
Bootstrap AGGregatING

Jonas Haslbeck

April 19th, 2016



Statistical Learning Recab

Finite samples X n = {X n
1 , ...,X

n
p } and Y n.

Assumption: There exists a function f ∗ such that y = f ∗(x) + ε

The goal is to find the best guess f̂ (x) of f ∗(x) based on the finite
samples X n and Y n.

The best guess minimizes the risk:

E [f ∗(x)− f̂ (x)]2 = Bias(f̂ (x))2 + Var(f̂ (x))

But we observe only the empirical risk:

n∑
i=1

(yi − f̂ (x))2



How does bagging work?
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Bootstrap AGGregatING

I f̂ (x) estimate on full dataset

I f̂bag (x) bagged estimate

I Claim:

E [f ∗(x)− f̂ (x)]2 ≥ E [f ∗(x)− f̂bag (x)]2

Bias(f̂ (x))2 + Var(f̂ (x)) ≥ Bias(f̂bag (x))2 + Var(f̂bag (x))



Bagging classification trees

(Elements of Statistical Learning, 2009)



Bagging classification trees (2)

(Dietterich, 2000)



Bagging Neural Networks

(Maclin & Opitz, 1997)



Why does Bagging work?

Recall:

I f̂ (x) estimate on full dataset

I f̂bag (x) bagged estimate

I Claim:

E [f ∗(x)− f̂ (x)]2 ≥ E [f ∗(x)− f̂bag (x)]2

Bias(f̂ (x))2 + Var(f̂ (x)) ≥ Bias(f̂bag (x))2 + Var(f̂bag (x))



Approximating average over independent training samples

I X1, ...,XN independent

I Var(X1) = ... = Var(XN) = σ2

I f̂ (x) = N−1
∑N

i=1 Xi

I Then Var(f̂ (x) = σ2

N

Averaging over observations reduces variance!
If we had many training samples we could calculate:

f̂average(x) = B−1
B∑

b=1

f̂ b(x)

Now the argument is

f̂bag (x) ≈ f̂average(x)

(Introduction to Statistical Learning, 2015)



Variance reduction argument 2

I Ideal aggregate estimator fbag = EP f̂
b(x)

I P Population

EP [Y − f̂ b(x)]2 = EP [Y − fbag (x) + fbag (x)− f̂ b(x)]2

= EP [Y − fbag (x)]2 + EP [fbag (x)− f̂ b(x)]2

≥ EP [Y − fbag (x)]2

(Elements of Statistical Learning, 2009)



Original paper: Reducing Variance in unstable predictors

Same theoretical argument that is based on the assumption that
resampling is an approximation to independent samples.

(Breiman,1996 ’Bagging Predictors’)



A bayesian explanation?

Claim: Bagging reduces a classification learner’s error rate because
it changes the learner’s model space and/or prior distribution to
one that better fits the domain.

Empirical test: Find the simplest single decision tree that makes
same predictions as the bagged ensemble. If the complexity of the
single decision tree is larger than the one of bagged base decision
tree, this is evidence, that bagging increases the model space.

Result: Complexity is indeed larger in this single true. But: not
very sound.

And: Rao & Tibshirani (1997): bootstrap distribution is an
approximation of a posterior distribution based on a symmetric
Dirichlet non-informative prior.

(Domingos, 1997)



Reducing variance in non-linear components

Taylor expansion of estimator

f̂ (x) ≈ f̂ (x) +
f̂ ′(x)

1!
(x − µ) +

f̂ ′′(x)

2!
(x − µ)2 + ...

Claim: the bagged estimator f̂bag (x) is an approximation of:

f̄ (x) = f̂ (x) + EP

[
f̂ ′(x)

1!
(x − µ) +

f̂ ′′(x)

2!
(x − µ)2 + ...

]

Empirical evidence!

But: Limited to smooth multivariate functions (e.g. no trees)

(Friedman & Hall, 1999)



Smoothing of regression/classification surfaces

Simplest Example: f̂ (x) = I{d̂≤x}, x ∈ R

For non-differentiable and discontinuous functions (e.g. trees).

(Buehlmann & Yu, 2000)



Negative effect of Bagging on U-Statistics

U-Statistics:

U = N−1
N∑
i

A(Xi ) + N−1
N∑
i ,j

B(Xi ,Xj)

Examples: Variance, Skewness, ...

Main results:

I The influence of bagging on variance depends on specific
U-Statistic

I Bagging always increases squared bias

(Buja & Stuetzle, 2000)



Bagging equalizes influence

Different level of analysis: influence of data points on estimator.

Two steps:

1. Bagging equalizes influence

2. Equalized influence explains MSE-reduction due to bagging

(Grandvalet, 2004)



Bagging equalizes influence?

Example: Point estimation

I n = 20 draws from mixture p(x) = 1−P N(0, 1) +P N(0, 10)

I compute median or bagged (B = 100) median

I P = {0, .04, .2, .7, 1}



From equalized influence to prediction error

Explaining bagging performance as a function of P:
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From equalized influence to prediction error

Explaining bagging performance as a function of P:
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Replicated Simulation



From equalized influence to prediction error

Example 2: Subset selection



From equalized influence to prediction error?

Example 2: Subset selection

(Grandvalet, 2004)



Summary so far

Paper Base Estimator Results

Breiman, 1996 - Heuristic: B reduces variance of unstable predictor
Domingos, 1997 - B defines informative prior
Rao & Tibshirani, 1997 - B doesn’t define informative prior
Friedman & Hall, 2000 Smooth B reduces variance in non-linear components
Buehlmann & Yu, 2000 CART B performs asymptotic smoothing
Buja & Stueckle, 2000 U-Statistics B always increases bias (sometimes also cariance)
Grandvalet, 2004 Subset Selection B equalizes influence



Further developments?

(Yves Grandvalet)



Bagging: Theory and Practice
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Observations & Discussion

Observation: ’Why does it work?’ difficult question because ...

I performance of bagging depends on the base predictor and
the data

I non-smooth estimators are hard to study

Discussion: ’Mysteries in Machine Learning’ - does it matter that
we know so little?
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