Smoothing splines

Statistical learning reading group

Alexander Ly

Psychological Methods University of Amsterdam

Amsterdam, 8 March 2016

Overview

(1) Recap: Statistical learning theory
(2) Basis functions
(3) Smoothing and the number of parameters

4 Smoothing splines

Regression

- There exists a true function f^{*} such that $y=f^{*}(x)+\epsilon$. Goal: Give a single best guess $\hat{f}(x)$ of $f^{*}(x)$ based on finite samples $\binom{x_{1}}{y_{1}}, \ldots,\binom{x_{n}}{y_{n}}$.

Regression

- There exists a true function f^{*} such that $y=f^{*}(x)+\epsilon$. Goal: Give a single best guess $\hat{f}(x)$ of $f^{*}(x)$ based on finite samples $\binom{x_{1}}{y_{1}}, \ldots,\binom{x_{n}}{y_{n}}$.
- Step 1: Define "best guess" aka define a loss function

$$
\begin{equation*}
E\left(f^{*}(x)-\hat{f}(x)\right)^{2} \tag{1}
\end{equation*}
$$

Regression

- There exists a true function f^{*} such that $y=f^{*}(x)+\epsilon$. Goal: Give a single best guess $\hat{f}(x)$ of $f^{*}(x)$ based on finite samples $\binom{x_{1}}{y_{1}}, \ldots,\binom{x_{n}}{y_{n}}$.
- Step 1: Define "best guess" aka define a loss function

$$
\begin{equation*}
E\left(f^{*}(x)-\hat{f}(x)\right)^{2} \tag{1}
\end{equation*}
$$

- Step 2: Define a candidate collection of functions \mathcal{F}

Regression

- There exists a true function f^{*} such that $y=f^{*}(x)+\epsilon$. Goal: Give a single best guess $\hat{f}(x)$ of $f^{*}(x)$ based on finite samples $\binom{x_{1}}{y_{1}}, \ldots,\binom{x_{n}}{y_{n}}$.
- Step 1: Define "best guess" aka define a loss function

$$
\begin{equation*}
E\left(f^{*}(x)-\hat{f}(x)\right)^{2} \tag{1}
\end{equation*}
$$

- Step 2: Define a candidate collection of functions \mathcal{F}
- Step 3: Calculate the (empirical) loss for each single candidate \tilde{f} in \mathcal{F}

$$
\begin{equation*}
\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\tilde{f}\left(x_{i}\right)\right)^{2} \tag{2}
\end{equation*}
$$

Regression

- There exists a true function f^{*} such that $y=f^{*}(x)+\epsilon$. Goal: Give a single best guess $\hat{f}(x)$ of $f^{*}(x)$ based on finite samples $\binom{x_{1}}{y_{1}}, \ldots,\binom{x_{n}}{y_{n}}$.
- Step 1: Define "best guess" aka define a loss function

$$
\begin{equation*}
E\left(f^{*}(x)-\hat{f}(x)\right)^{2} \tag{1}
\end{equation*}
$$

- Step 2: Define a candidate collection of functions \mathcal{F}
- Step 3: Calculate the (empirical) loss for each single candidate \tilde{f} in \mathcal{F}

$$
\begin{equation*}
\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\tilde{f}\left(x_{i}\right)\right)^{2} \tag{2}
\end{equation*}
$$

- Step 4: Minimise: Take as best guess:

$$
\begin{equation*}
\hat{f}(x)=\underset{\tilde{f} \in \mathcal{F}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\tilde{f}\left(x_{i}\right)\right)^{2} \tag{3}
\end{equation*}
$$

Example of \mathcal{F} : Linear regression

Trick: frame problem in terms of matrix algebra:

$$
\begin{equation*}
y=X \theta+\epsilon \tag{4}
\end{equation*}
$$

observed $y \in \mathbb{R}^{n}$, observed design Matrix $X \in \mathbb{R}^{n \times p}$, parameters $\theta \in \mathbb{R}^{p}$
Pro:

Con:

Example of \mathcal{F} : Linear regression

Trick: frame problem in terms of matrix algebra:

$$
\begin{equation*}
y=X \theta+\epsilon \tag{4}
\end{equation*}
$$

observed $y \in \mathbb{R}^{n}$, observed design Matrix $X \in \mathbb{R}^{n \times p}$, parameters $\theta \in \mathbb{R}^{p}$
Pro:

- Computationally: No need to calculate the loss for each $f \in \mathcal{F}$. Solve by matrix algebra $\hat{\theta}=\left(X^{\top} X\right)^{-1} X^{\top} y$

Con:

Example of \mathcal{F} : Linear regression

Trick: frame problem in terms of matrix algebra:

$$
\begin{equation*}
y=X \theta+\epsilon \tag{4}
\end{equation*}
$$

observed $y \in \mathbb{R}^{n}$, observed design Matrix $X \in \mathbb{R}^{n \times p}$, parameters $\theta \in \mathbb{R}^{p}$
Pro:

- Computationally: No need to calculate the loss for each $f \in \mathcal{F}$. Solve by matrix algebra $\hat{\theta}=\left(X^{\top} X\right)^{-1} X^{\top} y$
- Unique minimiser: is the plugin $\hat{f}\left(x_{\text {new }}\right)=\hat{\theta} x_{\text {new }}$

Con:

Example of \mathcal{F} : Linear regression

Trick: frame problem in terms of matrix algebra:

$$
\begin{equation*}
y=X \theta+\epsilon \tag{4}
\end{equation*}
$$

observed $y \in \mathbb{R}^{n}$, observed design Matrix $X \in \mathbb{R}^{n \times p}$, parameters $\theta \in \mathbb{R}^{p}$
Pro:

- Computationally: No need to calculate the loss for each $f \in \mathcal{F}$. Solve by matrix algebra $\hat{\theta}=\left(X^{\top} X\right)^{-1} X^{\top} y$
- Unique minimiser: is the plugin $\hat{f}\left(x_{\text {new }}\right)=\hat{\theta} x_{\text {new }}$

Con:

- Misspecification The true f^{*} is most likely not linear, thus, $f^{*} \notin \mathcal{F}$

Other examples of \mathcal{F} :

The $p \ll n$ "regime" (i.e., matrix trick is okay):

The $n \ll p$ "regime" (i.e., no uniqueness):

Other examples of \mathcal{F} :

The $p \ll n$ "regime" (i.e., matrix trick is okay):

- Polynomials $\mathcal{F}_{m}:=\left\{f(x)=\theta_{m-1} x^{m-1}+\ldots+\theta_{1} x+\theta_{0}\right\}$ with m parameters

The $n \ll p$ "regime" (i.e., no uniqueness):

Other examples of \mathcal{F} :

The $p \ll n$ "regime" (i.e., matrix trick is okay):

- Polynomials $\mathcal{F}_{m}:=\left\{f(x)=\theta_{m-1} x^{m-1}+\ldots+\theta_{1} x+\theta_{0}\right\}$ with m parameters
- Piecewise polynomials $\mathcal{F}_{m, K}$ with $m K+m$ parameters

The $n \ll p$ "regime" (i.e., no uniqueness):

Other examples of \mathcal{F} :

The $p \ll n$ "regime" (i.e., matrix trick is okay):

- Polynomials $\mathcal{F}_{m}:=\left\{f(x)=\theta_{m-1} x^{m-1}+\ldots+\theta_{1} x+\theta_{0}\right\}$ with m parameters
- Piecewise polynomials $\mathcal{F}_{m, K}$ with $m K+m$ parameters
- Polynomial splines with $m+K$ parameters

The $n \ll p$ "regime" (i.e., no uniqueness):

Other examples of \mathcal{F} :

The $p \ll n$ "regime" (i.e., matrix trick is okay):

- Polynomials $\mathcal{F}_{m}:=\left\{f(x)=\theta_{m-1} x^{m-1}+\ldots+\theta_{1} x+\theta_{0}\right\}$ with m parameters
- Piecewise polynomials $\mathcal{F}_{m, K}$ with $m K+m$ parameters
- Polynomial splines with $m+K$ parameters
- Natural splines with K parameters

The $n \ll p$ "regime" (i.e., no uniqueness):

Other examples of \mathcal{F} :

The $p \ll n$ "regime" (i.e., matrix trick is okay):

- Polynomials $\mathcal{F}_{m}:=\left\{f(x)=\theta_{m-1} x^{m-1}+\ldots+\theta_{1} x+\theta_{0}\right\}$ with m parameters
- Piecewise polynomials $\mathcal{F}_{m, K}$ with $m K+m$ parameters
- Polynomial splines with $m+K$ parameters
- Natural splines with K parameters
- Spoiler: Relationship number of parameters and smoothing
The $n \ll p$ "regime" (i.e., no uniqueness):

Other examples of \mathcal{F} :

The $p \ll n$ "regime" (i.e., matrix trick is okay):

- Polynomials $\mathcal{F}_{m}:=\left\{f(x)=\theta_{m-1} x^{m-1}+\ldots+\theta_{1} x+\theta_{0}\right\}$ with m parameters
- Piecewise polynomials $\mathcal{F}_{m, K}$ with $m K+m$ parameters
- Polynomial splines with $m+K$ parameters
- Natural splines with K parameters
- Spoiler: Relationship number of parameters and smoothing
The $n \ll p$ "regime" (i.e., no uniqueness):
- Smoothing splines with "uncountably many parameters"

Other examples of \mathcal{F} :

The $p \ll n$ "regime" (i.e., matrix trick is okay):

- Polynomials $\mathcal{F}_{m}:=\left\{f(x)=\theta_{m-1} x^{m-1}+\ldots+\theta_{1} x+\theta_{0}\right\}$ with m parameters
- Piecewise polynomials $\mathcal{F}_{m, K}$ with $m K+m$ parameters
- Polynomial splines with $m+K$ parameters
- Natural splines with K parameters
- Spoiler: Relationship number of parameters and smoothing
The $n \ll p$ "regime" (i.e., no uniqueness):
- Smoothing splines with "uncountably many parameters"
- Spoiler: Relationship degree of freedom and tuning parameter

Key in the $p \ll n$ regime

To apply the "matrix trick" in case of $p \ll n$ (polynomials, piecewise polynomials, polynomial splines and natural splines) use basis functions (i.e., transform x).

- Use powers of x for non-linear behaviour:

$$
\begin{equation*}
g_{j}(x)=x^{j} \tag{5}
\end{equation*}
$$

Key in the $p \ll n$ regime

To apply the "matrix trick" in case of $p \ll n$ (polynomials, piecewise polynomials, polynomial splines and natural splines) use basis functions (i.e., transform x).

- Use powers of x for non-linear behaviour:

$$
\begin{equation*}
g_{j}(x)=x^{j} \tag{5}
\end{equation*}
$$

- Use indicator functions for local behaviour:

$$
g_{j}(x)=1_{\left(\xi_{j-1}, \xi_{j}\right]}(x):= \begin{cases}1 & \text { if } x \in\left(\xi_{j-1}, \xi_{j}\right] \tag{6}\\ 0 & \text { otherwise }\end{cases}
$$

Key in the $p \ll n$ regime

To apply the "matrix trick" in case of $p \ll n$ (polynomials, piecewise polynomials, polynomial splines and natural splines) use basis functions (i.e., transform x).

- Use powers of x for non-linear behaviour:

$$
\begin{equation*}
g_{j}(x)=x^{j} \tag{5}
\end{equation*}
$$

- Use indicator functions for local behaviour:

$$
g_{j}(x)=1_{\left(\xi_{j-1}, \xi_{j}\right]}(x):= \begin{cases}1 & \text { if } x \in\left(\xi_{j-1}, \xi_{j}\right] \tag{6}\\ 0 & \text { otherwise }\end{cases}
$$

- Combination of the two

Polynomial regression

$$
\mathcal{F}_{m}:=\left\{f(x)=\theta_{m-1} x^{m-1}+\ldots+\theta_{0}\right\}=\left\{f(x)=\sum_{j=0}^{m-1} \theta_{j} g_{j}(x)\right\},
$$

thus $g_{j}(x)=x^{j}$.

Polynomial regression

$$
\mathcal{F}_{m}:=\left\{f(x)=\theta_{m-1} x^{m-1}+\ldots+\theta_{0}\right\}=\left\{f(x)=\sum_{j=0}^{m-1} \theta_{j} g_{j}(x)\right\}
$$

thus $g_{j}(x)=x^{j}$. Solution: Take \hat{f} with

$$
\begin{equation*}
\hat{\theta}=\left(X^{\top} X\right)^{-1} X^{\top} y \tag{7}
\end{equation*}
$$

where the design matrix is

$$
X=\left(\begin{array}{cccc}
g_{0}\left(x_{1}\right) & g_{1}\left(x_{1}\right) & \ldots & g_{m-1}\left(x_{1}\right) \\
g_{0}\left(x_{2}\right) & g_{1}\left(x_{2}\right) & \ldots & g_{m-1}\left(x_{2}\right) \\
\vdots & \vdots & \ddots & \vdots \\
g_{0}\left(x_{n}\right) & g_{1}\left(x_{n}\right) & \ldots & g_{m-1}\left(x_{n}\right)
\end{array}\right)=\left(\begin{array}{cccc}
1 & x_{1}^{1} & \ldots & x_{1}^{m-1} \\
1 & x_{2}^{1} & \ldots & x_{2}^{m-1} \\
\vdots & \vdots & \ddots & \vdots \\
1 & x_{n}^{1} & \ldots & x_{n}^{m-1}
\end{array}\right)
$$

Polynomial regression

Solution: Take \hat{f} with

$$
\begin{equation*}
\hat{\theta}=\left(X^{\top} X\right)^{-1} X^{\top} y \tag{7}
\end{equation*}
$$

where the design matrix is

$$
X=\left(\begin{array}{cccc}
g_{0}\left(x_{1}\right) & g_{1}\left(x_{1}\right) & \ldots & g_{m-1}\left(x_{1}\right) \\
g_{0}\left(x_{2}\right) & g_{1}\left(x_{2}\right) & \ldots & g_{m-1}\left(x_{2}\right) \\
\vdots & \vdots & \ddots & \vdots \\
g_{0}\left(x_{n}\right) & g_{1}\left(x_{n}\right) & \ldots & g_{m-1}\left(x_{n}\right)
\end{array}\right)=\left(\begin{array}{cccc}
1 & x_{1}^{1} & \ldots & x_{1}^{m-1} \\
1 & x_{2}^{1} & \ldots & x_{2}^{m-1} \\
\vdots & \vdots & \ddots & \vdots \\
1 & x_{n}^{1} & \ldots & x_{n}^{m-1}
\end{array}\right)
$$

Pick the order m by hand or by cross validation

Target:

Target: $2 \mathrm{x}+\mathrm{x}^{\wedge} \mathbf{2}$ with $\mathrm{n}=50$

Polynomial regression:

Polynomial regression:

Poly: $M=4$: estimate $2 x+x^{\wedge} 2$ with $n=50$

Polynomial regression:

Poly: M=5: estimate $\mathbf{2 x + x} \mathbf{x}^{\wedge}$ with $\mathrm{n}=\mathbf{5 0}$

Polynomial regression:

Poly: $\mathrm{M}=6$: estimate $2 \mathrm{x}+\mathrm{x}^{\wedge} \mathbf{2}$ with $\mathrm{n}=50$

Polynomial regression:

Poly: $\mathrm{M}=7$: estimate $\mathbf{2 x + x ^ { \wedge }} \mathbf{2}$ with $\mathrm{n}=50$

Polynomial regression:

Poly: M=8: estimate $\mathbf{2 x + x}$ ^2 with $\mathbf{n = 5 0}$

Polynomial regression:

Poly: $\mathrm{M}=8$: estimate $\mathbf{2 x + x ^ { \wedge }} \mathbf{2}$ with $\mathbf{n = 5 0}$

Great in the middle (low bias), bad in the tails (high variance).

Example: Piecewise constants

Introduce knots ξ_{1}, \ldots, ξ_{K} yielding $K+1$ bins. Fit a constant function locally.

Example: Piecewise constants

Introduce knots ξ_{1}, \ldots, ξ_{K} yielding $K+1$ bins. Fit a constant function locally.

2 knots: estimate $\mathbf{2 x + x} \mathbf{x}^{\wedge}$ 2 with $\mathrm{n}=50$

Example: Piecewise constants

Introduce knots ξ_{1}, \ldots, ξ_{K} yielding $K+1$ bins. Fit a constant function locally.

3 knots: estimate $\mathbf{2 x + x} \mathbf{x}^{\boldsymbol{2}}$ with $\mathrm{n}=\mathbf{5 0}$

Example: Piecewise constants

Introduce knots ξ_{1}, \ldots, ξ_{K} yielding $K+1$ bins. Fit a constant function locally.

4 knots: estimate $2 x+x^{\wedge} 2$ with $n=50$

Example: Piecewise constants

Depends on K and where

Example: Piecewise constants

Depends on K and where

Example: Piecewise constants

Depends on K and where

Example: Piecewise constants

Depends on K and where
4 knots: estimate $2 x+x^{\wedge} \mathbf{2}$ with $n=50$

Basis functions

Piecewise constants:

$$
\mathcal{F}_{K}:=\left\{f(x)=\sum_{k=0}^{K} \theta_{k} g_{k}(x)\right\},
$$

thus $g_{k}(x)=\mathbf{1}_{\left(\xi_{k-1}, \xi_{k}\right]}(x)$.

Basis functions

Piecewise constants:

$$
\mathcal{F}_{K}:=\left\{f(x)=\sum_{k=0}^{K} \theta_{k} g_{k}(x)\right\}
$$

thus $g_{k}(x)=\mathbf{1}_{\left(\xi_{k-1}, \xi_{k}\right]}(x)$. Solution: Take \hat{f} with

$$
\begin{equation*}
\hat{\theta}=\left(X^{\top} X\right)^{-1} X^{\top} y \tag{8}
\end{equation*}
$$

where the design matrix is

$$
X=\left(\begin{array}{cccc}
g_{0}\left(x_{1}\right) & g_{1}\left(x_{1}\right) & \ldots & g_{m-1}\left(x_{1}\right) \\
g_{0}\left(x_{2}\right) & g_{1}\left(x_{2}\right) & \ldots & g_{m-1}\left(x_{2}\right) \\
\vdots & \vdots & \ddots & \vdots \\
g_{0}\left(x_{n}\right) & g_{1}\left(x_{n}\right) & \ldots & g_{m-1}\left(x_{n}\right)
\end{array}\right)=\left(\begin{array}{cccc}
0 & 1 & \ldots & 0 \\
1 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 1
\end{array}\right)
$$

each row has only one " 1 ".

Global function, local modification

Piecewise constants:

$$
\mathcal{F}_{K}:=\left\{f(x)=\sum_{k=0}^{K} \theta_{k} g_{k}(x)\right\}
$$

thus $g_{k}(x)=\mathbf{1}_{\left(\xi_{k-1}, \xi_{k}\right]}(x)$.

- Take the $g_{0}(x)$ just the whole range with a global parameter θ_{0}.

Global function, local modification

Piecewise constants:

$$
\mathcal{F}_{K}:=\left\{f(x)=\sum_{k=0}^{K} \theta_{k} g_{k}(x)\right\}
$$

thus $g_{k}(x)=\mathbf{1}_{\left(\xi_{k-1}, \xi_{k}\right]}(x)$.

- Take the $g_{0}(x)$ just the whole range with a global parameter θ_{0}.
- Consider θ_{k} only the local modification of the k th interval $\left(\xi_{k-1}, \xi_{k}\right]$

Global function, local modification

1 knots: estimate $2 x+x^{\wedge} 2$ with $n=50$

- Local: $\theta_{0} \approx 22$ on the zeroth interval
- Local: $\theta_{1} \approx 39$ on the first interval

Global function, local modification

1 knots: estimate $2 x+x^{\wedge} 2$ with $n=50$

- Global: $\theta_{0} \approx 22$ on the global interval
- Local: $\theta_{1} \approx 17$ modification on the first interval

Piecewise polynomials

$$
\mathcal{F}_{m, K}=f(x)= \begin{cases}\sum_{j=0}^{m-1} \theta_{j, 1} x^{j} & \text { if } x \leq \xi_{1} \tag{9}\\ \sum_{j=0}^{m-1} \theta_{j, 2} x^{j} & \text { if } \xi_{1}<x \leq \xi_{2} \\ \vdots & \vdots \\ \sum_{j=0}^{m-1} \theta_{j, k} x^{j} & \text { if } \xi_{k-1}<x \leq \xi_{k} \\ \vdots & \vdots \\ \sum_{j=0}^{m-1} \theta_{j, K} x^{j} & \text { if } \xi_{K-1}<x \leq \xi_{K}\end{cases}
$$

with $m(K+1)$ parameters. Thus,

$$
\begin{equation*}
\mathcal{F}_{m, k}=\left\{f(x)=\sum_{j=0, k=1}^{m-1, K} \theta_{j, k} g_{j, k}(x)\right\} \tag{10}
\end{equation*}
$$

where $g_{j, k}(x)=x^{j} 1_{\left(\xi_{k-1}, \xi_{k}\right]}(x)$.

Basis functions

Piecewise polynomials

$$
\mathcal{F}_{m, K}:=\left\{f(x)=\sum_{j, k} \theta_{j, k} g_{j, k}(x)\right\}
$$

thus $g_{j, k}(x)=x^{j} \mathbf{1}_{\left(\xi_{k-1}, \xi_{k}\right]}(x)$.

Basis functions

Piecewise polynomials

$$
\mathcal{F}_{m, K}:=\left\{f(x)=\sum_{j, k} \theta_{j, k} g_{j, k}(x)\right\}
$$

thus $g_{j, k}(x)=x^{j} \mathbf{1}_{\left(\xi_{k-1}, \xi_{k}\right]}(x)$. Solution: Take \hat{f} with

$$
\begin{equation*}
\hat{\theta}=\left(X^{T} X\right)^{-1} X^{T} y \tag{11}
\end{equation*}
$$

where the design matrix is

$$
X=\left(\begin{array}{cccc}
g_{0}\left(x_{1}\right) & g_{1}\left(x_{1}\right) & \ldots & g_{m-1}\left(x_{1}\right) \\
g_{0}\left(x_{2}\right) & g_{1}\left(x_{2}\right) & \ldots & g_{m-1}\left(x_{2}\right) \\
\vdots & \vdots & \ddots & \vdots \\
g_{0}\left(x_{n}\right) & g_{1}\left(x_{n}\right) & \ldots & g_{m-1}\left(x_{n}\right)
\end{array}\right)=\left(\begin{array}{cccc}
0 & x & \ldots & 0 \\
1 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & x^{m-1}
\end{array}\right)
$$

each row has only one monomial " x^{j} ".

Example: Piecewise polynomials

$$
K=1 \mathrm{knot}
$$

Piece poly $\mathrm{M}=2, \mathrm{~K}=1$

Example: Piecewise polynomials

$$
K=1 \mathrm{knot}
$$

Piece poly M=3, K=1

Example: Piecewise polynomials

$$
K=1 \mathrm{knot}
$$

Piece poly $\mathrm{M}=4, \mathrm{~K}=1$

Example: Piecewise polynomials

$K=1 \mathrm{knot}$
Piece poly M=5, K=1

Example: Piecewise polynomials

Depends on K and where
Piece poly $\mathbf{M}=2, \mathrm{~K}=\mathbf{2}$

Example: Piecewise polynomials

Depends on K and where
Piece poly $\mathrm{M}=3, \mathrm{~K}=\mathbf{2}$

Example: Piecewise polynomials

Depends on K and where
Piece poly $\mathrm{M}=4, \mathrm{~K}=2$

Example: Piecewise polynomials

Depends on K and where
Piece poly M=5, K=2

Splines

Splines are piecewise polynomials that are smooth.
Piece poly $\mathrm{M}=4, \mathrm{~K}=1$

Splines

Splines are piecewise polynomials that are smooth. A polynomial spline of order m with K number of knots is has the basis functions:

- Global polynomial of order m

$$
\begin{equation*}
g_{0}(x)=x^{0}, \ldots, g_{m-1}(x)=x^{m-1} \tag{12}
\end{equation*}
$$

Splines

Splines are piecewise polynomials that are smooth. A polynomial spline of order m with K number of knots is has the basis functions:

- Global polynomial of order m

$$
\begin{equation*}
g_{0}(x)=x^{0}, \ldots, g_{m-1}(x)=x^{m-1} \tag{12}
\end{equation*}
$$

- Local modifications:

$$
\begin{equation*}
g_{m+1}(x)=\left(x-\xi_{1}\right)_{+}^{m-1}, \ldots, g_{m+K}(x)=\left(x-\xi_{K}\right)_{+}^{m-1} \tag{13}
\end{equation*}
$$

thus, $m+K$ parameters.

Splines

Splines are piecewise polynomials that are smooth. A polynomial spline of order m with K number of knots is has the basis functions:

- Global polynomial of order m

$$
\begin{equation*}
g_{0}(x)=x^{0}, \ldots, g_{m-1}(x)=x^{m-1} \tag{12}
\end{equation*}
$$

- Local modifications:

$$
\begin{equation*}
g_{m+1}(x)=\left(x-\xi_{1}\right)_{+}^{m-1}, \ldots, g_{m+K}(x)=\left(x-\xi_{K}\right)_{+}^{m-1} \tag{13}
\end{equation*}
$$

thus, $m+K$ parameters.

- Note $m+K<m(K+1)$. Example cubic spline with two knots: $4+2$ vs 12 parameters.

Example: Basis functions $M=2, K=1$

Knot at $\xi_{1}=0.4$
Global $\theta_{1}=1$

Spline $\mathbf{M}=2, \mathrm{~K}=1$: Basis functions

Example: Basis functions $M=2, K=1$

Knot at $\xi_{1}=0.4$
Global $\theta_{1}=1$ and local $\theta_{1+1}=0.4$

Spline $\mathrm{M}=2, \mathrm{~K}=1$: Basis functions

Example: Basis functions $M=2, K=1$

Knot at $\xi_{1}=0.4$
Modification: subtract $\theta_{1+1}=0.4$ locally

Spline M=2, K=1: Basis functions

Example: Basis functions $M=3, K=1$

Knot at $\xi_{1}=0.4$
Global $\theta_{2}=1$

Spline $\mathrm{M}=3, \mathrm{~K}=1$: Basis functions

Example: Basis functions $M=3, K=1$

Knot at $\xi_{1}=0.4$
Global $\theta_{2}=1$ and local $\theta_{2+1}=2.3$
Spline $M=3, K=1$: Basis functions

Example: Basis functions $M=3, K=1$

Knot at $\xi_{1}=0.4$
Modification: subtract $\theta_{2+1}=2.3$ locally
Spline $\mathrm{M}=3, \mathrm{~K}=1$: Basis functions

Example: Basis functions $M=4, K=1$

Knot at $\xi_{1}=0.4$
Global $\theta_{3}=1$

Spline $\mathrm{M}=3, \mathrm{~K}=1$: Basis functions

Example: Basis functions $M=4, K=1$

Knot at $\xi_{1}=0.4$
Global $\theta_{3}=1$ and local $\theta_{3+1}=6$
Spline $\mathrm{M}=3, \mathrm{~K}=1$: Basis functions

Example: Basis functions $M=4, K=1$

Knot at $\xi_{1}=0.4$
Modification: subtract $\theta_{3+1}=6$ locally

Spline $\mathrm{M}=3, \mathrm{~K}=1$: Basis functions

Example: Basis functions $M=4, K=2$

Knot at $\xi_{1}=0.4$ and $\xi_{2}=0.8$
Global $\theta_{3}=1$

Spline $M=4, K=2$: Basis functions

Example: Basis functions $M=4, K=2$

Knot at $\xi_{1}=0.4$ and $\xi_{2}=0.8$
Global $\theta_{3}=1$ and local $\theta_{3+1}=6, \theta_{3+2}=12$
Spline $\mathrm{M}=4, \mathrm{~K}=2$: Basis functions

Example: Basis functions $M=4, K=2$

Knot at $\xi_{1}=0.4$ and $\xi_{2}=0.8$
Modification: subtract $\theta_{3+1}=6$ "locally" from ξ_{1} onwards

Spline M=4, K=2: Basis functions

Example: Basis functions $M=4, K=2$

Knot at $\xi_{1}=0.4$ and $\xi_{2}=0.8$
Modification: add $\theta_{3+2}=12$ "locally" from ξ_{2} onwards
Spline M=4, K=2: Basis functions

Example: Polynomials splines

$$
K=1 \mathrm{knot}
$$

Spline M=2, K=1

Example: Polynomials splines

$K=1 \mathrm{knot}$

Spline M=3, K=1

Example: Polynomials splines

$$
K=1 \mathrm{knot}
$$

Spline M=4, K=1

Example: Polynomials splines

$$
K=1 \mathrm{knot}
$$

Spline M=5, K=1

Example: Polynomials splines

Depends on K and where
Spline M=2, K=2

Example: Polynomials splines

Depends on K and where
Spline M=3, K=2

Example: Polynomials splines

Depends on K and where

Spline M=4, K=2

Example: Polynomials splines

Depends on K and where

Spline M=5, K=2

Natural splines

- Tail behaviour still bad. (high variance)

Natural splines

- Tail behaviour still bad. (high variance)
- Natural spline: Take polynomial of lower order M/2-1 for function past the end points

Natural splines

- Tail behaviour still bad. (high variance)
- Natural spline: Take polynomial of lower order M/2-1 for function past the end points
- Natural spline has K parameters! Whatever M may be

Natural splines

- Tail behaviour still bad. (high variance)
- Natural spline: Take polynomial of lower order M/2-1 for function past the end points
- Natural spline has K parameters! Whatever M may be
- "Solves": How many knots. (specify the number of parameters)

Natural splines

- Tail behaviour still bad. (high variance)
- Natural spline: Take polynomial of lower order M/2-1 for function past the end points
- Natural spline has K parameters! Whatever M may be
- "Solves": How many knots. (specify the number of parameters)
- Solution to where: use quantile of observed X

Natural splines

- Tail behaviour still bad. (high variance)
- Natural spline: Take polynomial of lower order M/2-1 for function past the end points
- Natural spline has K parameters! Whatever M may be
- "Solves": How many knots. (specify the number of parameters)
- Solution to where: use quantile of observed X
- Still have to choose the order M

Natural splines basis

Natural splines are polynomial splines that have lower order "tails" A natural spline of order m with K number of knots is has K number of basis functions:

- Global polynomial of order m

$$
\begin{equation*}
N_{0}(x)=x^{0}, \ldots, N_{m-3}(x)=x^{m-3} \tag{14}
\end{equation*}
$$

Natural splines basis

Natural splines are polynomial splines that have lower order "tails" A natural spline of order m with K number of knots is has K number of basis functions:

- Global polynomial of order m

$$
\begin{equation*}
N_{0}(x)=x^{0}, \ldots, N_{m-3}(x)=x^{m-3} \tag{14}
\end{equation*}
$$

Natural splines basis

Natural splines are polynomial splines that have lower order "tails" A natural spline of order m with K number of knots is has K number of basis functions:

- Global polynomial of order m

$$
\begin{equation*}
N_{0}(x)=x^{0}, \ldots, N_{m-3}(x)=x^{m-3} \tag{14}
\end{equation*}
$$

- Local modifications:

$$
\begin{equation*}
N_{k+2}(x)=d_{k}\left(x, \xi_{k}\right)-d_{K-1}\left(x, \xi_{K-1}\right) \text { for } k=1, \ldots, K-m+1 \tag{15}
\end{equation*}
$$

where

$$
\begin{equation*}
d_{k}\left(x, \xi_{k}\right)=\frac{\left(x-\xi_{k}\right)_{+}^{3}-\left(x-\xi_{K}\right)_{+}^{3}}{\xi_{K}-\xi_{k}} \tag{16}
\end{equation*}
$$

Example: Natural splines

Natural spline $M=2, K=1$

Example: Natural splines

Natural spline $M=2, K=2$

Example: Natural splines

Natural spline $M=2, K=3$

Example: Natural splines

Natural spline M=2, K=4

Example: Natural splines

Natural spline $M=3, K=1$

Example: Natural splines

Natural spline $\mathrm{M}=3, \mathrm{~K}=2$

Example: Natural splines

Natural spline $M=3, K=3$

Example: Natural splines

Natural spline $M=3, K=4$

Example: Natural splines

Natural spline $M=4, K=1$

Example: Natural splines

Natural spline $M=4, K=2$

Example: Natural splines

Natural spline $M=4, K=3$

Example: Natural splines

Natural spline $M=4, K=4$

Example: Natural splines

Uniqueness and regularisation

- Previous: $p \ll n$ regime. Matrix "trick": small to big with limit at $p=n$ and note the interpolation.

Uniqueness and regularisation

- Previous: $p \ll n$ regime. Matrix "trick": small to big with limit at $p=n$ and note the interpolation.
- Problem: when $p>n$ then also have $Y=X\left(\theta_{(0)}+u\right)+\epsilon$, where $X u=0$. There are many u s.t. $X u=0$, thus, non-uniqueness.

Uniqueness and regularisation

- Previous: $p \ll n$ regime. Matrix "trick": small to big with limit at $p=n$ and note the interpolation.
- Problem: when $p>n$ then also have $Y=X\left(\theta_{(0)}+u\right)+\epsilon$, where $X u=0$. There are many u s.t. $X u=0$, thus, non-uniqueness.
- Solution: Choose the solution s.t. $\theta_{(0)}+u$ is small. In other words, instead of minimising $\sum_{i=1}^{n}\left(y_{i}-\tilde{f}\left(x_{i}\right)\right)^{2}$ minimise the following instead

$$
\begin{equation*}
\hat{f}(x)=\underset{\tilde{f} \in \mathcal{F}}{\operatorname{argmin}} \sum_{i=1}^{n}\left(y_{i}-\tilde{f}\left(x_{i}\right)\right)^{2}+\lambda \text { penalty }(\tilde{f}) \tag{17}
\end{equation*}
$$

for some fixed $\lambda>0$.

Uniqueness and regularisation

- Previous: $p \ll n$ regime. Matrix "trick": small to big with limit at $p=n$ and note the interpolation.
- Problem: when $p>n$ then also have $Y=X\left(\theta_{(0)}+u\right)+\epsilon$, where $X u=0$. There are many u s.t. $X u=0$, thus, non-uniqueness.
- Solution: Choose the solution s.t. $\theta_{(0)}+u$ is small. In other words, instead of minimising $\sum_{i=1}^{n}\left(y_{i}-\tilde{f}\left(x_{i}\right)\right)^{2}$ minimise the following instead

$$
\begin{equation*}
\hat{f}(x)=\underset{\tilde{f} \in \mathcal{F}}{\operatorname{argmin}} \sum_{i=1}^{n}\left(y_{i}-\tilde{f}\left(x_{i}\right)\right)^{2}+\lambda \text { penalty }(\tilde{f}) \tag{17}
\end{equation*}
$$

for some fixed $\lambda>0$.

- Example: Lasso/ridge/elastic nets. Here: smoothing splines (directly on the function, not on the parameters).

Smoothing spline set-up

- Big to small, start with $n \ll p$ and regularise:

$$
\begin{equation*}
\hat{f}(x)=\underset{\tilde{f} \in \mathcal{F}}{\operatorname{argmin}} \sum_{i=1}^{n}\left(y_{i}-\tilde{f}\left(x_{i}\right)\right)^{2}+\lambda \int\left[f^{(m / 2)}(x)\right]^{2} \mathrm{~d} x \tag{18}
\end{equation*}
$$

Smoothing spline set-up

- Big to small, start with $n \ll p$ and regularise:

$$
\begin{equation*}
\hat{f}(x)=\underset{\tilde{f} \in \mathcal{F}}{\operatorname{argmin}} \sum_{i=1}^{n}\left(y_{i}-\tilde{f}\left(x_{i}\right)\right)^{2}+\lambda \int\left[f^{(m / 2)}(x)\right]^{2} \mathrm{~d} x \tag{18}
\end{equation*}
$$

- Candidate set: \mathcal{F}_{λ} are all functions that have a bounded squared $m / 2$ derivative.

Smoothing spline set-up

- Big to small, start with $n \ll p$ and regularise:

$$
\begin{equation*}
\hat{f}(x)=\underset{\tilde{f} \in \mathcal{F}}{\operatorname{argmin}} \sum_{i=1}^{n}\left(y_{i}-\tilde{f}\left(x_{i}\right)\right)^{2}+\lambda \int\left[f^{(m / 2)}(x)\right]^{2} \mathrm{~d} x \tag{18}
\end{equation*}
$$

- Candidate set: \mathcal{F}_{λ} are all functions that have a bounded squared $m / 2$ derivative.
- Problem: Infinite-dimensional optimisation problem over all functions f

Smoothing spline set-up

- Big to small, start with $n \ll p$ and regularise:

$$
\begin{equation*}
\hat{f}(x)=\underset{\tilde{f} \in \mathcal{F}}{\operatorname{argmin}} \sum_{i=1}^{n}\left(y_{i}-\tilde{f}\left(x_{i}\right)\right)^{2}+\lambda \int\left[f^{(m / 2)}(x)\right]^{2} \mathrm{~d} x \tag{18}
\end{equation*}
$$

- Candidate set: \mathcal{F}_{λ} are all functions that have a bounded squared $m / 2$ derivative.
- Problem: Infinite-dimensional optimisation problem over all functions f
- Remarkable: There is unique minimiser: an m order natural spline with knots at the observations x_{1}, \ldots, x_{n}.

Smoothing spline set-up

- Big to small, start with $n \ll p$ and regularise:

$$
\begin{equation*}
\hat{f}(x)=\underset{\tilde{f} \in \mathcal{F}}{\operatorname{argmin}} \sum_{i=1}^{n}\left(y_{i}-\tilde{f}\left(x_{i}\right)\right)^{2}+\lambda \int\left[f^{(m / 2)}(x)\right]^{2} \mathrm{~d} x \tag{18}
\end{equation*}
$$

- Candidate set: \mathcal{F}_{λ} are all functions that have a bounded squared $m / 2$ derivative.
- Problem: Infinite-dimensional optimisation problem over all functions f
- Remarkable: There is unique minimiser: an m order natural spline with knots at the observations x_{1}, \ldots, x_{n}.
- Note: This spline is sum of finite number of basis functions (i.e., $n=K$ parameters). These basis functions are decided by the data x_{1}, \ldots, x_{n}.

Smoothing splines basis

A smoothing spline has basis functions decided by the data x_{1}, \ldots, x_{n}

- Global polynomial of order m

$$
\begin{equation*}
N_{0}(x)=x^{0}, \ldots, N_{m-3}(x)=x^{m-3} \tag{19}
\end{equation*}
$$

Smoothing splines basis

A smoothing spline has basis functions decided by the data x_{1}, \ldots, x_{n}

- Global polynomial of order m

$$
\begin{equation*}
N_{0}(x)=x^{0}, \ldots, N_{m-3}(x)=x^{m-3} \tag{19}
\end{equation*}
$$

- Local modifications:

$$
\begin{equation*}
N_{i+2}(x)=d_{i}\left(x, x_{i}\right)-d_{n-1}\left(x, x_{n-1}\right) \text { for } i=1, \ldots, n-m+1 \tag{20}
\end{equation*}
$$

where

$$
\begin{equation*}
d_{k}\left(x, x_{i}\right)=\frac{\left(x-x_{i}\right)_{+}^{3}-\left(x-x_{n}\right)_{+}^{3}}{x_{n}-x_{i}} \tag{21}
\end{equation*}
$$

Return of the "matrix trick"

Thus the candidate solution is of the form

$$
\begin{equation*}
\tilde{f}(x)=\sum_{i=1}^{n} N_{i}(x) \theta_{j} \tag{22}
\end{equation*}
$$

hence

$$
\begin{equation*}
\operatorname{MSE}(\tilde{f})=(y-N \theta)^{T}(y-N \theta)+\lambda \theta^{T} \Omega_{n} \theta \tag{23}
\end{equation*}
$$

where N is the design matrix $\left\{N_{i j}\right\}=N_{j}\left(x_{i}\right)$ and

$$
\begin{equation*}
\left\{\Omega_{n}\right\}_{j i}=\int N_{j}^{(m / 2)}(x) N_{i}^{(m / 2)}(x) \mathrm{d} x \tag{24}
\end{equation*}
$$

Return of the "matrix trick"

Thus the candidate solution is of the form

$$
\begin{equation*}
\tilde{f}(x)=\sum_{i=1}^{n} N_{i}(x) \theta_{j} \tag{22}
\end{equation*}
$$

hence

$$
\begin{equation*}
\operatorname{MSE}(\tilde{f})=(y-N \theta)^{T}(y-N \theta)+\lambda \theta^{T} \Omega_{n} \theta \tag{23}
\end{equation*}
$$

where N is the design matrix $\left\{N_{i j}\right\}=N_{j}\left(x_{i}\right)$ and

$$
\begin{equation*}
\left\{\Omega_{n}\right\}_{j i}=\int N_{j}^{(m / 2)}(x) N_{i}^{(m / 2)}(x) \mathrm{d} x \tag{24}
\end{equation*}
$$

Minimisation

$$
\begin{equation*}
\hat{\theta}=\left(N^{T} N+\lambda \Omega_{n}\right)^{-1} N^{T} y \tag{25}
\end{equation*}
$$

Example: Smoothing spline with cross validation

Smoothing spline with cv

Choosing the λ and degrees of freedom

- Recall: $n \ll p$ regime solution: Natural splines $\hat{f}(X)=X \hat{\theta}$ with K knots:

$$
\begin{equation*}
\hat{f}(X)=\underbrace{X\left(X^{\top} X\right)^{-1} X^{\top}}_{H_{\xi}} y \tag{26}
\end{equation*}
$$

where H_{ξ} is a symmetric, positive semidefinite matrix.

Choosing the λ and degrees of freedom

- Recall: $n \ll p$ regime solution: Natural splines $\hat{f}(X)=X \hat{\theta}$ with K knots:

$$
\begin{equation*}
\hat{f}(X)=\underbrace{X\left(X^{\top} X\right)^{-1} X^{\top}}_{H_{\xi}} y \tag{26}
\end{equation*}
$$

where H_{ξ} is a symmetric, positive semidefinite matrix.

- Compare: Smoothing spline

$$
\begin{equation*}
\hat{f}(N)=\underbrace{N\left(N^{\top} N+\lambda \Omega_{n}\right)^{-1} N^{T}}_{S_{\lambda}} y \tag{27}
\end{equation*}
$$

where S_{λ} is a symmetric, positive semidefinite matrix.

Choosing the λ and degrees of freedom

- Recall: $n \ll p$ regime solution: Natural splines $\hat{f}(X)=X \hat{\theta}$ with K knots:

$$
\begin{equation*}
\hat{f}(X)=\underbrace{X\left(X^{\top} X\right)^{-1} X^{\top}}_{H_{\xi}} y \tag{26}
\end{equation*}
$$

where H_{ξ} is a symmetric, positive semidefinite matrix.

- Compare: Smoothing spline

$$
\begin{equation*}
\hat{f}(N)=\underbrace{N\left(N^{\top} N+\lambda \Omega_{n}\right)^{-1} N^{T}}_{S_{\lambda}} y \tag{27}
\end{equation*}
$$

where S_{λ} is a symmetric, positive semidefinite matrix.

- $\operatorname{trace}\left(H_{\xi}\right)=K$, the dimension of the space H_{ξ} projects to

Choosing the λ and degrees of freedom

- Recall: $n \ll p$ regime solution: Natural splines $\hat{f}(X)=X \hat{\theta}$ with K knots:

$$
\begin{equation*}
\hat{f}(X)=\underbrace{X\left(X^{\top} X\right)^{-1} X^{T}}_{H_{\xi}} y \tag{26}
\end{equation*}
$$

where H_{ξ} is a symmetric, positive semidefinite matrix.

- Compare: Smoothing spline

$$
\begin{equation*}
\hat{f}(N)=\underbrace{N\left(N^{\top} N+\lambda \Omega_{n}\right)^{-1} N^{T}}_{S_{\lambda}} y \tag{27}
\end{equation*}
$$

where S_{λ} is a symmetric, positive semidefinite matrix.

- trace $\left(H_{\xi}\right)=K$, the dimension of the space H_{ξ} projects to
- Take $d f=\operatorname{trace}\left(S_{\lambda}\right)$. Note as $\lambda \rightarrow \infty$ this lowers the dimension.

Further relationships

- Projections
- RKHS
- Gaussian processes
- Bayesian nonparametric regression

