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Tree-based methods

Segmenting the predictor space

+ Simple and useful for interpretation

- not competitive with best supervised learning 
approaches

Can be applied to both regression and classification 
problems.



Example

The Hitters data: predicting log salary based on number of years that player 
has played in major league and the number of hits  this person made in the 
previous year.



Example

Terminal nodes
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How to build a tree?
1) Divide the predictor space (i.e., the set of possible values for 𝑋1, 𝑋2, .., 

𝑋𝑝) into J distinct non-overlapping regions, 𝑅1, 𝑅2, .., 𝑅𝑝.

2) Every observation that falls into region 𝑅𝑗 gets the same prediction: the 

mean of the response values for the training observations in 𝑅𝑗.

3) The regions are chosen such that it minimizes:     𝑗=1
𝐽  𝑖∈𝑅𝑗

(𝑦𝑖 −  𝑦𝑅𝑗
)2





Building the tree

For any predictor j and every cut-point s we consider:
𝑅1 𝑗, 𝑠 = {𝑋|𝑋𝑗 < 𝑠} and 𝑅2 𝑗, 𝑠 = {𝑋|𝑋𝑗 ≥ 𝑠}

and choose j and s that result in the smallest RSS.

Next, this process is repeated, looking for the best 
predictor and cut-point. But this time only the predictor 
space within a region is split.

Process continues until some stopping rule is reached 
(e.g., go on until no region has more than five 
observations) 



This will likely result in a complex tree 
that overfits the data and performs 
poorly on a test set.



Tree pruning

Select a subtree of the very large tree, 𝑇0, we ended up with on the previous 
slide.

Cost complexity pruning/ weakest link pruning:
Instead of considering every possible subtree, we consider a sequence of trees 
indexed by a nonnegative tuning parameter 𝛼.

 𝑚=1
|𝑇|  𝑖: 𝑥𝑖 ∈𝑅𝑚

(𝑦𝑖 −  𝑦𝑅𝑚
)2 + 𝛼|𝑇|

m = terminal node
|T|= total number of terminal nodes

𝛼 of 0 results in 𝑇0

Branches get pruned in a nested fashion.
𝛼 can be selected with cross validation
or a validation test set.



Cross validation to select 𝛼
Divide training data in K folds. For each k = 1, … , K:
A)
1. Use recursive binary splitting to grow a large tree on all but the kth fold
2. Apply cost complexity pruning to the large tree to obtain a sequence of best 

subtrees, as a function of 𝛼.
B) Evaluate the mean squared prediction error on the data of the left out kth 
fold, as a function of 𝛼.
C) Average the results for each value of 𝛼 over all folds, and pick 𝛼 to minimize 
the average error.

Now that 𝛼 is picked, we choose the subtree of the full training data that 
corresponds to this 𝛼. (performing (1) and (2) on the full training set)



Cross validation to select 𝛼



Classification trees
Assign observation in a given region to the most commonly occurring class 
of training observations in that region.

𝐸 = 1 − max
𝑘

(  𝑝𝑚𝑘)

Classification error is not sensitive enough to grow trees.

Gini index: 

𝐺 =  

𝑘=1

𝐾

 𝑝𝑚𝑘 (1 −  𝑝𝑚𝑘)

Cross-entropy:

𝐷 = −  

𝑘=1

𝐾

 𝑝𝑚𝑘 log  𝑝𝑚𝑘

0 ≤ −  𝑝𝑚𝑘 log  𝑝𝑚𝑘

Pure terminal nodes



Trees in R
require(ISLR)

require(tree)

attach(Carseats)

400 obs: stores



Trees in R
tree.carseats<-tree(High~.-Sales,data=Carseats)

summary(tree.carseats)

plot(tree.carseats)

text(tree.carseats,pretty=0)



Trees in R
train=sample(1:nrow(Carseats),250)

tree.carseats=tree(High~.-Sales,Carseats,subset=train)

plot(tree.carseats);text(tree.carseats,pretty=0)

20 terminal nodes



Trees in R
tree.pred<-predict(tree.carseats,Carseats

[-train,],type="class")

with(Carseats[-train,],table(tree.pred,High))

cv.carseats<-cv.tree(tree.carseats,FUN=prune.misclass)

plot(cv.carseats)



Trees in R
prune.carseats<-prune.misclass(tree.carseats,best=12)

plot(prune.carseats);text(prune.carseats,pretty=0)

12 terminal nodes

Test error the 
same but CV gave 
us a simpler tree!



Trees or Linear Models?

With a linear relation, a linear 
model will outperform trees, while 
if there is a highly non-linear and 
complex relationship between the 
features and the response, a tree is 
more suited. 

Test the performance with cross-
validation or a validation set.



Advantages and Disadvantages:
+ Trees are easy to explain to people, even easier than linear regression.

+ Some people believe that decision trees more closely mirror human decision-
making than do other regression and classification approaches.

+ Trees can be displayed graphically and are easily interpreted.

+ Trees can easily handle qualitatie predictors without the need to create 
dummy variables.

- Trees generally do not have the same level of predictive accuracy as some of 
the orher regression and classification approaches.

- Trees can be very non-robust.

But, using random forests, boosting and bagging will improve the predictive 
performance! 



The End


