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Statistical Learning Recab

Finite samples X" = {X{",..., X[} and Y".
Assumption: There exists a function f* such that y = f*(x) + €

The goal is to find the best guess f(x) of f*(x) based on the finite
samples X" and Y".

The best guess minimizes the risk:

E[f*(x) — f(x)]? = Bias(f(x))? + Var(f(x))

But we observe only the empirical risk:



How does bagging work?
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Bootstrap AGGregatING

> f(x) estimate on full dataset
> fhag(x) bagged estimate

» Claim:

E[F*(x) = F0)1 2 E[F*(x) — foag (X))

Bias(f(x))? + Var(f(x)) > Bias(i?bag(x))2 + Var(fbag(x))



Test Error

Bagging classification trees
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(Elements of Statistical Learning, 2009)



Bagging classification trees (2)

C45 Randomized C4.5 Bagged C4.5 Adaboosted C4.5
Index Name P Error rate P Error rate P Error rate P Error rate
1 sonar 0.3257 £0.0637 02018 £0.0545 * 02752+00607 * 0.1651£0.0505
2 letter 0.1225£0.0045 0.0285 £0.0023 00552+00032 * 00271 £0.0023
3 splice * 0.0575+00081 * 0.0397+0.0068 * 0.0506+0.0076 0.0503 +0.0076
4 segment 0.0328 £0.0073 0.0203 £+ 0.0058 0.0263 +0.0065 0.0151 £0.0050
5 glass * 03437£0.0636 0.2277 £0.0562 02723+0059 * 02277 £0.0562
6 soybean 01262400371 * 0.0852+0.0312 * 0.1009+00337 * 0.0757+0.0296
7 autos 0.2326+00578 * 0.1581+0.0499 0.18144+0.0528 0.1814 +0.0528
] satimage * 0.1515£00157 0.0890 £0.0125 0.1020+0.0133 0.0850 £0.0122
9 annealing  * 0.0132+0.0075 0.0088 40,0061 0.0099 & 0.0065 0.0055 40,0048
10 krk 0.1887£0.0046 0.1309 £ 0.003% 0.1463+00041 * 0.1026 £0.0036
11 heart-v * 02762+£00620 * 0.2429 £0.0594 02619+00609 * 0.2810£0.0623
12 heart-c * 02396+£00481 * 0.1853£0.0437 * 0.1981+£0.0449 0.2045 £0.0454
13 breast-y * 02601+00508 * 02500+00502 * 02635400511 * 0.3142+0.0538
14 phoneme  * 0.1661 £0.0086 0.1437 +0.0081 0.1509+00082 * 0.1464 £0.0081
15 voting * 01146+£00299 * 0.0921+£00272 * 00966+00278 * 0.1034+£0.0286
16 vehicle 0.2944 +0.0307 0.2477 +£0.0291 02570+ 0.0294 0.2196 +£0.0279
17 lymph 0.1962 £0.0640 0.1772 £0.0615 0.1835+00624 * 0.1266 £0.0536
18 breast-w * 00494£00161 * 0.0353£0.0137 0.0367+0.0139 0.0310£0.0128
19 credit-g * 02921400282 02416 £00265 * 02495400268 0.2347 £0.0263
20 primary * 05845+00525 * 0.5501+0.0530 05645+00528 * 0.5960 +0.0522

(Dietterich, 2000)



Reduction in error rate (% pts)

Bagging Neural Networks
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(Maclin & Opitz, 1997)



Why does Bagging work?

Recall:

> f(x) estimate on full dataset
> fbag(x) bagged estimate

» Claim:

E[F*(x) = FO)1? 2 EIF*(x) — foag (X))

Bias(f(x))? + Var(f(x)) > Bias(fpag(x))? + Var(fpag(x))



Approximating average over independent training samples

> Xi,..., Xy independent
» Var(X1) = ... = Var(Xy) = o2
> Fe) =N X

~

» Then Var(f(x) = ”—,\j

Averaging over observations reduces variance!
If we had many training samples we could calculate:

~

B
faverage(x) = B_l Z fb(x)
b=1
Now the argument is
fbag(x) ~ faverage(x)

(Introduction to Statistical Learning, 2015)



Variance reduction argument 2
> Ideal aggregate estimator fp,z = EpfP(x)
» P Population

Ep[Y — FP(x)I = Ep[Y — foag(x) + foag(x) — FP(x)]*
= Ep[Y — foag(X)] + Eplfbag(x) — F*(x)]”
> Ep[Y — frag(x)]°

The extra error on the right-hand side comes from the variance of f*(z)
around its mean fog(). Therefore true population aggregation never in-
creases mean squared error. This suggests that bagging—drawing samples
from the training data— will often decrease mean-squared error.

(Elements of Statistical Learning, 2009)



Original paper: Reducing Variance in unstable predictors

and Tibshirani [1993]. A critical factor in whether bagging will improve accuracy is the
stability of the procedure for constructing ¢. If changes in £, i.e. a replicate £, produces
small changes in ¢, then ¢p will be close to . Improvement will occur for unstable
procedures where a small change in £ can result in large changes in . Instability was

Same theoretical argument that is based on the assumption that
resampling is an approximation to independent samples.

(Breiman,1996 'Bagging Predictors')



A bayesian explanation?

Claim: Bagging reduces a classification learner’s error rate because
it changes the learner's model space and/or prior distribution to
one that better fits the domain.

Empirical test: Find the simplest single decision tree that makes
same predictions as the bagged ensemble. If the complexity of the
single decision tree is larger than the one of bagged base decision
tree, this is evidence, that bagging increases the model space.

Result: Complexity is indeed larger in this single true. But: not
very sound.

And: Rao & Tibshirani (1997): bootstrap distribution is an
approximation of a posterior distribution based on a symmetric
Dirichlet non-informative prior.

(Domingos, 1997)



Reducing variance in non-linear components

Taylor expansion of estimator

F"(x)
2l

Claim: the bagged estimator fbag(x) is an approximation of:

(x — p)® + ...

f(x) = F(x)+ T (x —p)+

F(x) = f(x)+ Ep ’Ul(f)(x — ) + fﬂz(!x)(x — )+

Empirical evidence!

But: Limited to smooth multivariate functions (e.g. no trees)

(Friedman & Hall, 1999)



Smoothing of regression /classification surfaces

Simplest Example: f(x) = ]I{c?gx}>x eR

plug-in with indicator

2 [} 2 4

Figure 2.1: Indicator predictor from (2.1) at & = 2,(0) = d° as in (2.2). Function
9(2) = 1,<q) [solid line] and gp(z) [dotted line] defining the asymptotics of the predictor
and its bagged version [see Proposition 2.1].

For non-differentiable and discontinuous functions (e.g. trees).

(Buehlmann & Yu, 2000)



Negative effect of Bagging on U-Statistics

U-Statistics:

U= N~ 1ZA )+ N~ 128 Xi, X;)
ij

Examples: Variance, Skewness, ...

Main results:

» The influence of bagging on variance depends on specific
U-Statistic

» Bagging always increases squared bias

(Buja & Stuetzle, 2000)



Bagging equalizes influence

Different level of analysis: influence of data points on estimator.

Two steps:
1. Bagging equalizes influence
2. Equalized influence explains MSE-reduction due to bagging

(Grandvalet, 2004)



Bagging equalizes influence?

Example: Point estimation

» n = 20 draws from mixture p(x) =1 — P N(0,1)+ P N(0,10)
» compute median or bagged (B = 100) median
> P=1{0,.04,.2,.7,1}
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Figure 2. Boxplot of the weight given to the examples x; versus the rank of x;, for original and bagged mean
estimates.



From equalized influence to prediction error

Explaining bagging performance as a function of P:

- = Median
- - Bagged Median

Data from Grandvalet 2004




From equalized influence to prediction error

Explaining bagging performance as a function of P:

—— Median
6 - —— Bagged Median
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Replicated Simulation



From equalized influence to prediction error

Example 2: Subset selection

0.2 0.4 0.6 0.8 -6 -4 2 0

Sii log,(53)

Figure 4. Left: histograms of S;; (up, light grey) and Shz'g (down, dark grey) for ordinary least squares (all
variables); right: histograms of log;o(S;:) (up, light grey) and logm(S ag) (down, dark grey) for subset selection
(one variable).



From equalized influence to prediction error?

Example 2: Subset selection

For ordinary least squares, the expected difference in prediction error between the ordinary
and the bagged estimate is a quadratic function in smoothing matrices S and S®?. In the
present setup, it is however difficult to exhibit a clear-cut relationship between S;; equal-
ization and the actual changes in prediction error. Bagging’s action on potential influence
may have some outcome on the effective influence, which may in turn have positive or
negative consequences on prediction error according to the goodness/badness of leverage.
Furthermore, goodness/badness does not describe an intrinsic quality of a single point with
respect to a predictor. It is defined relatively to a learning set and is subject to interactions:

(Grandvalet, 2004)



Paper

Summary so far

Base Estimator

Results

Breiman, 1996
Domingos, 1997

Rao & Tibshirani, 1997
Friedman & Hall, 2000
Buehlmann & Yu, 2000
Buja & Stueckle, 2000
Grandvalet, 2004

Smooth

CART
U-Statistics
Subset Selection

Heuristic: B reduces variance of unstable predictor
B defines informative prior

B doesn't define informative prior

B reduces variance in non-linear components

B performs asymptotic smoothing

B always increases bias (sometimes also cariance)
B equalizes influence




Further developments?

| believe that most researchers still now believe that bagging simply reduces
variance. | am not aware of any recent in-depth analysis of this algorithm...
there are a lot of mysteries nowadays around machine learning, and studying
bagging may not be a priority.

Best regards,

Yves

(Yves Grandvalet)



Bagging: Theory and Practice
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Observations & Discussion

Observation: 'Why does it work?' difficult question because ...

» performance of bagging depends on the base predictor and
the data

» non-smooth estimators are hard to study

Discussion: 'Mysteries in Machine Learning’ - does it matter that
we know so little?
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