Regression trees and Classification trees

Riet van Bork

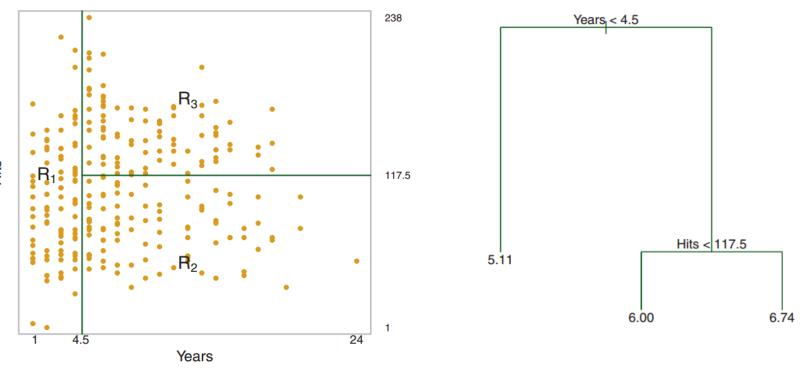
Tree-based methods

Segmenting the predictor space

+ Simple and useful for interpretation

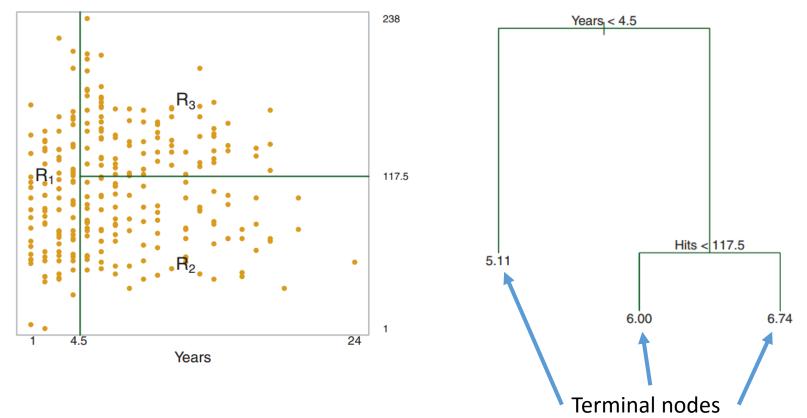
 not competitive with best supervised learning approaches

Can be applied to both regression and classification problems.

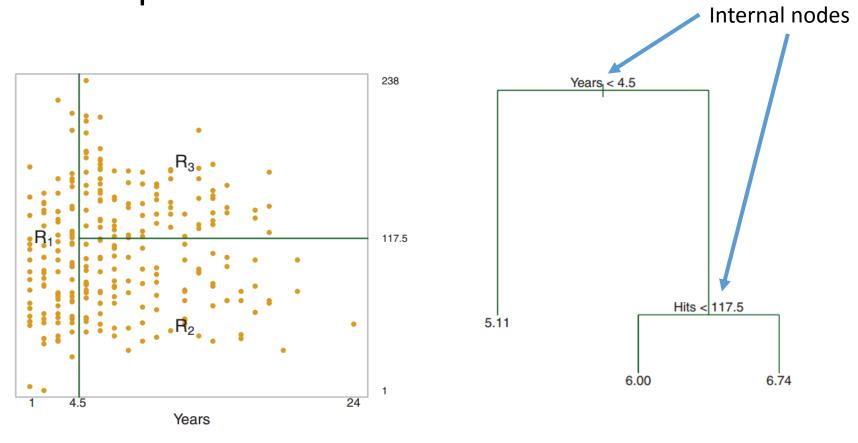


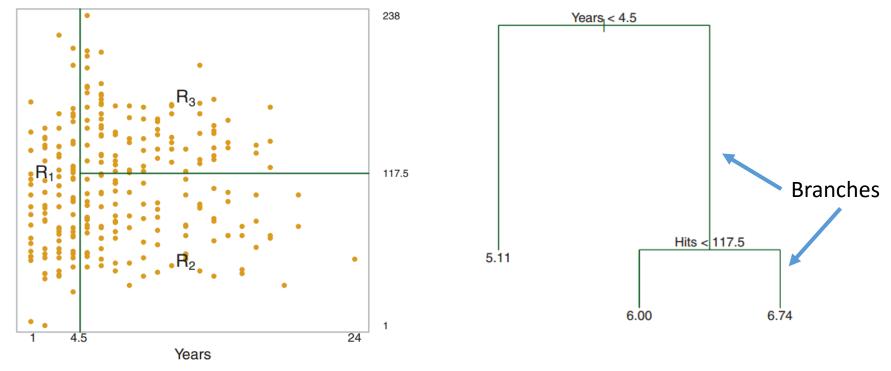
The Hitters data: predicting log salary based on number of years that player has played in major league and the number of hits this person made in the previous year.

Hits



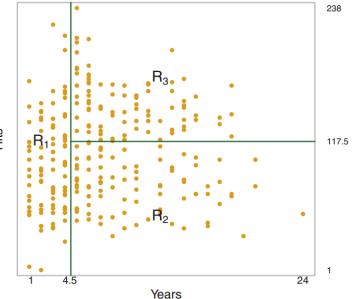
Hits



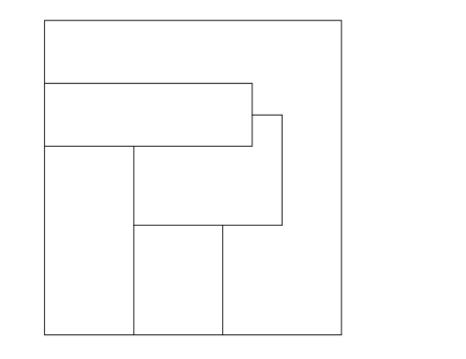


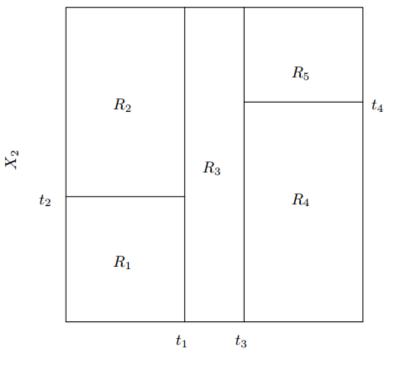
How to build a tree?

- Divide the predictor space (i.e., the set of possible values for X₁, X₂, .., X_p) into J distinct non-overlapping regions, R₁, R₂, .., R_p.
- 2) Every observation that falls into region R_j gets the same prediction: the mean of the response values for the training observations in R_j .
- 3) The regions are chosen such that it minimizes: $\sum_{i=1}^{J} \sum_{i \in R_i} (y_i \hat{y}_{R_i})^2$



Hits

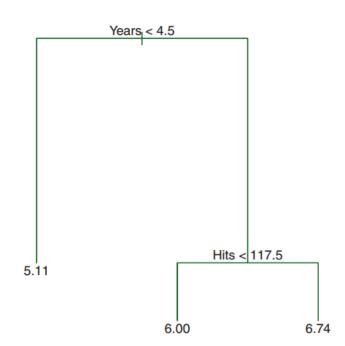




 X_1

 X_1

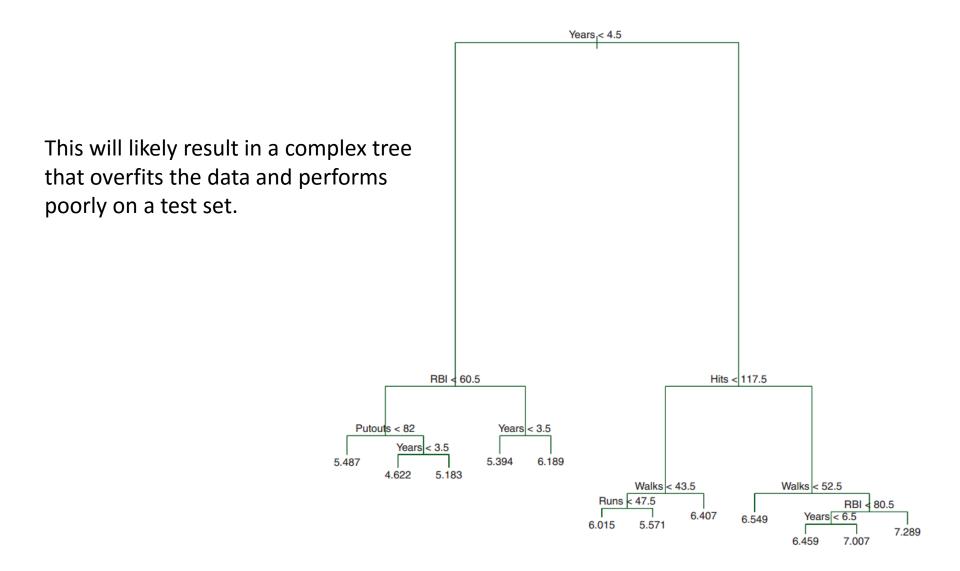
Building the tree



For any predictor *j* and every cut-point *s* we consider: $R_1(j,s) = \{X|X_j < s\}$ and $R_2(j,s) = \{X|X_j \ge s\}$ and choose *j* and *s* that result in the smallest RSS.

Next, this process is repeated, looking for the best predictor and cut-point. But this time only the predictor space within a region is split.

Process continues until some stopping rule is reached (e.g., go on until no region has more than five observations)



Tree pruning

Select a *subtree* of the very large tree, T_0 , we ended up with on the previous slide.

Cost complexity pruning/ weakest link pruning:

Instead of considering every possible subtree, we consider a sequence of trees indexed by a nonnegative tuning parameter α .

$$\sum_{m=1}^{|T|} \sum_{i: x_{i \in R_{m}}} (y_{i} - \hat{y}_{R_{m}})^{2} + \alpha |T|$$

m = terminal node
|T| = total number of terminal nodes

 α of 0 results in T_0

Branches get pruned in a nested fashion. α can be selected with cross validation or a validation test set.

Cross validation to select α

Divide training data in K folds. For each k = 1, ..., K:

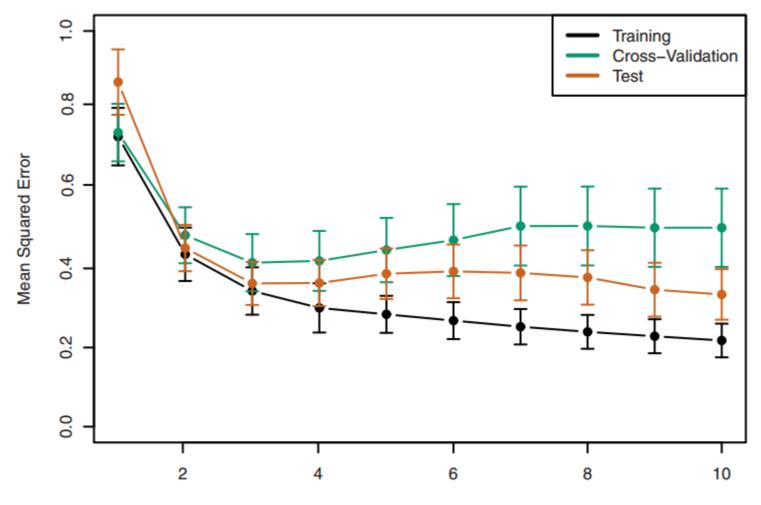
A)

- 1. Use recursive binary splitting to grow a large tree on all but the *k*th fold
- 2. Apply cost complexity pruning to the large tree to obtain a sequence of best subtrees, as a function of α .
- B) Evaluate the mean squared prediction error on the data of the left out *k*th fold, as a function of α .

C) Average the results for each value of α over all folds, and pick α to minimize the average error.

Now that α is picked, we choose the subtree of the full training data that corresponds to this α . (performing (1) and (2) on the full training set)

Cross validation to select α



Tree Size

Classification trees

Assign observation in a given region to the most commonly occurring class of training observations in that region.

$$E = 1 - \max_{k}(\hat{p}_{mk})$$

Classification error is not sensitive enough to grow trees.

Gini index:

$$G = \sum_{k=1}^{K} \hat{p}_{mk} (1 - \hat{p}_{mk})$$
Pure terminal nodes
$$D = -\sum_{k=1}^{K} \hat{p}_{mk} \log \hat{p}_{mk}$$

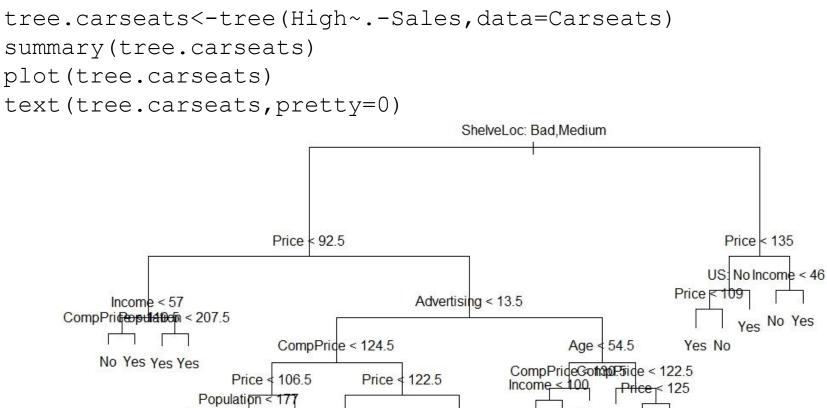
$$0 \le -\hat{p}_{mk} \log \hat{p}_{mk}$$

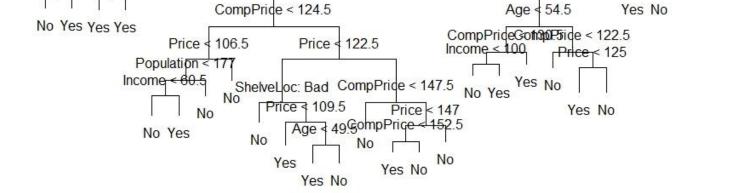
Cross-entropy:

require(ISLR)
require(tree)
attach(Carseats)

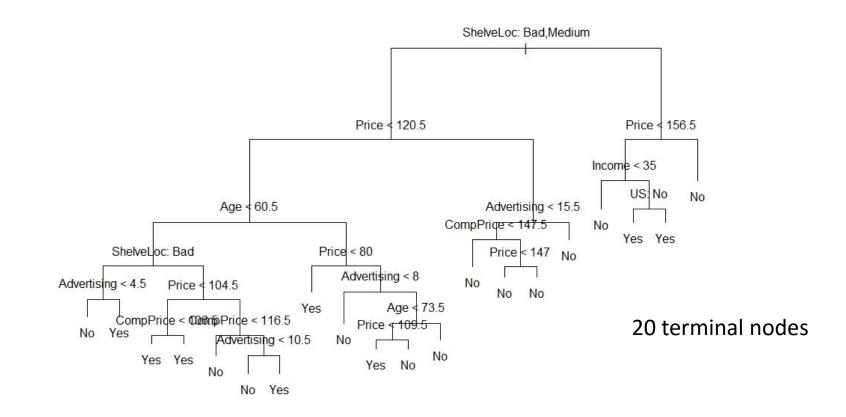
400 obs: stores

L	> head(Carseats)									
	Sal	es Com	pPrice	Income	Advertising	Population	Price	ShelveLoc	Age	Education
	1 9.	50	138	73	11	276	120	Bad	42	17
	2 11.2	22	111	48	16	260	83	Good	65	10
	3 10.0)6	113	35	10	269	80	Medium	59	12
	4 7.4	0	117	100	4	466	97	Medium	55	14
	5 4.3	.5	141	64	3	340	128	Bad	38	13
	6 10.8	31	124	113	13	501	72	Bad	78	16
	Urba	an US	High							
	1 Ye	es Yes	Yes							
	2 Y	es Yes	Yes							
	3 Y	es Yes	Yes							
	4 Ye	es Yes	No							
	5 Ye	es No	No							
	6 I	lo Yes	Yes							
	>									

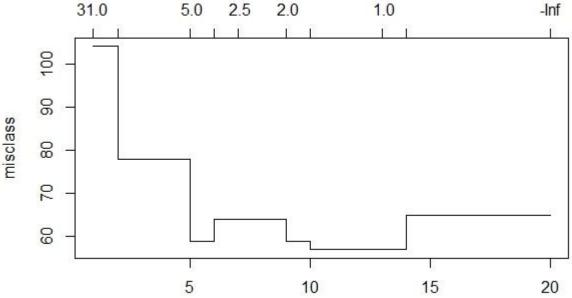




train=sample(1:nrow(Carseats),250)
tree.carseats=tree(High~.-Sales,Carseats,subset=train)
plot(tree.carseats);text(tree.carseats,pretty=0)



```
tree.pred<-predict(tree.carseats,Carseats
[-train,],type="class")
with(Carseats[-train,],table(tree.pred,High))
cv.carseats<-cv.tree(tree.carseats,FUN=prune.misclass)
plot(cv.carseats)</pre>
```



No

Yes

prune.carseats<-prune.misclass(tree.carseats, best=12) plot(prune.carseats);text(prune.carseats,pretty=0)

```
> tree.pred=predict(prune.carseats,Carseats[-train,],type="class")
> with(Carseats[-train,],table(tree.pred,High))
          High
                                                                      ShelveLoc: Bad,Medium
tree.pred No Yes
                28
           72
       No
      Yes 18
               32
> (72+32)/150
[1] 0.6933333
                                                       Price ≤ 120.5
                                                                                           Price < 156.5
Test error the
                                                                                      Income < 35
same but CV gave
us a simpler tree!
                                    Age < 60.5
                                                                                       No
                                                                                             Yes
                                                                                No
                    ShelveLoc: Bad
                                                  Price < 80
                                                        Advertising < 8
                           Price < 104.5
                                                                               12 terminal nodes
```

Yes

No

CompPride < 116.5

Yes

No

Age < 73.5

No

No

Price < 109.5

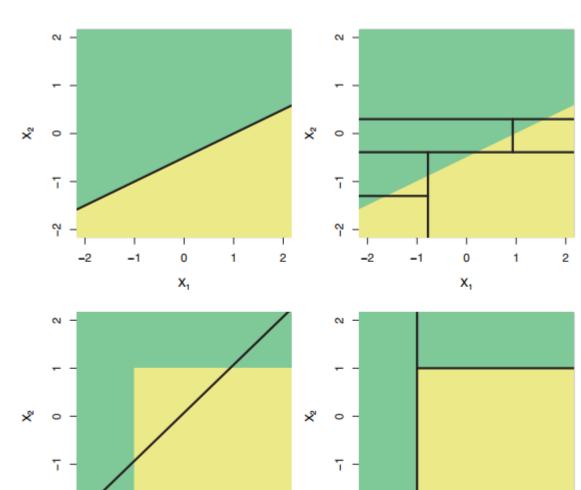
Yes

No

Trees or Linear Models?

With a linear relation, a linear model will outperform trees, while if there is a highly non-linear and complex relationship between the features and the response, a tree is more suited.

Test the performance with crossvalidation or a validation set.



2

-2

-1

0

X₁

1

2

0

X₁

1

Advantages and Disadvantages:

+ Trees are easy to explain to people, even easier than linear regression.

+ Some people believe that decision trees more closely mirror human decisionmaking than do other regression and classification approaches.

+ Trees can be displayed graphically and are easily interpreted.

+ Trees can easily handle qualitatie predictors without the need to create dummy variables.

- Trees generally do not have the same level of predictive accuracy as some of the orher regression and classification approaches.

- Trees can be very non-robust.

But, using random forests, boosting and bagging will improve the predictive performance!

The End

