2 . . . xm−1

2
...

...
. . .

...
1 x1

n . . . xm−1
n


Pick the order m by hand or by cross validation
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Target:

3 4 5 6 7

10

20

30

40

50

60

70

Target: 2x+x^2 with n=50

x

y
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Polynomial regression:

3 4 5 6 7

10

20

30

40

50

60

70

Poly: M=3: estimate 2x+x^2 with n=50

x

y
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Polynomial regression:

3 4 5 6 7

10

20

30

40

50

60

70

Poly: M=4: estimate 2x+x^2 with n=50

x

y
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Polynomial regression:

3 4 5 6 7

10

20

30

40

50

60

70

Poly: M=5: estimate 2x+x^2 with n=50

x

y
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Polynomial regression:

3 4 5 6 7

10

20

30

40

50

60

70

Poly: M=6: estimate 2x+x^2 with n=50

x

y
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Polynomial regression:

3 4 5 6 7

10

20

30

40

50

60

70

Poly: M=7: estimate 2x+x^2 with n=50

x

y
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Polynomial regression:

3 4 5 6 7

10

20

30

40

50

60

70

Poly: M=8: estimate 2x+x^2 with n=50

x

y
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Polynomial regression:

3 4 5 6 7

10

20

30

40

50

60

70

Poly: M=8: estimate 2x+x^2 with n=50

x

y

Great in the middle (low bias), bad in the tails (high variance).
Indicator functions allow for global versus local behaviour
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Example: Piecewise constants

Introduce knots ξ1, . . . , ξK yielding K + 1 bins. Fit a constant
function locally.

3 4 5 6 7

10

20

30

40

50

60

70

1 knots: estimate 2x+x^2 with n=50

x

y
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Example: Piecewise constants

Introduce knots ξ1, . . . , ξK yielding K + 1 bins. Fit a constant
function locally.

3 4 5 6 7

10

20

30

40

50

60

70

2 knots: estimate 2x+x^2 with n=50

x

y
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Example: Piecewise constants

Introduce knots ξ1, . . . , ξK yielding K + 1 bins. Fit a constant
function locally.
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Example: Piecewise constants

Introduce knots ξ1, . . . , ξK yielding K + 1 bins. Fit a constant
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3 4 5 6 7

10

20

30

40

50

60

70

4 knots: estimate 2x+x^2 with n=50

x

y



Recap Basis functions Smoothing Smoothing splines

Example: Piecewise constants

Depends on K and where

3 4 5 6 7

10

20

30

40

50

60

70

1 knots: estimate 2x+x^2 with n=50

x

y
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Example: Piecewise constants

Depends on K and where

3 4 5 6 7
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y
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Example: Piecewise constants

Depends on K and where
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Example: Piecewise constants

Depends on K and where

3 4 5 6 7
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4 knots: estimate 2x+x^2 with n=50
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y
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Basis functions

Piecewise constants:

FK :=
{

f (x) =
K∑

k=0

θkgk (x)
}
,

thus gk (x) = 1(ξk−1,ξk ](x).
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Basis functions

Piecewise constants:

FK :=
{

f (x) =
K∑

k=0

θkgk (x)
}
,

thus gk (x) = 1(ξk−1,ξk ](x). Solution: Take f̂ with

θ̂ = (X T X )−1X T y (8)

where the design matrix is

X =


g0(x1) g1(x1) . . . gm−1(x1)
g0(x2) g1(x2) . . . gm−1(x2)

...
...

. . .
...

g0(xn) g1(xn) . . . gm−1(xn)

 =


0 1 . . . 0
1 0 . . . 0
...

...
. . .

...
0 0 . . . 1


each row has only one “1”.
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Global function, local modification

Piecewise constants:

FK :=
{

f (x) =
K∑

k=0

θkgk (x)
}
,

thus gk (x) = 1(ξk−1,ξk ](x).

Take the g0(x) just the whole range with a global
parameter θ0.

Consider θk only the local modification of the k th interval
(ξk−1, ξk ]
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Global function, local modification

Piecewise constants:

FK :=
{

f (x) =
K∑

k=0

θkgk (x)
}
,

thus gk (x) = 1(ξk−1,ξk ](x).

Take the g0(x) just the whole range with a global
parameter θ0.
Consider θk only the local modification of the k th interval
(ξk−1, ξk ]
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Global function, local modification

3 4 5 6 7

10

20

30

40

50

60

70

1 knots: estimate 2x+x^2 with n=50

x

y

Local: θ0 ≈ 22 on the zeroth interval
Local: θ1 ≈ 39 on the first interval
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Global function, local modification

3 4 5 6 7

10

20

30

40

50

60

70

1 knots: estimate 2x+x^2 with n=50

x

y

Global: θ0 ≈ 22 on the global interval
Local: θ1 ≈ 17 modification on the first interval
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Piecewise polynomials

Fm,K = f (x) =



∑m−1
j=0 θj,1x j if x ≤ ξ1∑m−1
j=0 θj,2x j if ξ1 < x ≤ ξ2

...
...∑m−1

j=0 θj,kx j if ξk−1 < x ≤ ξk
...

...∑m−1
j=0 θj,K x j if ξK−1 < x ≤ ξK

(9)

with m(K + 1) parameters. Thus,

Fm,k =
{

f (x) =

m−1,K∑
j=0,k=1

θj,kgj,k (x)
}

(10)

where gj,k (x) = x j 1(ξk−1,ξk ](x).
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Basis functions

Piecewise polynomials

Fm,K :=
{

f (x) =
∑
j,k

θj,kgj,k (x)
}
,

thus gj,k (x) = x j1(ξk−1,ξk ](x).
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Basis functions

Piecewise polynomials

Fm,K :=
{

f (x) =
∑
j,k

θj,kgj,k (x)
}
,

thus gj,k (x) = x j1(ξk−1,ξk ](x). Solution: Take f̂ with

θ̂ = (X T X )−1X T y (11)

where the design matrix is

X =


g0(x1) g1(x1) . . . gm−1(x1)
g0(x2) g1(x2) . . . gm−1(x2)

...
...

. . .
...

g0(xn) g1(xn) . . . gm−1(xn)

 =


0 x . . . 0
1 0 . . . 0
...

...
. . .

...
0 0 . . . xm−1


each row has only one monomial “x j ”.
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Example: Piecewise polynomials

K = 1 knot

3 4 5 6 7

10

20
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50
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70

Piece poly M=2, K=1

x

y
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Example: Piecewise polynomials

K = 1 knot
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Example: Piecewise polynomials

K = 1 knot
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Example: Piecewise polynomials

K = 1 knot
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Example: Piecewise polynomials

Depends on K and where
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Piece poly M=2, K=2

x

y
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Example: Piecewise polynomials

Depends on K and where
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Example: Piecewise polynomials

Depends on K and where
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Example: Piecewise polynomials

Depends on K and where
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Splines

Splines are piecewise polynomials that are smooth.

3 4 5 6 7
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70

Piece poly M=4, K=1

x

y
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Splines

Splines are piecewise polynomials that are smooth. A
polynomial spline of order m with K number of knots is has the
basis functions:

Global polynomial of order m

g0(x) = x0, . . . ,gm−1(x) = xm−1 (12)

Local modifications:

gm+1(x) = (x − ξ1)m−1
+ , . . . ,gm+K (x) = (x − ξK )m−1

+ (13)

thus, m + K parameters.
Note m + K < m(K + 1). Example cubic spline with two
knots: 4 + 2 vs 12 parameters.
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Splines

Splines are piecewise polynomials that are smooth. A
polynomial spline of order m with K number of knots is has the
basis functions:

Global polynomial of order m

g0(x) = x0, . . . ,gm−1(x) = xm−1 (12)

Local modifications:

gm+1(x) = (x − ξ1)m−1
+ , . . . ,gm+K (x) = (x − ξK )m−1

+ (13)

thus, m + K parameters.
Note m + K < m(K + 1). Example cubic spline with two
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Recap Basis functions Smoothing Smoothing splines

Example: Basis functions M = 2, K = 1

Knot at ξ1 = 0.4
Global θ1 = 1
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Recap Basis functions Smoothing Smoothing splines

Example: Basis functions M = 2, K = 1

Knot at ξ1 = 0.4
Global θ1 = 1 and local θ1+1 = 0.4
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Recap Basis functions Smoothing Smoothing splines

Example: Basis functions M = 2, K = 1

Knot at ξ1 = 0.4
Modification: subtract θ1+1 = 0.4 locally
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Example: Basis functions M = 3, K = 1

Knot at ξ1 = 0.4
Global θ2 = 1
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Recap Basis functions Smoothing Smoothing splines

Example: Basis functions M = 3, K = 1

Knot at ξ1 = 0.4
Global θ2 = 1 and local θ2+1 = 2.3
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Example: Basis functions M = 3, K = 1

Knot at ξ1 = 0.4
Modification: subtract θ2+1 = 2.3 locally
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Recap Basis functions Smoothing Smoothing splines

Example: Basis functions M = 4, K = 1

Knot at ξ1 = 0.4
Global θ3 = 1
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Recap Basis functions Smoothing Smoothing splines

Example: Basis functions M = 4, K = 1

Knot at ξ1 = 0.4
Global θ3 = 1 and local θ3+1 = 6
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Recap Basis functions Smoothing Smoothing splines

Example: Basis functions M = 4, K = 1

Knot at ξ1 = 0.4
Modification: subtract θ3+1 = 6 locally
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Recap Basis functions Smoothing Smoothing splines

Example: Basis functions M = 4, K = 2

Knot at ξ1 = 0.4 and ξ2 = 0.8
Global θ3 = 1
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Recap Basis functions Smoothing Smoothing splines

Example: Basis functions M = 4, K = 2

Knot at ξ1 = 0.4 and ξ2 = 0.8
Global θ3 = 1 and local θ3+1 = 6, θ3+2 = 12
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Recap Basis functions Smoothing Smoothing splines

Example: Basis functions M = 4, K = 2

Knot at ξ1 = 0.4 and ξ2 = 0.8
Modification: subtract θ3+1 = 6 “locally” from ξ1 onwards
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Example: Basis functions M = 4, K = 2

Knot at ξ1 = 0.4 and ξ2 = 0.8
Modification: add θ3+2 = 12 “locally” from ξ2 onwards
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Recap Basis functions Smoothing Smoothing splines

Example: Polynomials splines

K = 1 knot
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Example: Polynomials splines

K = 1 knot
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Example: Polynomials splines

K = 1 knot
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Example: Polynomials splines

K = 1 knot
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Recap Basis functions Smoothing Smoothing splines

Example: Polynomials splines

Depends on K and where
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Example: Polynomials splines

Depends on K and where
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Example: Polynomials splines

Depends on K and where
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Recap Basis functions Smoothing Smoothing splines

Example: Polynomials splines

Depends on K and where
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Recap Basis functions Smoothing Smoothing splines

Natural splines

Tail behaviour still bad. (high variance)

Natural spline: Take polynomial of lower order M/2− 1 for
function past the end points
Natural spline has K parameters! Whatever M may be
“Solves”: How many knots. (specify the number of
parameters)
Solution to where: use quantile of observed X
Still have to choose the order M
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Still have to choose the order M
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Natural splines

Tail behaviour still bad. (high variance)
Natural spline: Take polynomial of lower order M/2− 1 for
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Recap Basis functions Smoothing Smoothing splines

Natural splines

Tail behaviour still bad. (high variance)
Natural spline: Take polynomial of lower order M/2− 1 for
function past the end points
Natural spline has K parameters! Whatever M may be
“Solves”: How many knots. (specify the number of
parameters)
Solution to where: use quantile of observed X
Still have to choose the order M



Recap Basis functions Smoothing Smoothing splines

Natural splines basis

Natural splines are polynomial splines that have lower order
“tails” A natural spline of order m with K number of knots is has
K number of basis functions:

Global polynomial of order m

N0(x) = x0, . . . ,Nm−3(x) = xm−3 (14)

Local modifications:

Nk+2(x) = dk (x , ξk )− dK−1(x , ξK−1) for k = 1, . . . ,K −m + 1
(15)

where

dk (x , ξk ) =
(x − ξk )3

+ − (x − ξK )3
+

ξK − ξk
(16)
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Natural splines basis

Natural splines are polynomial splines that have lower order
“tails” A natural spline of order m with K number of knots is has
K number of basis functions:

Global polynomial of order m

N0(x) = x0, . . . ,Nm−3(x) = xm−3 (14)

Local modifications:

Nk+2(x) = dk (x , ξk )− dK−1(x , ξK−1) for k = 1, . . . ,K −m + 1
(15)

where

dk (x , ξk ) =
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+

ξK − ξk
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Example: Natural splines
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Example: Natural splines
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Example: Natural splines
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Example: Natural splines
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Example: Natural splines
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Example: Natural splines
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Example: Natural splines
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Example: Natural splines
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Example: Natural splines
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Example: Natural splines
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Example: Natural splines
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Example: Natural splines
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Recap Basis functions Smoothing Smoothing splines

Example: Natural splines
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Recap Basis functions Smoothing Smoothing splines

Uniqueness and regularisation

Previous: p � n regime. Matrix “trick”: small to big with
limit at p = n and note the interpolation.

Problem: when p > n then also have Y = X (θ(0) + u) + ε,
where Xu = 0. There are many u s.t. Xu = 0, thus,
non-uniqueness.
Solution: Choose the solution s.t. θ(0) + u is small. In other
words, instead of minimising

∑n
i=1(yi − f̃ (xi))2 minimise

the following instead

f̂ (x) = argmin
f̃∈F

n∑
i=1

(yi − f̃ (xi))2 + λpenalty(f̃ ). (17)

for some fixed λ > 0.
Example: Lasso/ridge/elastic nets. Here: smoothing
splines (directly on the function, not on the parameters).
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Uniqueness and regularisation

Previous: p � n regime. Matrix “trick”: small to big with
limit at p = n and note the interpolation.
Problem: when p > n then also have Y = X (θ(0) + u) + ε,
where Xu = 0. There are many u s.t. Xu = 0, thus,
non-uniqueness.
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Uniqueness and regularisation

Previous: p � n regime. Matrix “trick”: small to big with
limit at p = n and note the interpolation.
Problem: when p > n then also have Y = X (θ(0) + u) + ε,
where Xu = 0. There are many u s.t. Xu = 0, thus,
non-uniqueness.
Solution: Choose the solution s.t. θ(0) + u is small. In other
words, instead of minimising
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Example: Lasso/ridge/elastic nets. Here: smoothing
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Recap Basis functions Smoothing Smoothing splines

Smoothing spline set-up

Big to small, start with n� p and regularise:

f̂ (x) = argmin
f̃∈F

n∑
i=1

(yi − f̃ (xi))2 + λ

∫
[f (m/2)(x)]2dx (18)

Candidate set: Fλ are all functions that have a bounded
squared m/2 derivative.
Problem: Infinite-dimensional optimisation problem over all
functions f
Remarkable: There is unique minimiser: an m order
natural spline with knots at the observations x1, . . . , xn.
Note: This spline is sum of finite number of basis functions
(i.e., n = K parameters). These basis functions are
decided by the data x1, . . . , xn.
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Smoothing spline set-up

Big to small, start with n� p and regularise:

f̂ (x) = argmin
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∫
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Recap Basis functions Smoothing Smoothing splines

Smoothing splines basis

A smoothing spline has basis functions decided by the data
x1, . . . , xn

Global polynomial of order m

N0(x) = x0, . . . ,Nm−3(x) = xm−3 (19)

Local modifications:

Ni+2(x) = di(x , xi)− dn−1(x , xn−1) for i = 1, . . . ,n −m + 1
(20)

where

dk (x , xi) =
(x − xi)

3
+ − (x − xn)3

+

xn − xi
(21)
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Recap Basis functions Smoothing Smoothing splines

Return of the “matrix trick”

Thus the candidate solution is of the form

f̃ (x) =
n∑

i=1

Ni(x)θj (22)

hence

MSE(f̃ ) = (y − Nθ)T (y − Nθ) + λθT Ωnθ, (23)

where N is the design matrix {Nij} = Nj(xi) and

{Ωn}ji =

∫
N(m/2)

j (x)N(m/2)
i (x)dx (24)



Recap Basis functions Smoothing Smoothing splines

Return of the “matrix trick”

Thus the candidate solution is of the form

f̃ (x) =
n∑

i=1

Ni(x)θj (22)

hence

MSE(f̃ ) = (y − Nθ)T (y − Nθ) + λθT Ωnθ, (23)

where N is the design matrix {Nij} = Nj(xi) and

{Ωn}ji =

∫
N(m/2)

j (x)N(m/2)
i (x)dx (24)

Minimisation

θ̂ = (NT N + λΩn)−1NT y (25)
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Example: Smoothing spline with cross validation

3 4 5 6 7

10

20

30

40

50

60

70

Smoothing spline with cv

x

y



Recap Basis functions Smoothing Smoothing splines

Choosing the λ and degrees of freedom

Recall: n� p regime solution: Natural splines f̂ (X ) = X θ̂
with K knots:

f̂ (X ) = X (X T X )−1X T︸ ︷︷ ︸
Hξ

y (26)

where Hξ is a symmetric, positive semidefinite matrix.

Compare: Smoothing spline

f̂ (N) = N(NT N + λΩn)−1NT︸ ︷︷ ︸
Sλ

y (27)

where Sλ is a symmetric, positive semidefinite matrix.
trace(Hξ) = K , the dimension of the space Hξ projects to
Take df = trace(Sλ). Note as λ→∞ this lowers the
dimension.
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Further relationships

Projections
RKHS
Gaussian processes
Bayesian nonparametric regression
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