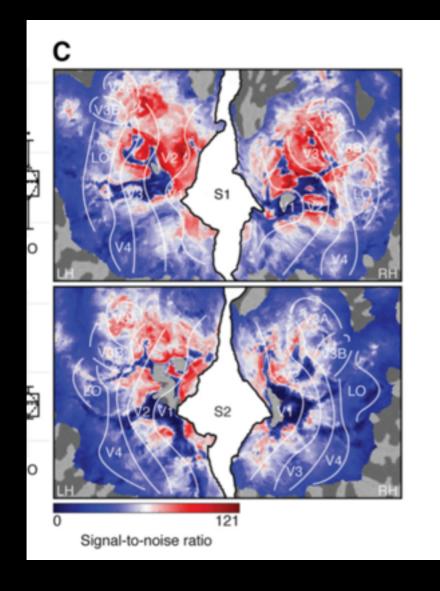
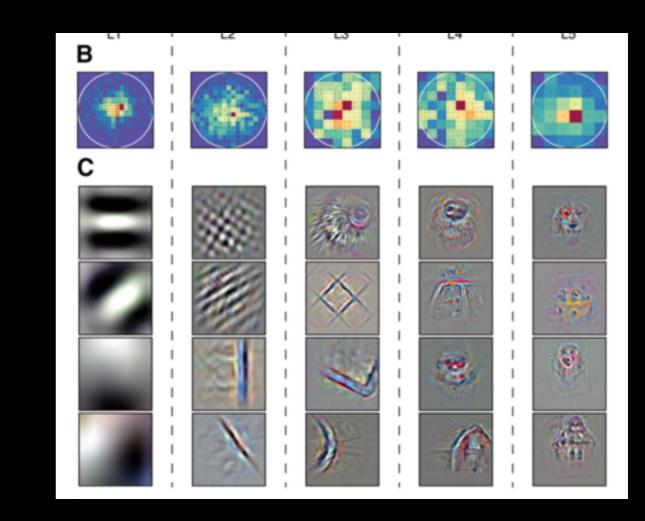
Machine Learning applications in Cognitive Neuroscience and psychology





Gilles de Hollander 10 May 2016

Overview

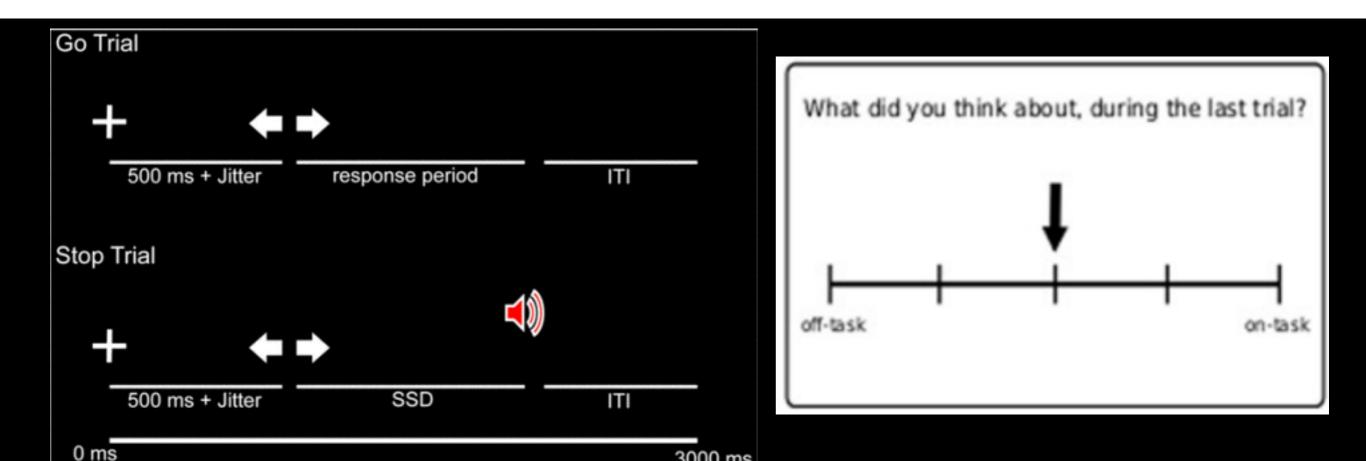
- 1. Machine Learning as a statistical tool
 - "Brain reading"
- 2. Machine learning as a model of the brain
 - Mechanistic model of visual cortex
 - Cognitive model of categorisation
- 3. Machine Learning and the Simon Task

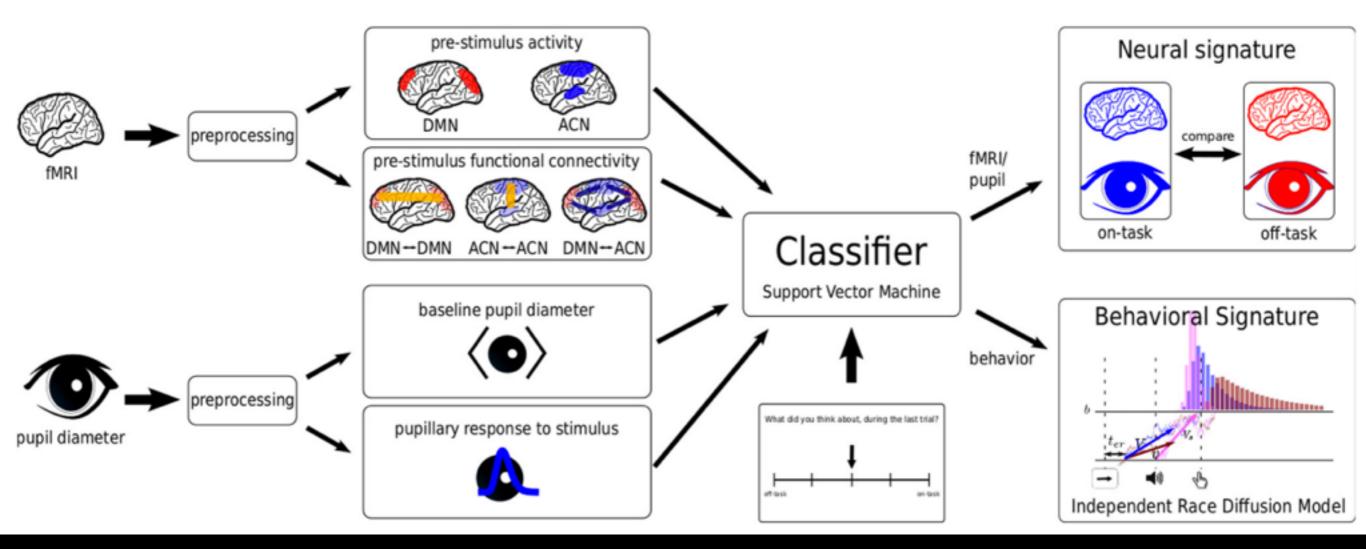
Behavioral/Cognitive

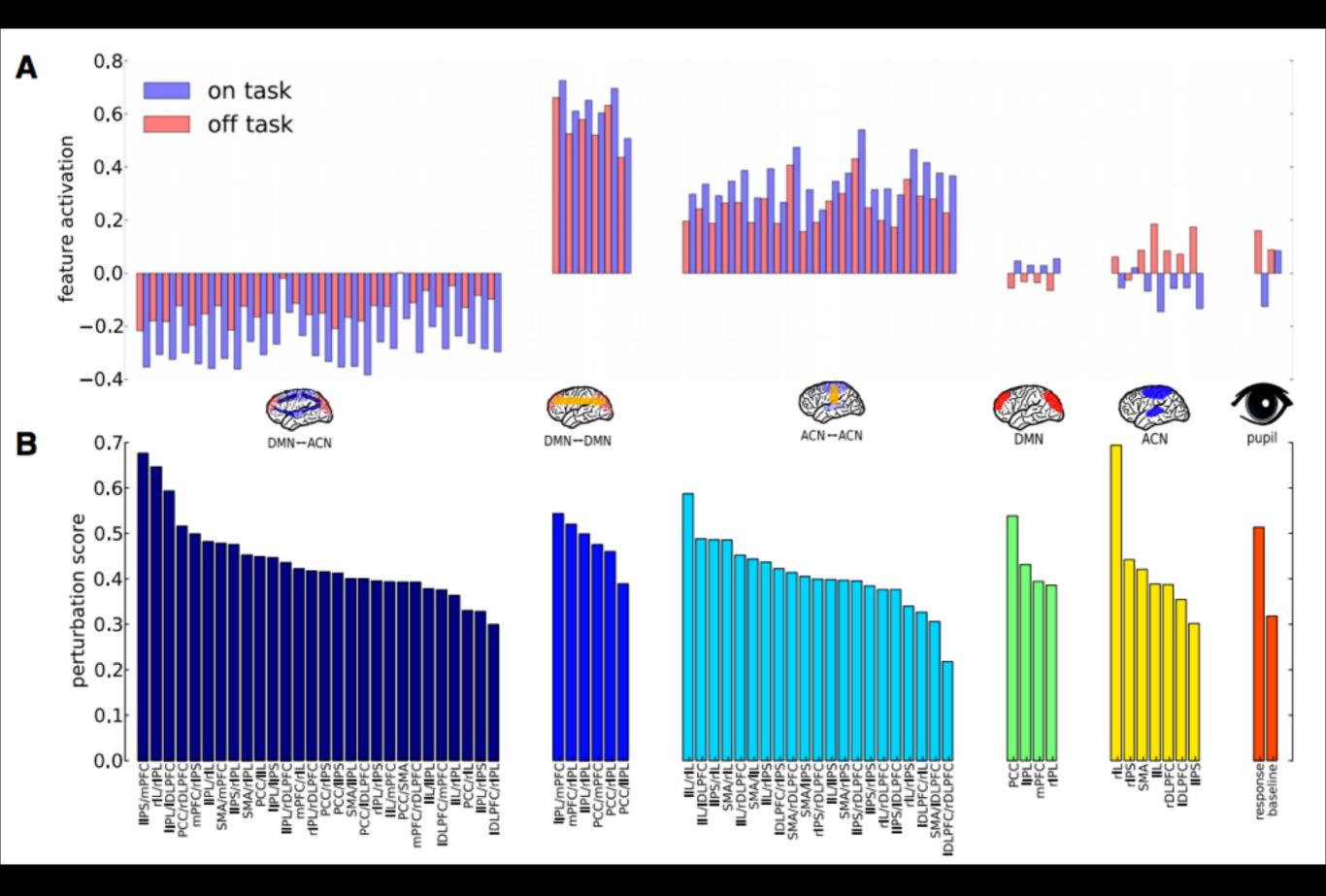
When the Brain Takes a Break: A Model-Based Analysis of Mind Wandering

[©]Matthias Mittner,¹ Wouter Boekel,² Adrienne M. Tucker,² Brandon M. Turner,⁴ Andrew Heathcote,³ and Birte U. Forstmann²

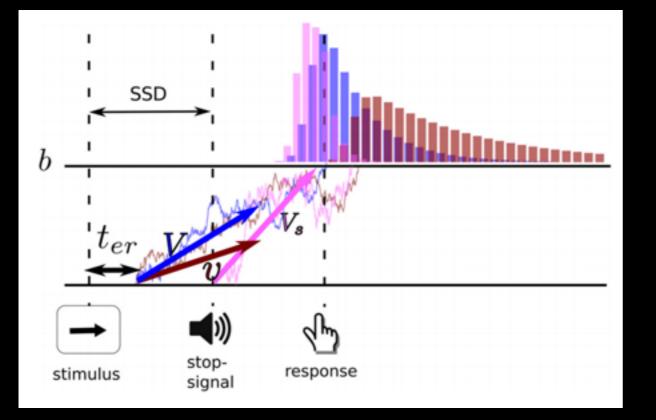
¹Department of Psychology, University of Tromsø, 9037 Tromsø, Norway, ²Cognitive Science Center Amsterdam, 1018 VZ Amsterdam, The Netherlands, ³Newcastle Cognition Laboratory, School of Psychology, University of Newcastle, 2308 Newcastle, Australia, and ⁴Stanford University Center for Mind, Brain and Computation, Department of Psychology, Stanford University, Stanford, California 94305



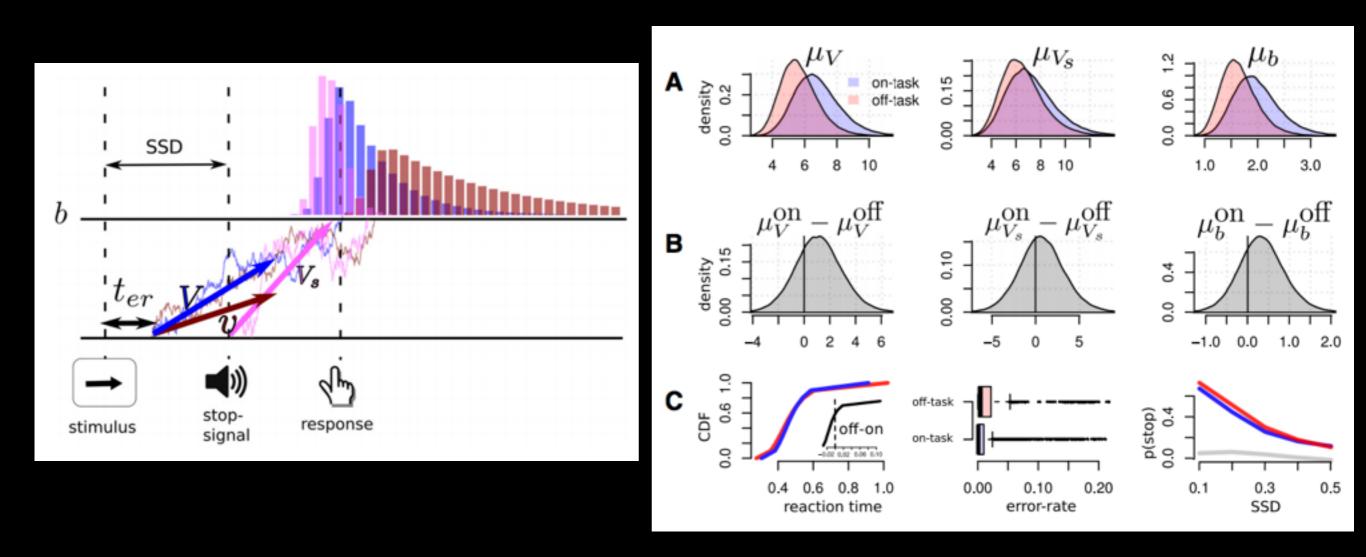




Race stopping model



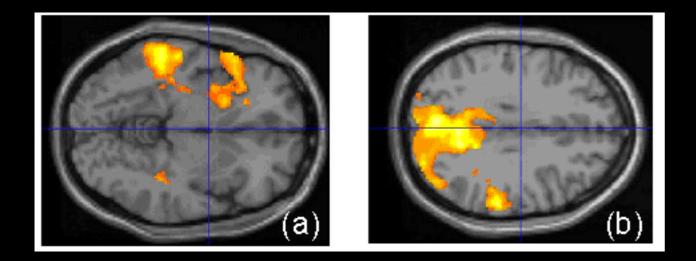
Race stopping model

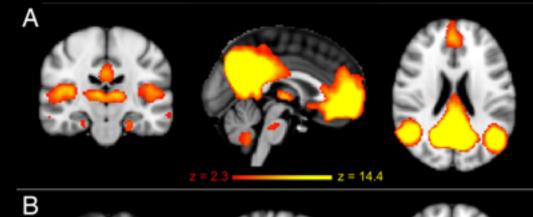


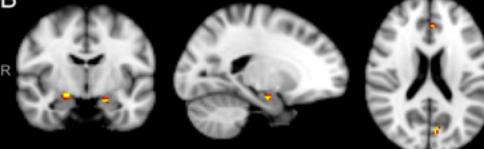
What do we learn

- We can "decode" mind-wandering
 - All modalities are informative
- No real mechanistic understanding
 - Cognitive model can help to some extent

Functional MRI

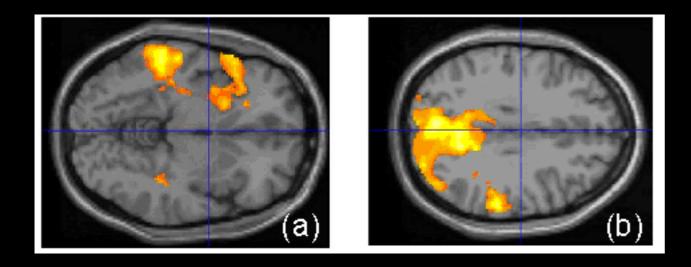






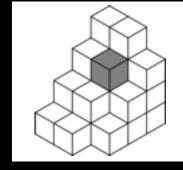
p<0.001 uncorrected p<0.05 FDR corrected

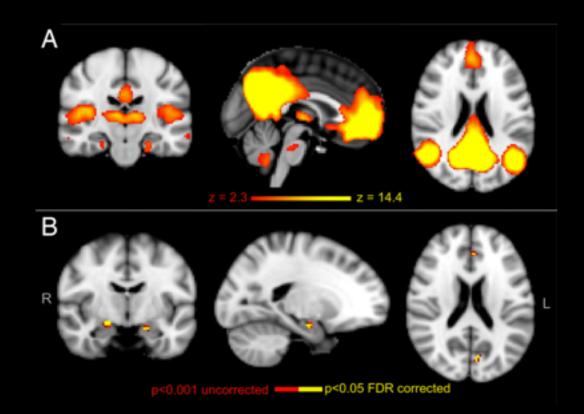
Functional MRI



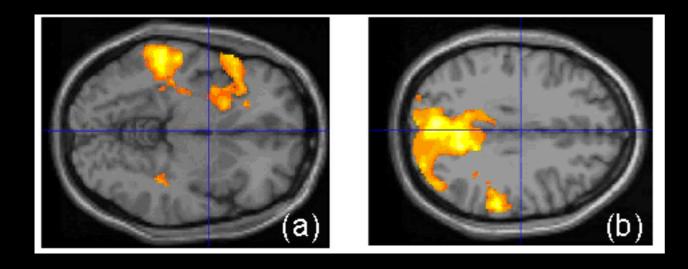
Massively univariate

100.000 t-tests



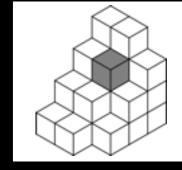


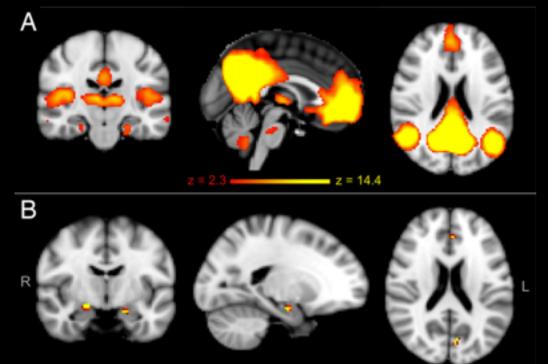
Functional MRI



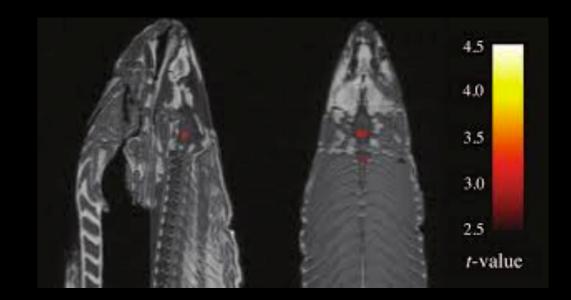
Massively univariate

100.000 t-tests





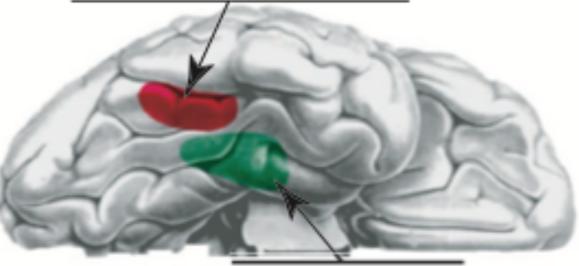
p<0.001 uncorrected p<0.05 FDR corrected



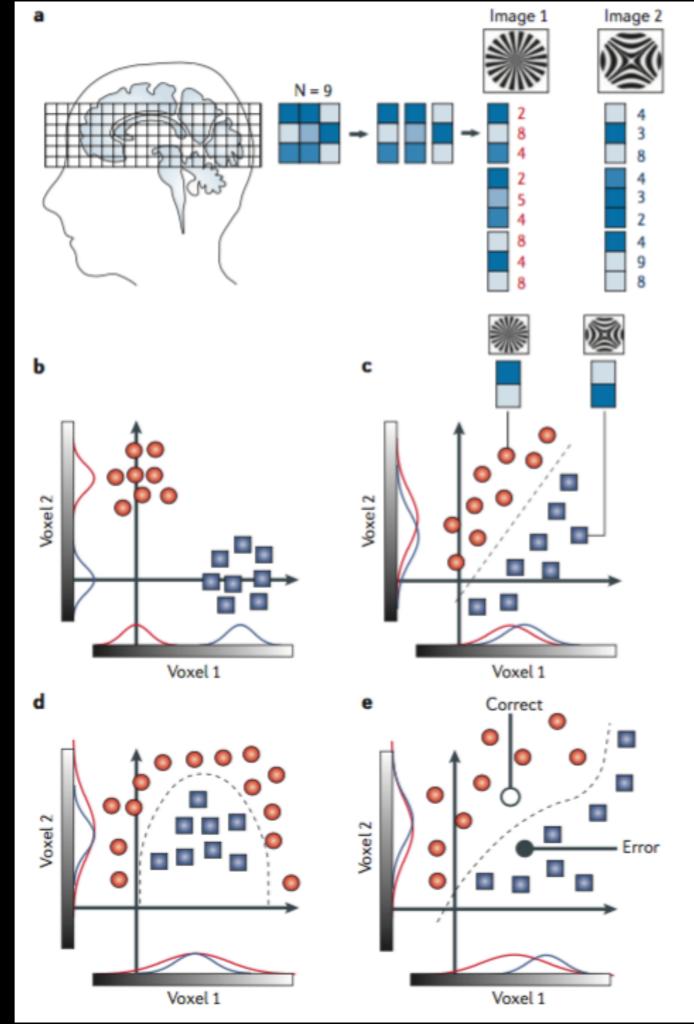
Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex James V. Haxby *et al.*

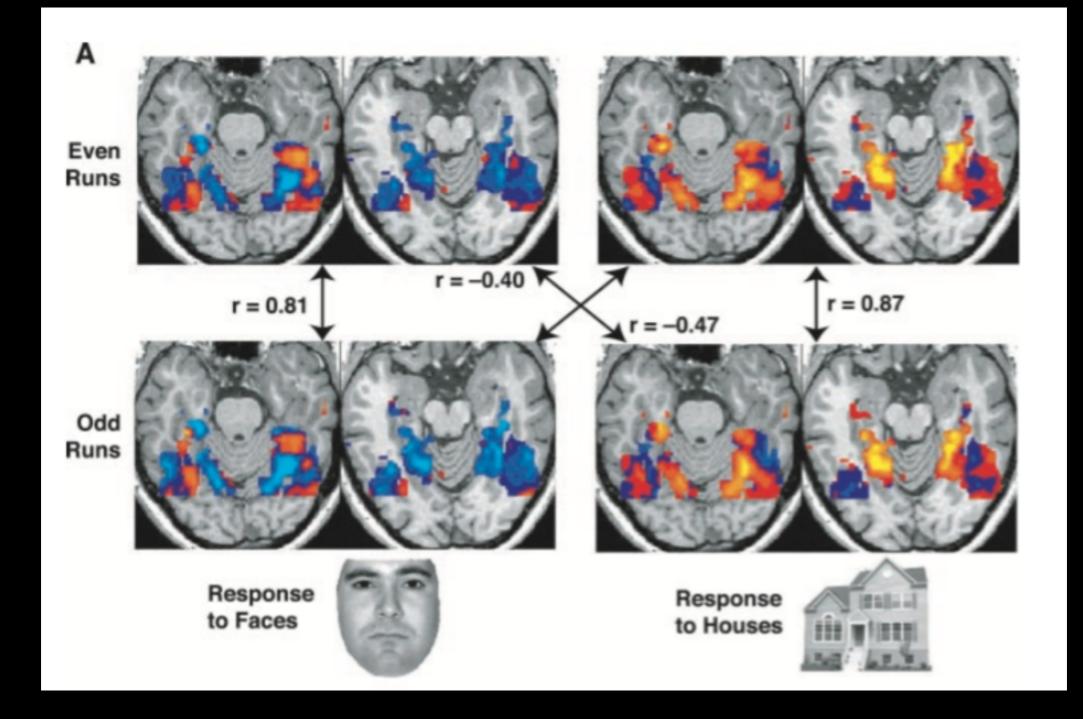
Science **293**, 2425 (2001); DOI: 10.1126/science.1063736

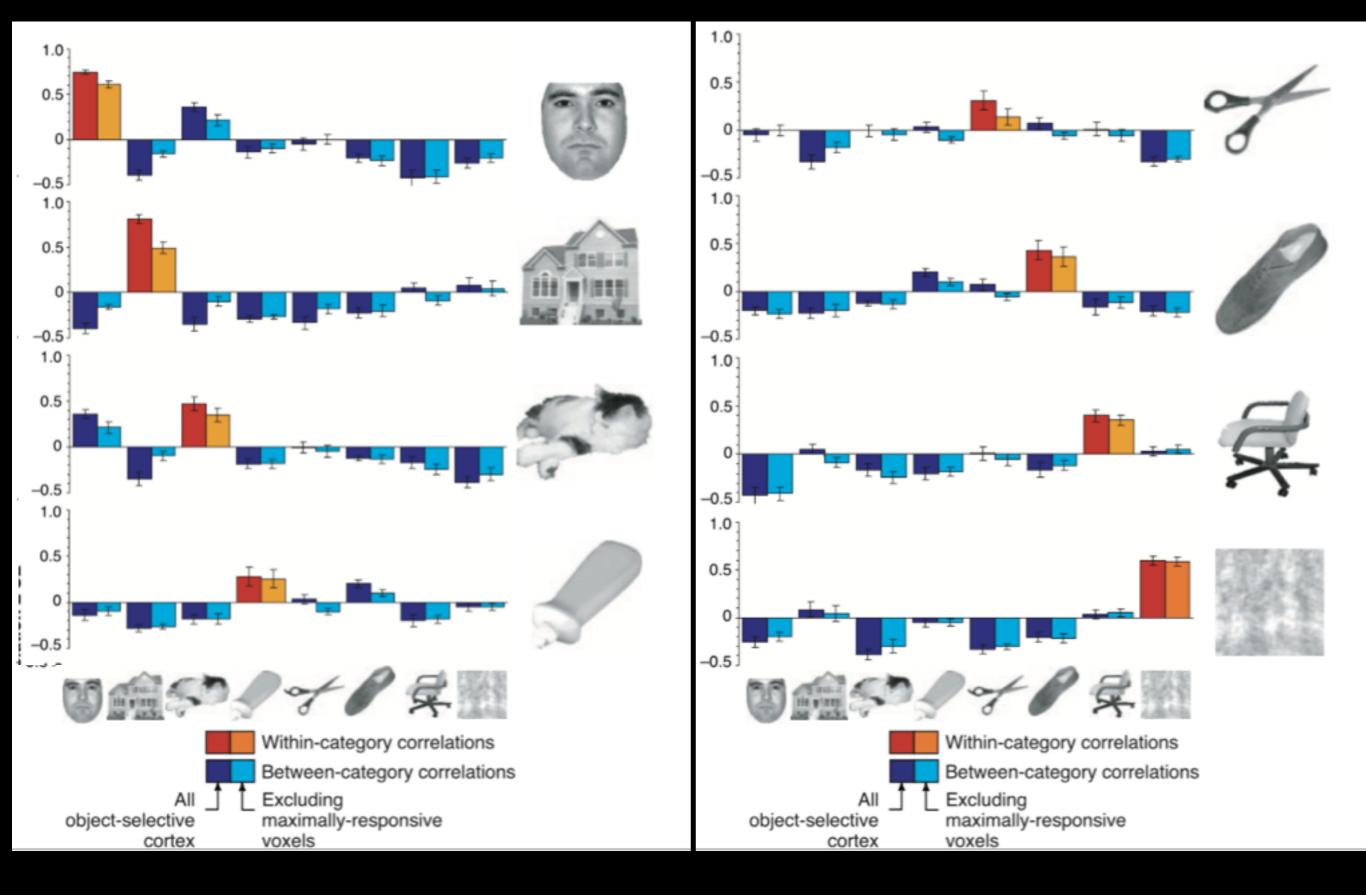
Fusiform Face Area (FFA) / Visual Expertise



Parahippocampal Place Area (PPA)







Decoding mental states from brain activity in humans

John-Dylan Haynes **§ and Geraint Rees*§

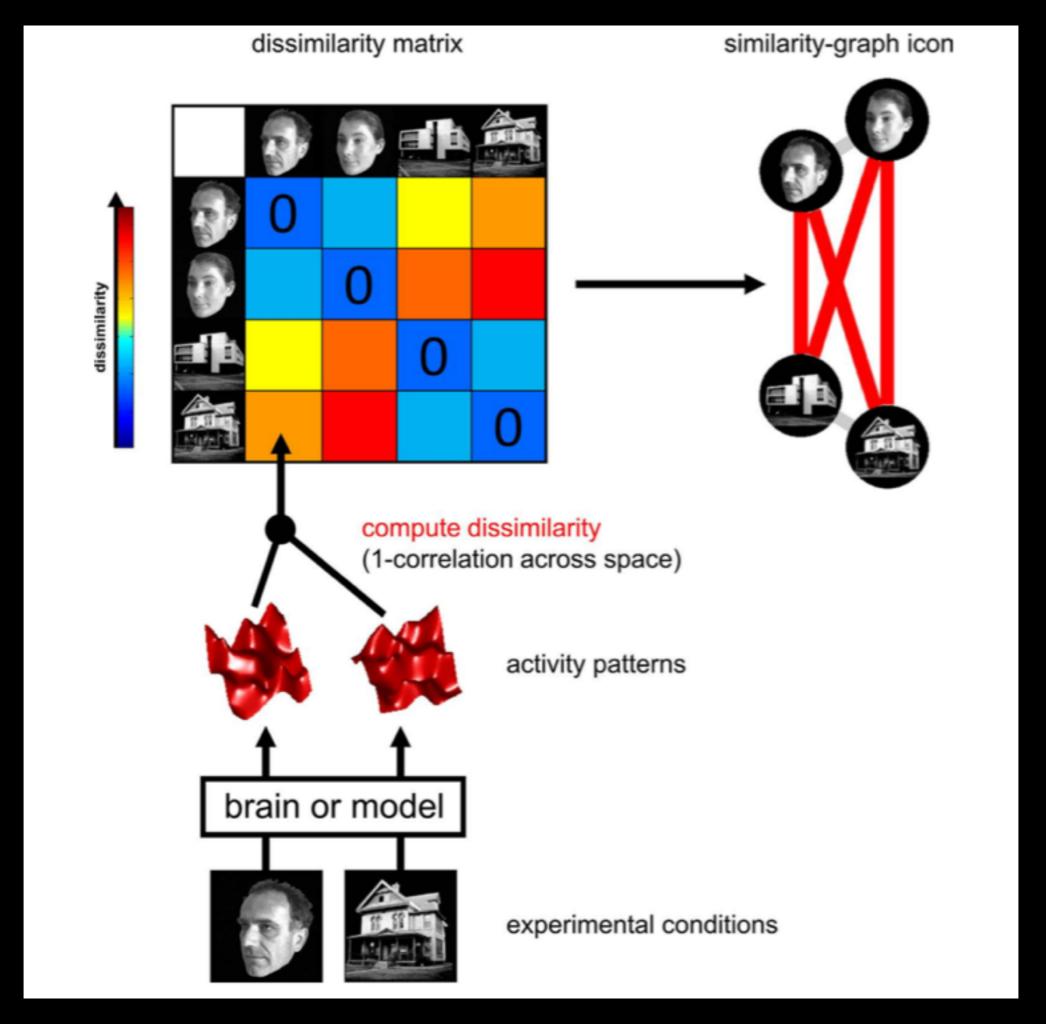
Representational similarity analysis – connecting the branches of systems neuroscience

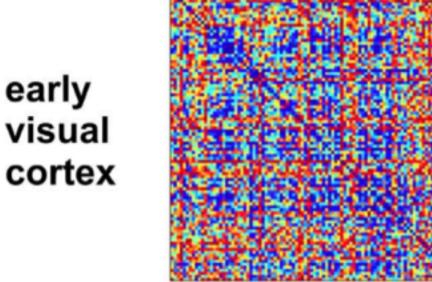
Nikolaus Kriegeskorte^{1,*}, Marieke Mur^{1,2} and Peter Bandettini¹

Beyond mind-reading: multi-voxel pattern analysis of fMRI data

Kenneth A. Norman¹, Sean M. Polyn², Greg J. Detre¹ and James V. Haxby¹

¹ Department of Psychology, Princeton University, Green Hall, Washington Road, Princeton, NJ 08540, USA ² Department of Psychology, University of Pennsylvania, 3401 Walnut Street, Philadelphia, PA 19104, USA

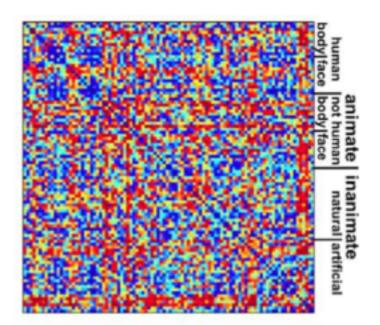




Euclidean distance

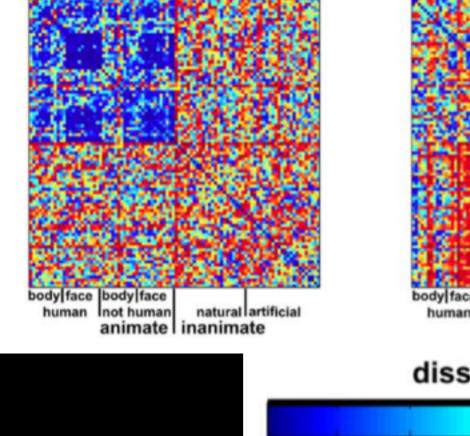


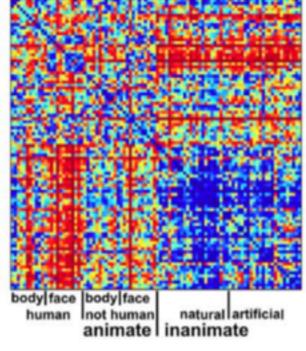
absolute activation difference



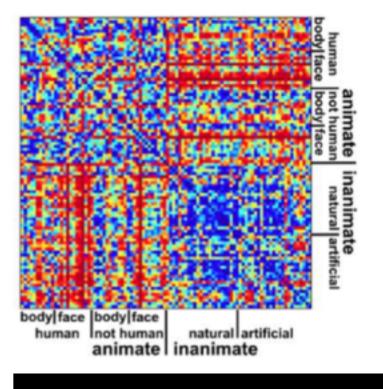
early

visual

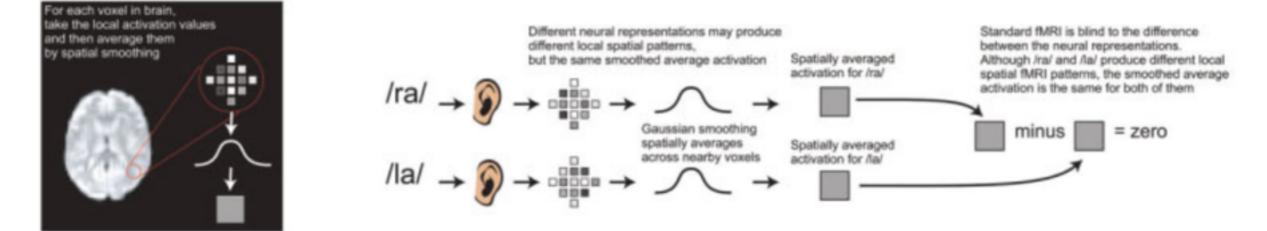




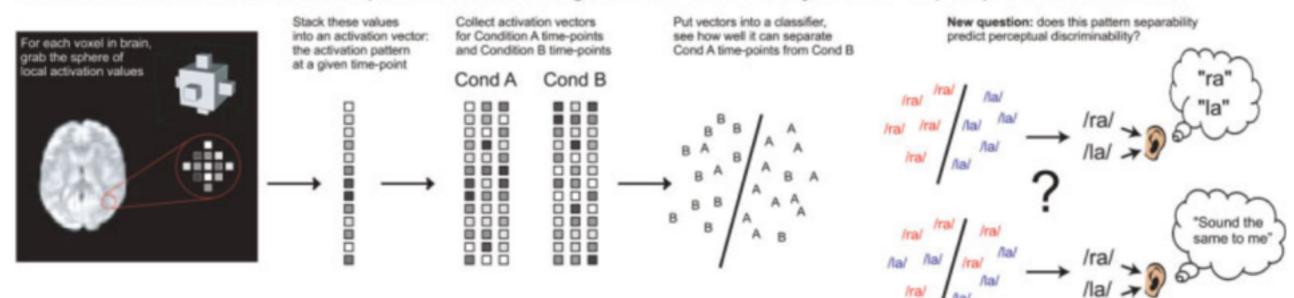
dissimilarity



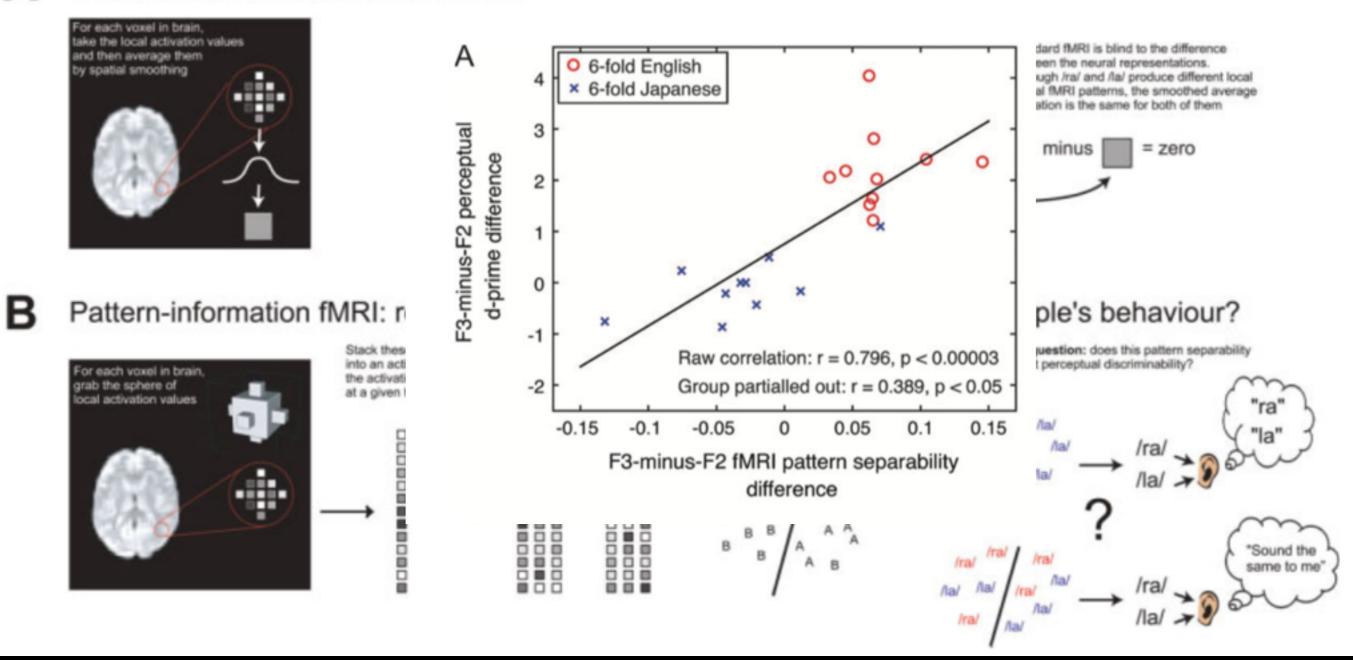
A Standard fMRI: representations lost



B Pattern-information fMRI: representations regained. But do they relate to people's behaviour?



Standard fMRI: representations lost



Supervised MVPA

 Most fMRI research use some sort of paradigm with clearly separable conditions

Correspondence of the brain's functional architecture during activation and rest

Stephen M. Smith^{a,1}, Peter T. Fox^b, Karla L. Miller^a, David C. Glahn^{b,c}, P. Mickle Fox^b, Clare E. Mackay^a, Nicola Filippini^a, Kate E. Watkins^a, Roberto Toro^d, Angela R. Laird^b, and Christian F. Beckmann^{a,e}

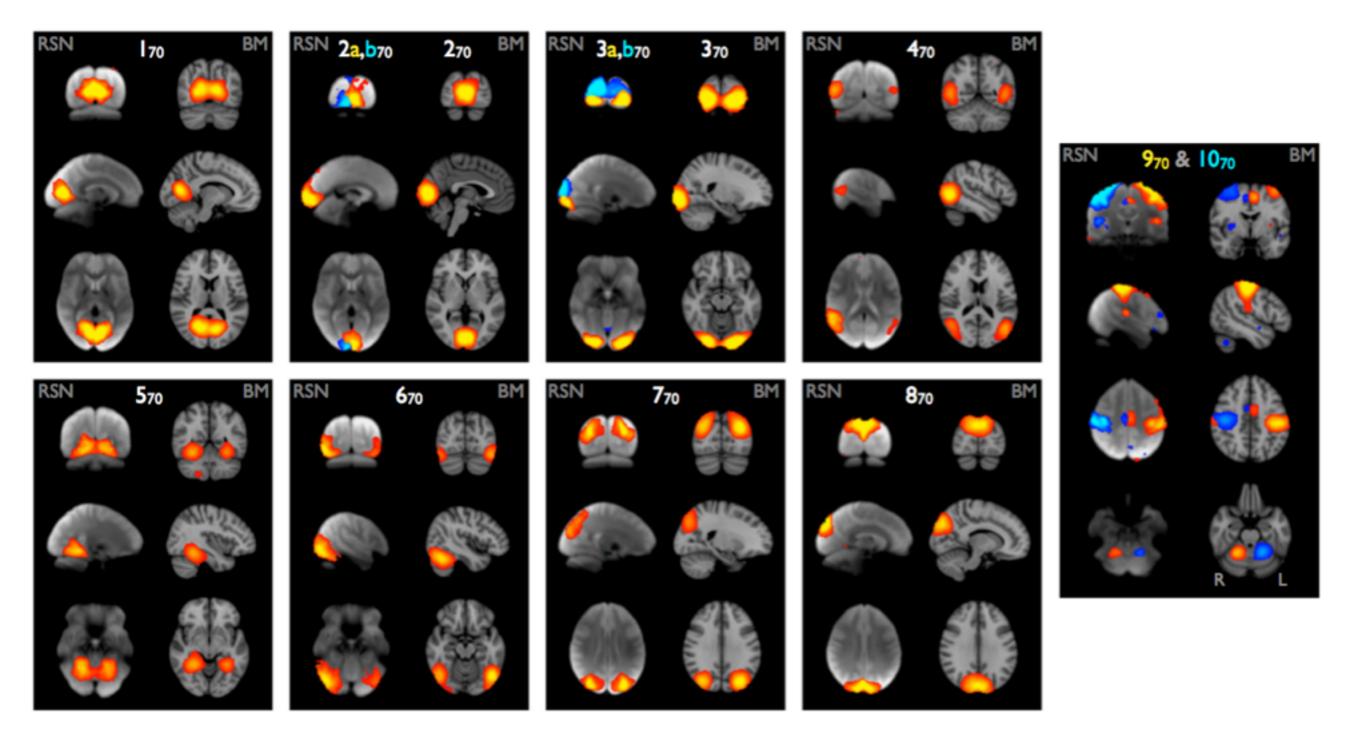


Fig. 3. Eight well-matched pairs of networks in visual areas $(1-8_{70})$, and 2 pairs from the sensorimotor areas $(9, 10_{70})$, from the 70-component analyses of the BrainMap activation database and the resting FMRI dataset. All Gaussianized ICA maps are thresholded at Z = 4 (higher than for the 20-dimensional results for comparability, because the higher-dimensional analysis, by definition, has reduced ICA residuals).

MVPA

- Exploiting multivariate nature of functional MRI data
 - Supervised learning in task paradigms
 - Decoding
 - Similarity measures
 - Unsupervised learning in resting state

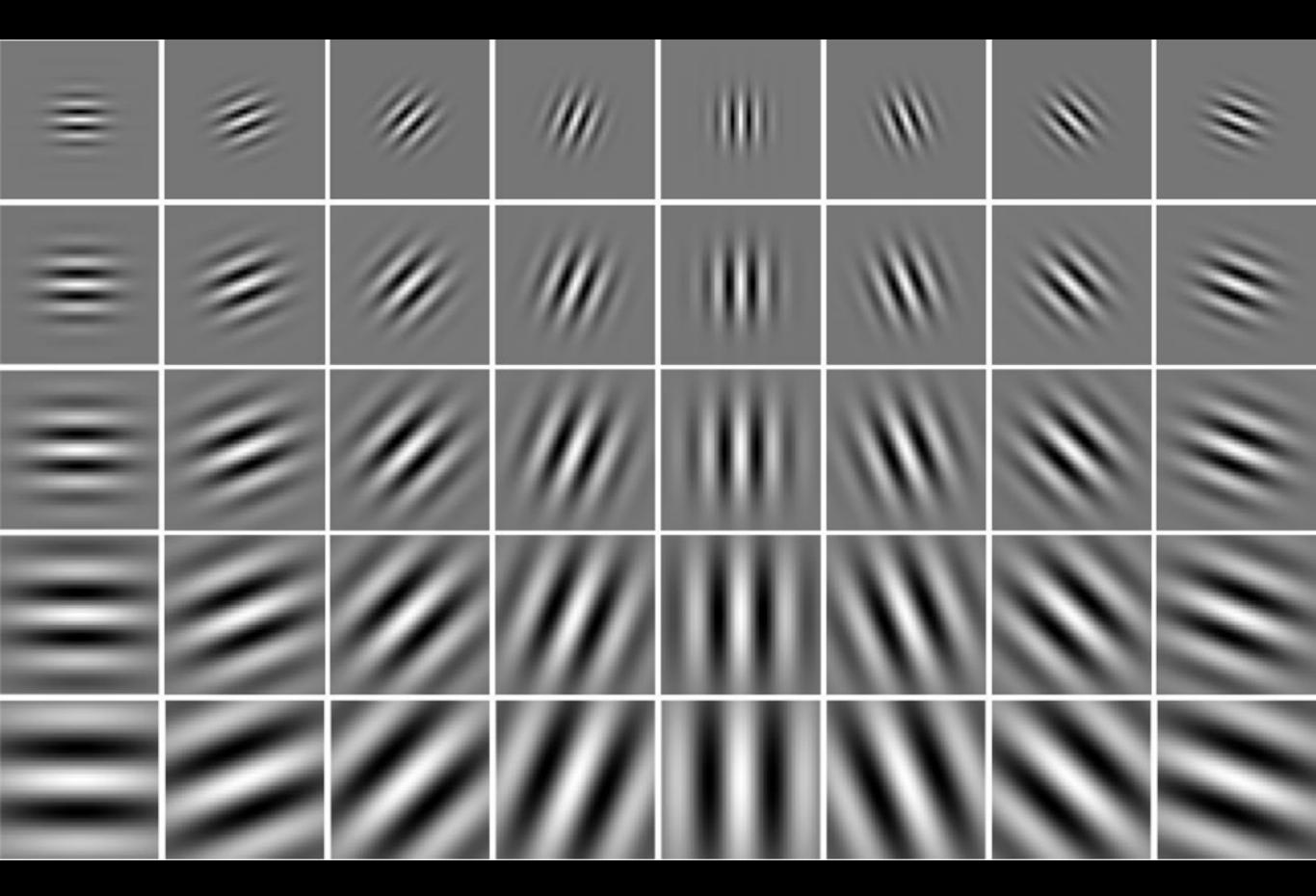
MVPA

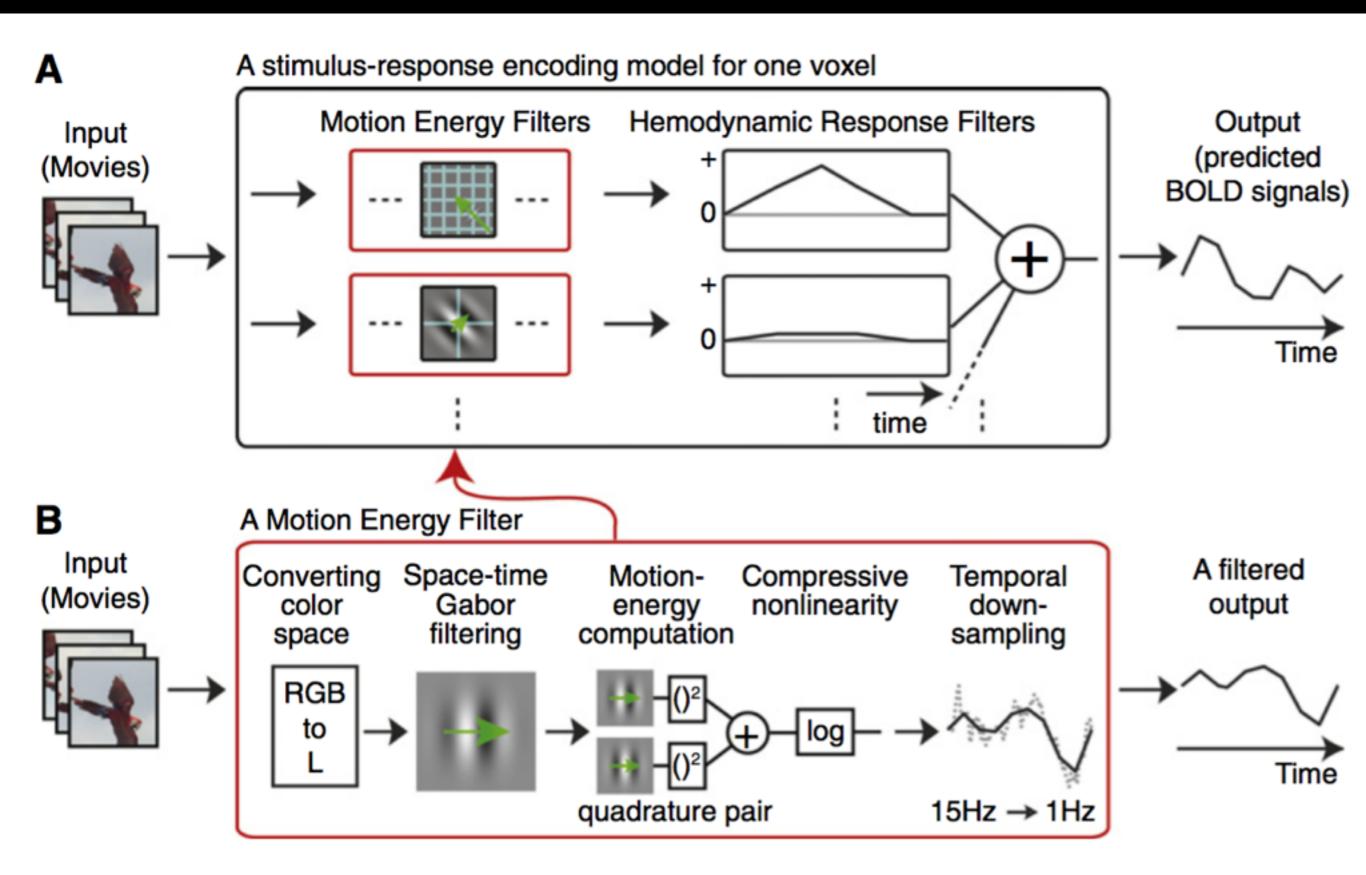
- MVPA can find effects that univariate analysis cannot
 - Neuroscientists love this (note that fMRI dataset ~= 15,000 - 50,000 euros)
- Kriegeskorte: MVPA can learn us something about how the brain represent information

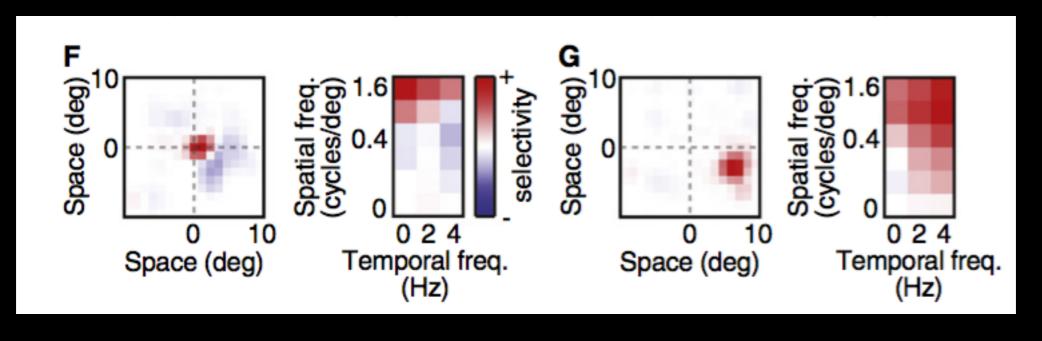
Generative models

- Lately: Bayesian approach to modelling of brain data
 - Generative model stimulus -> brain activity
 - P(brain_activity | stimulus)
 - With Bayes' rule we can now infer the stimulus using the brain data!
 - P(stimulus | brain_activity)

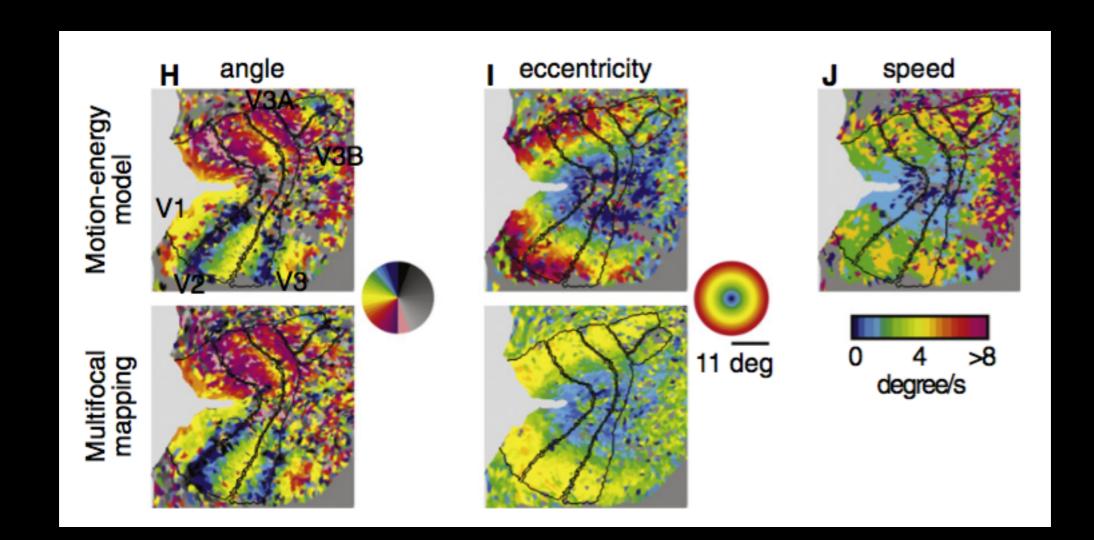
Reconstructing Visual Experiences from Brain Activity Evoked by Natural Movies







voxel 1



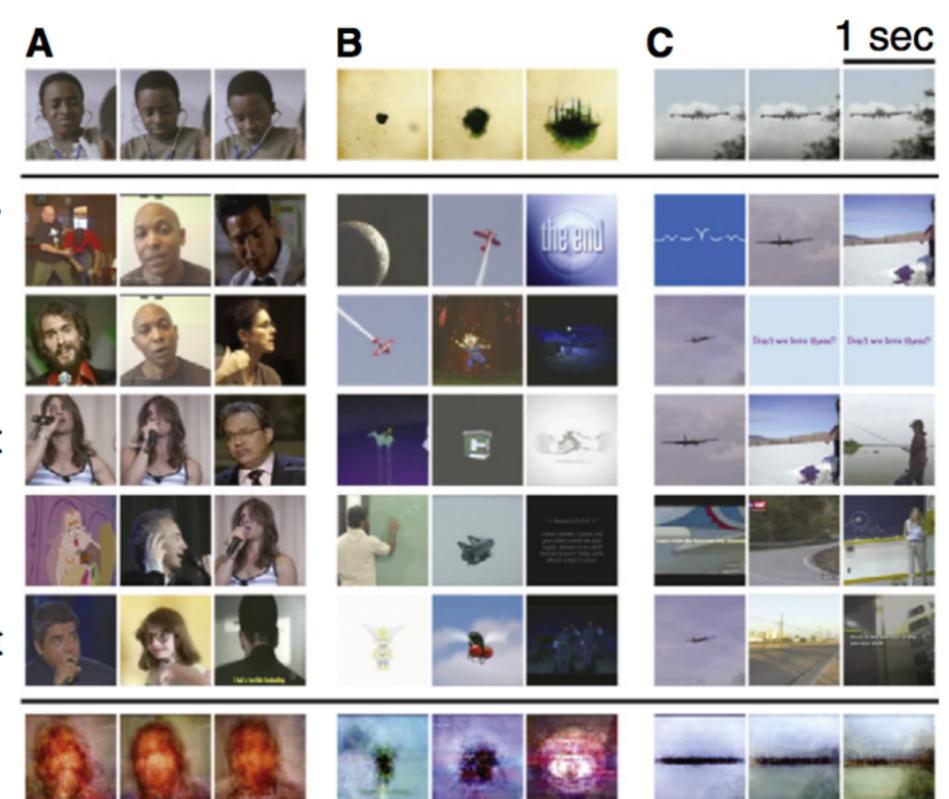
Presented movies

Highest posterior movies (MAP)

3rd highest

5th highest

Reconstructed movies (AHP)



Reconstructing visual experiences from brain activity evoked by natural movies

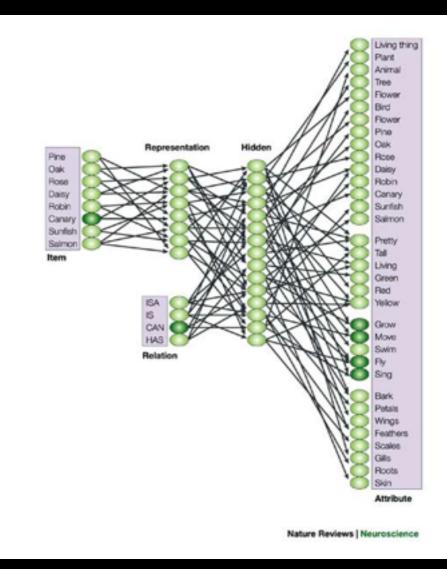
Shinji Nishimoto, An T. Vu, Thomas Naselaris, Yuval Benjamini, Bin Yu, Jack L. Gallant

Supplemental movie S1

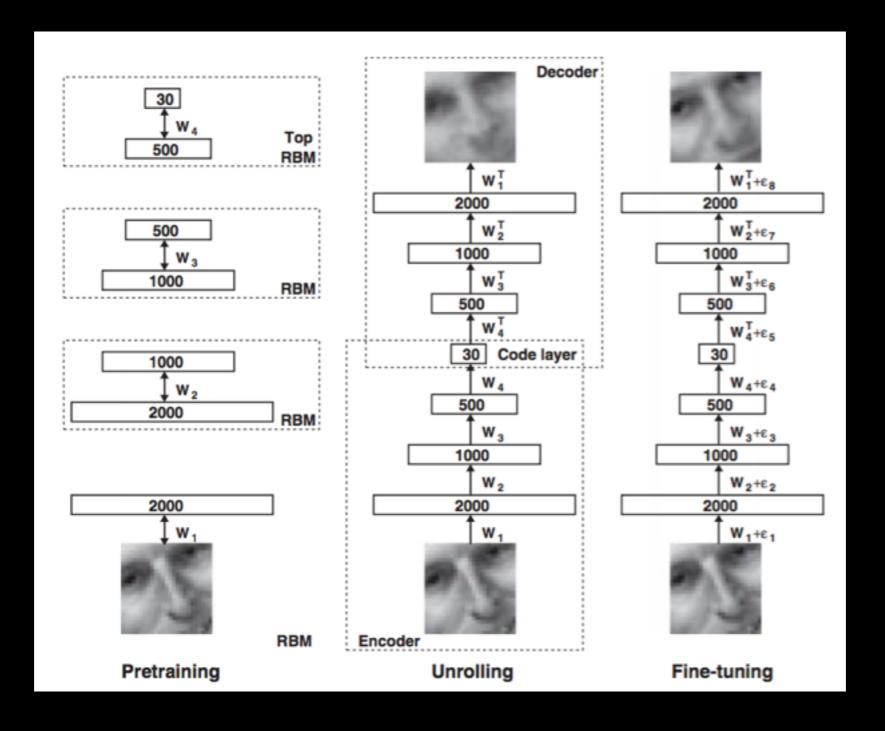
Deep Learning

Deep Learning

- Artificial Neural Networks
 - Hype in the 80s
 - Somewhere in-between supervised and unsupervised learning
- Interest declined in 90s and 00s
- 2006: some crucial papers by Geoffrey Hinton's group in Toronto
- 2016: *Big idea* of artificial intelligence. Lots of media and business attention



Deep Learning



Deep Learning

Imagenet: 1.2 miljoen plaatjes met 1000 klasse

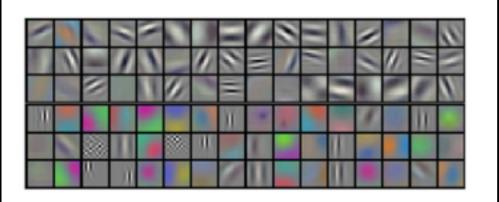
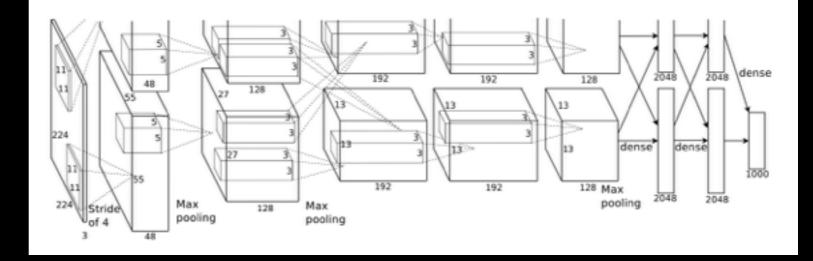
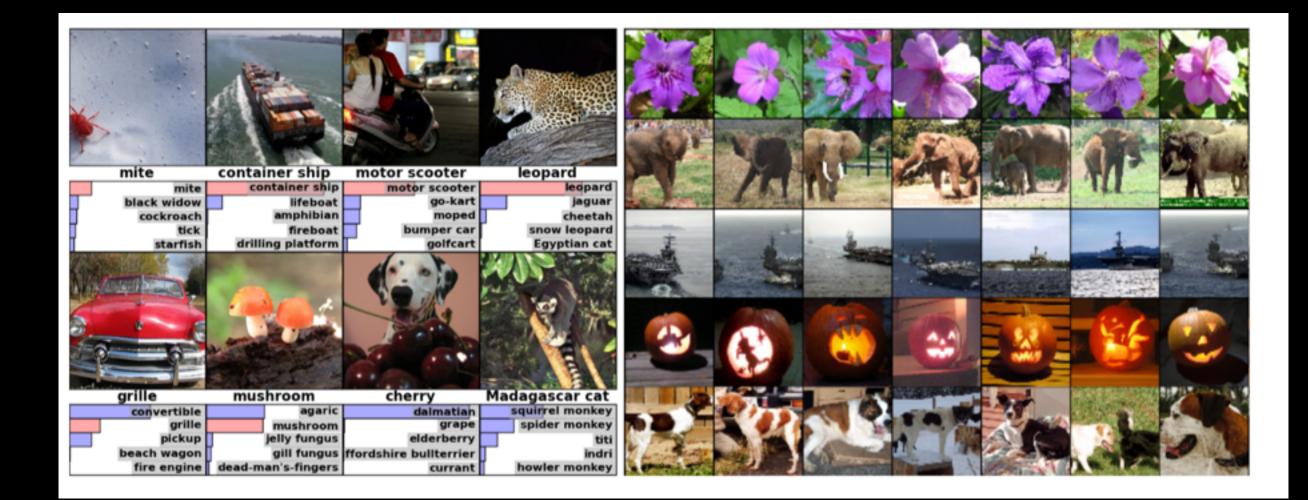


Figure 3: 96 convolutional kernels of size $11 \times 11 \times 3$ learned by the first convolutional layer on the $224 \times 224 \times 3$ input images. The top 48 kernels were learned on GPU 1 while the bottom 48 kernels were learned on GPU 2. See Section 6.1 for details.



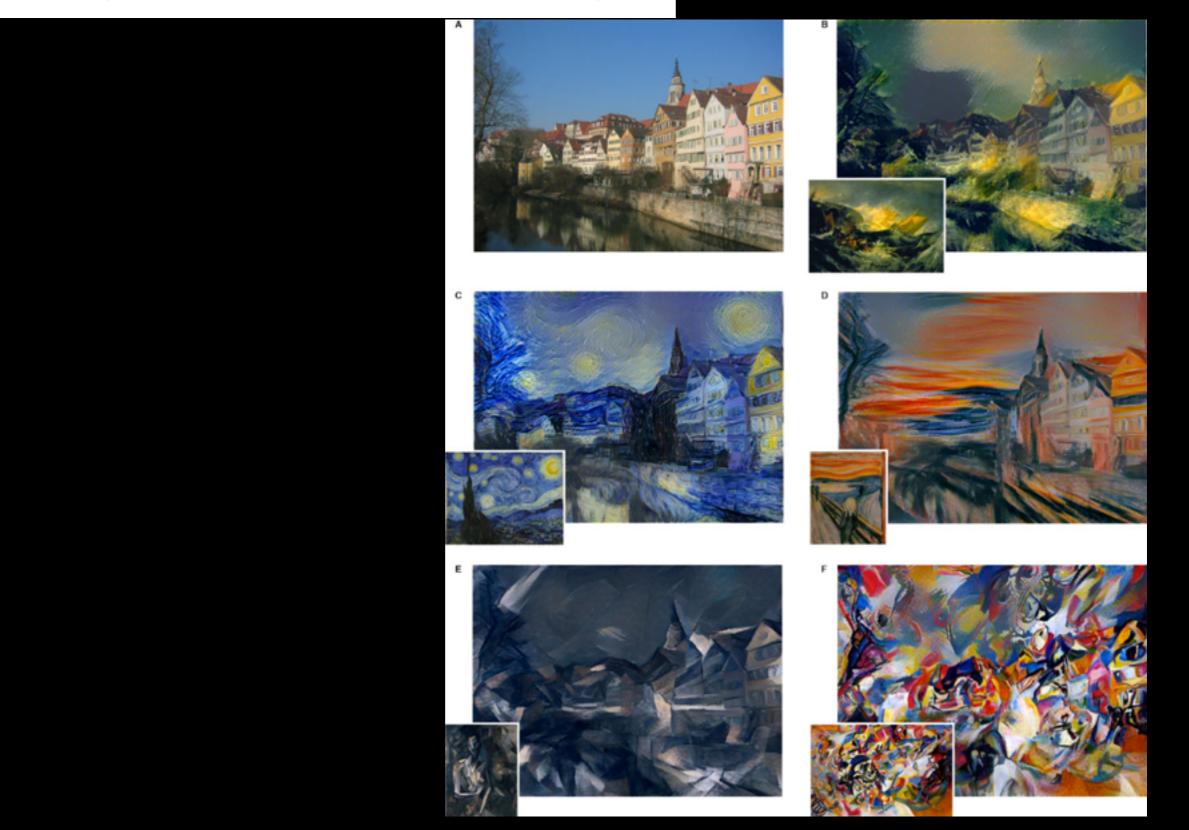
Deep Learning

Imagenet: 1.2 miljoen plaatjes met 1000 klasse 17% correct

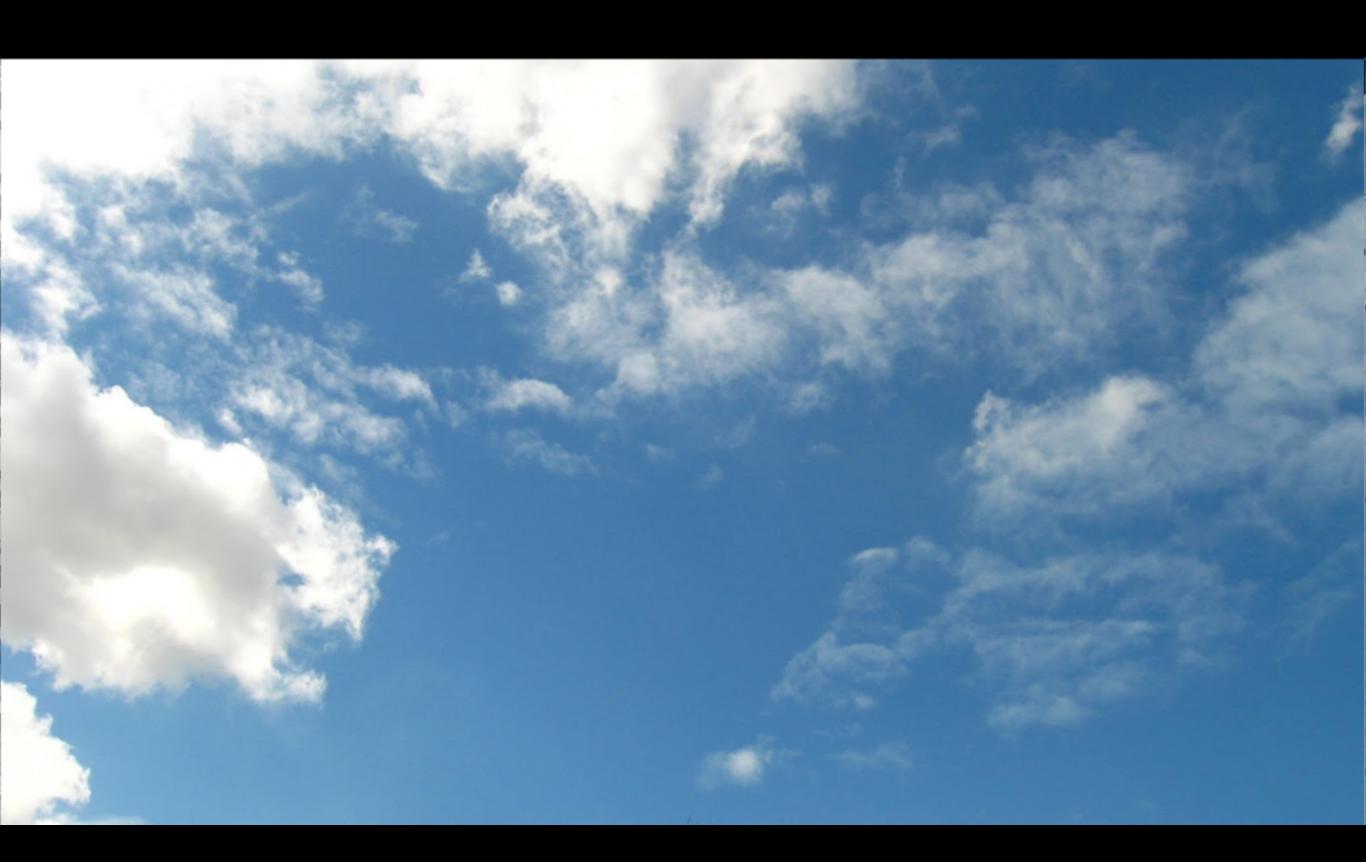


A Neural Algorithm of Artistic Style

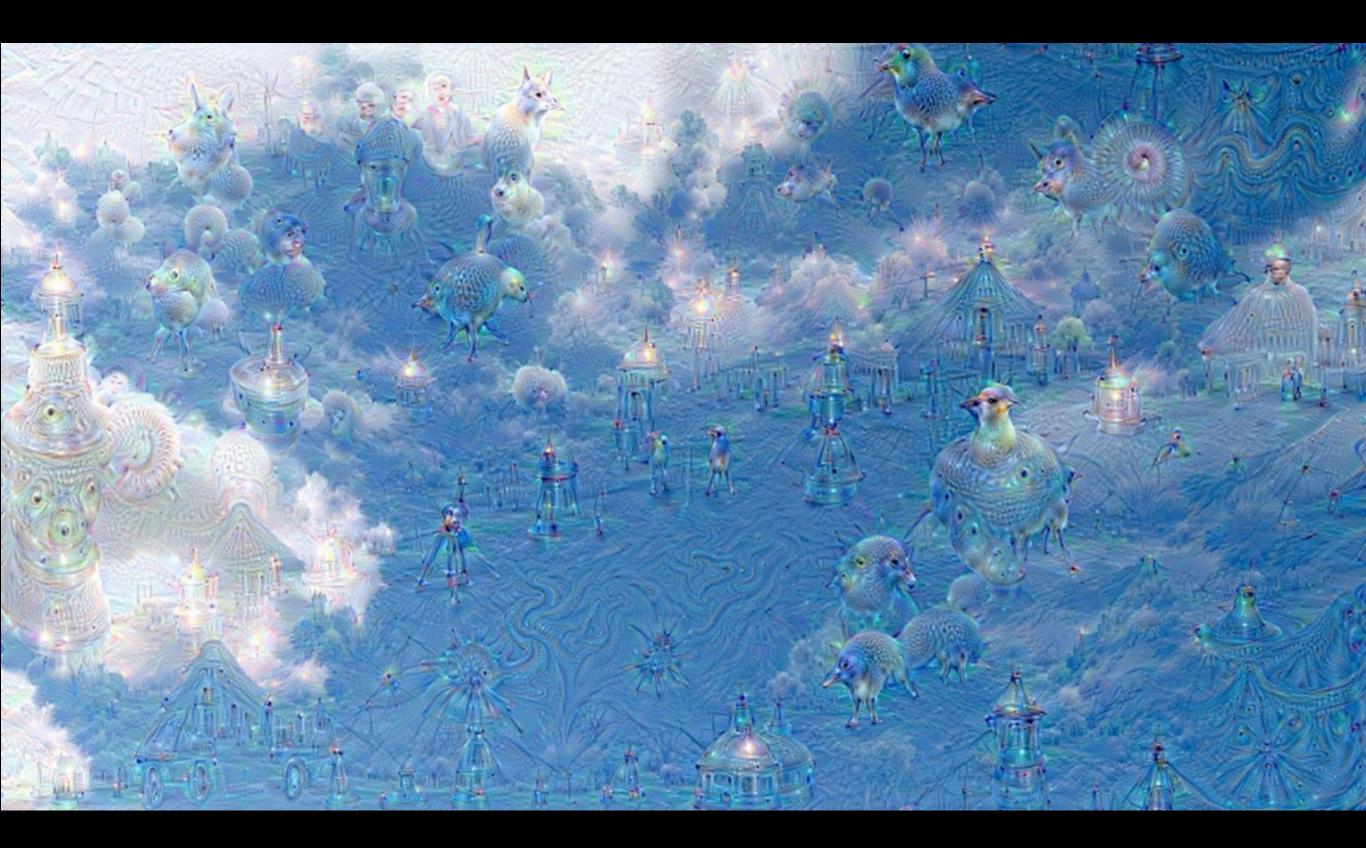
Leon A. Gatys,^{1,2,3*} Alexander S. Ecker,^{1,2,4,5} Matthias Bethge^{1,2,4}



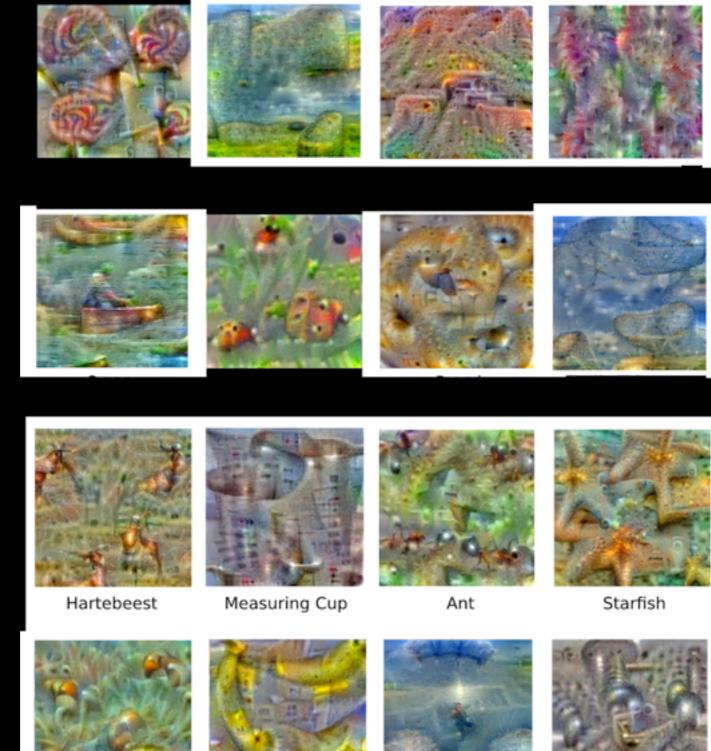
12 dec. 2008-18 jun. 2015



12 dec. 2008-18 jun. 2015



12 dec. 2008-18 jun. 2015



Anemone Fish

Banana

Parachute

Screw

12 dec. 2008-18 jun. 2015

Show and Tell: A Neural Image Caption Generator

Oriol Vinyals Google

A person riding a motorcycle on a dirt road.

A group of young people playing a game of frisbee.

A herd of elephants walking across a dry grass field.

Alexander Toshev Google

Two dogs play in the grass.

Two hockey players are fighting over the puck.

A close up of a cat laying on a couch.

Samy Bengio Google

A skateboarder does a trick on a ramp.

A little girl in a pink hat is blowing bubbles.

A red motorcycle parked on the

Dumitru Erhan Google

A dog is jumping to catch a frisbee.

A refrigerator filled with lots of food and drinks.

A yellow school bus parked

Describes without errors

Describes with minor errors

Somewhat related to the image

Unrelated to the image

LETTER

Human-level control through deep reinforcement learning

Volodymyr Mnih¹*, Koray Kavukcuoglu¹*, David Silver¹*, Andrei A. Rusu¹, Joel Veness¹, Marc G. Bellemare¹, Alex Graves¹, Martin Riedmiller¹, Andreas K. Fidjeland¹, Georg Ostrovski¹, Stig Petersen¹, Charles Beattie¹, Amir Sadik¹, Ioannis Antonoglou¹, Helen King¹, Dharshan Kumaran¹, Daan Wierstra¹, Shane Legg¹ & Demis Hassabis¹

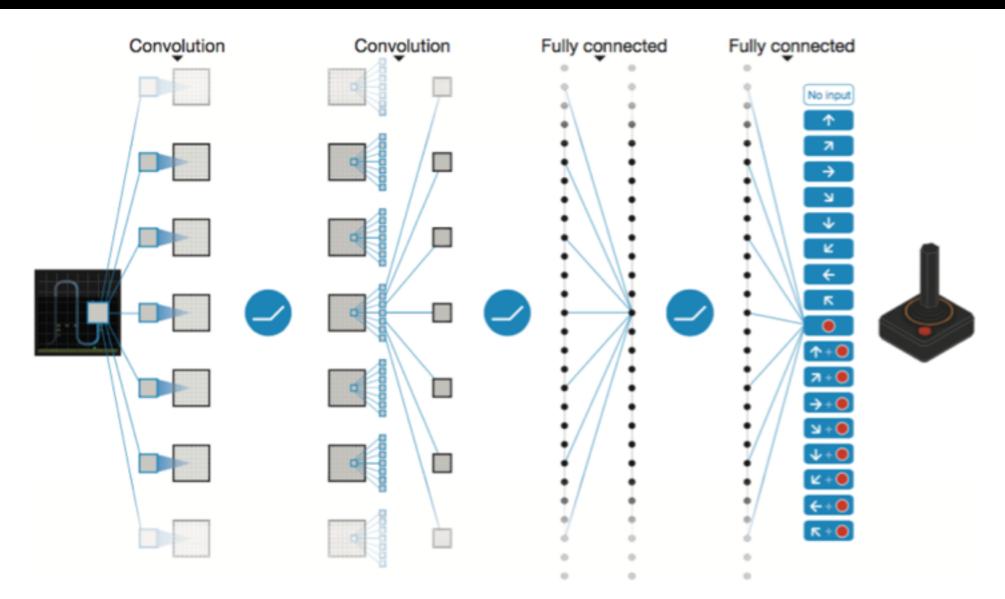


Figure 1 | Schematic illustration of the convolutional neural network. The details of the architecture are explained in the Methods. The input to the neural network consists of an $84 \times 84 \times 4$ image produced by the preprocessing map ϕ , followed by three convolutional layers (note: snaking blue line

symbolizes sliding of each filter across input image) and two fully connected layers with a single output for each valid action. Each hidden layer is followed by a rectifier nonlinearity (that is, max(0,x)).

Deep Neural Networks Reveal a Gradient in the Complexity of Neural Representations across the Ventral Stream

Umut Güçlü and Marcel A. J. van Gerven

Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands

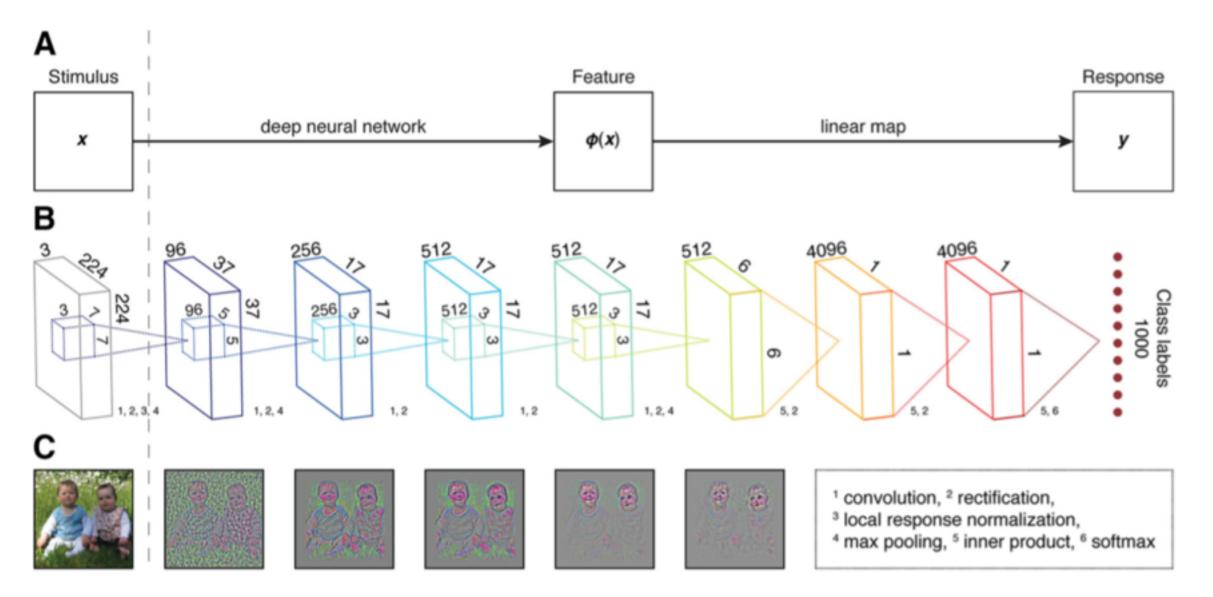
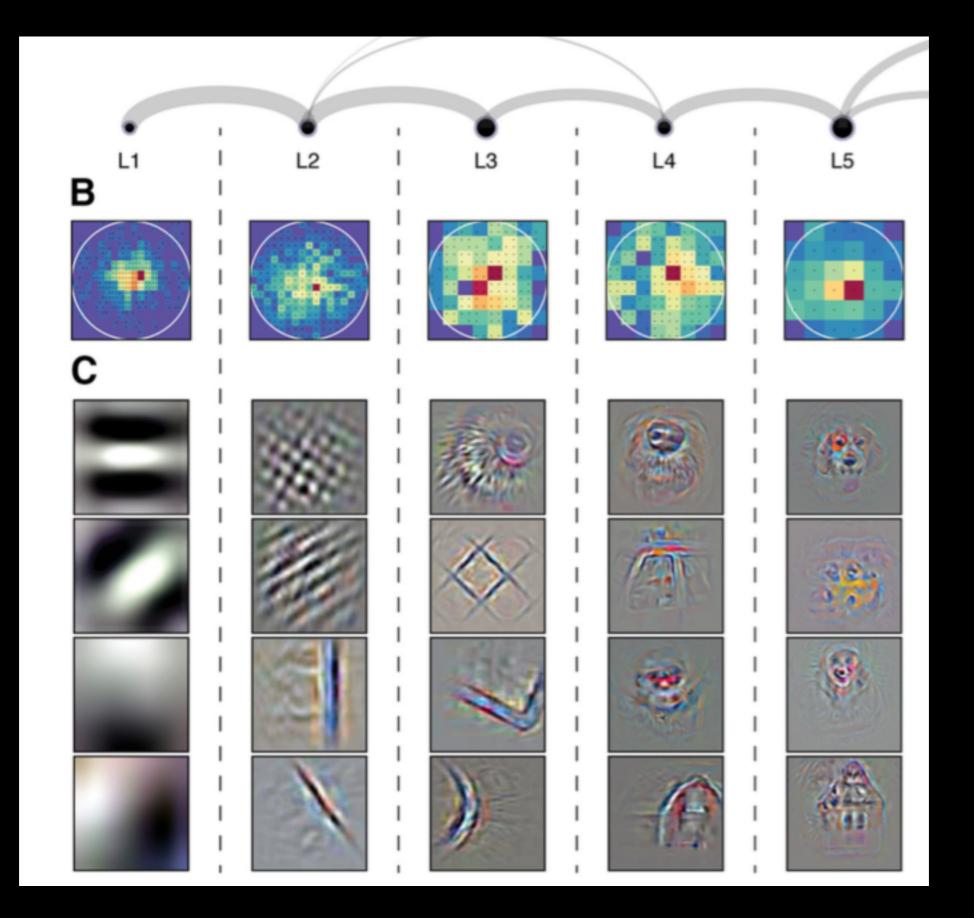
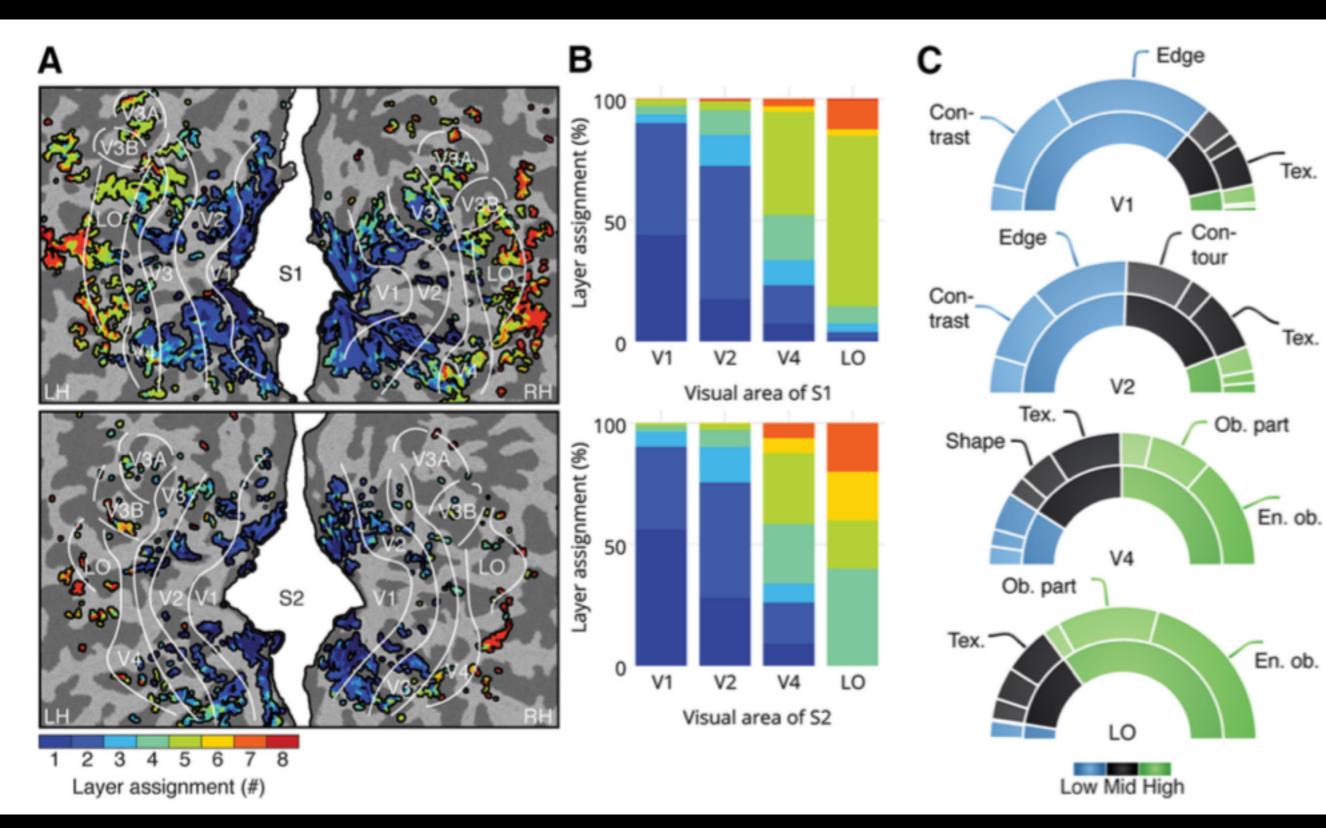


Figure 1. DNN-based encoding framework. *A*, Schematic of the encoding model that transforms a visual stimulus to a voxel response in two stages. First, a deep (convolutional) neural network transforms the visual stimulus (*x*) to multiple layers of feature representations. Then, a linear mapping transforms a layer of feature representations to a voxel response (*y*). *B*, Schematic of the deep neural network where each layer of artificial neurons uses one or more of the following (non)linear transformations: convolution, rectification, local response normalization, max pooling, inner product, and softmax. *C*, Reconstruction of an example image from the activities in the first five layers.





Anti-deep learners

RESEARCH ARTICLES

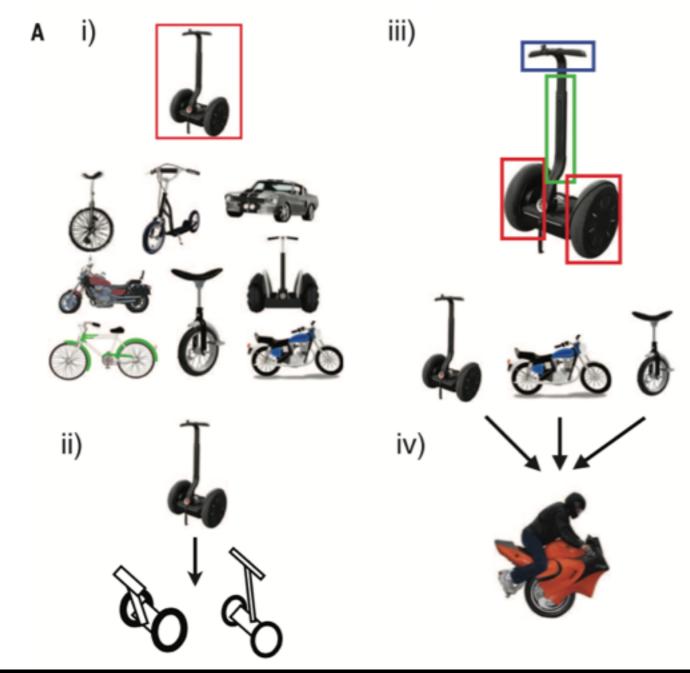
COGNITIVE SCIENCE

Human-level concept learning through probabilistic program induction

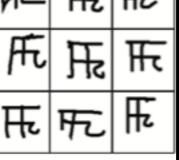
Brenden M. Lake,^{1*} Ruslan Salakhutdinov,² Joshua B. Tenenbaum³

- What is a house? What is a horse? When does a giraffe become a horse?
- How many giraffes do you have to show a child before it understands what a giraffe is?
 - Sparse data
 - Generalising

- Deep learning needs hundreds of examples to learn categories.
- They don't use structural priors

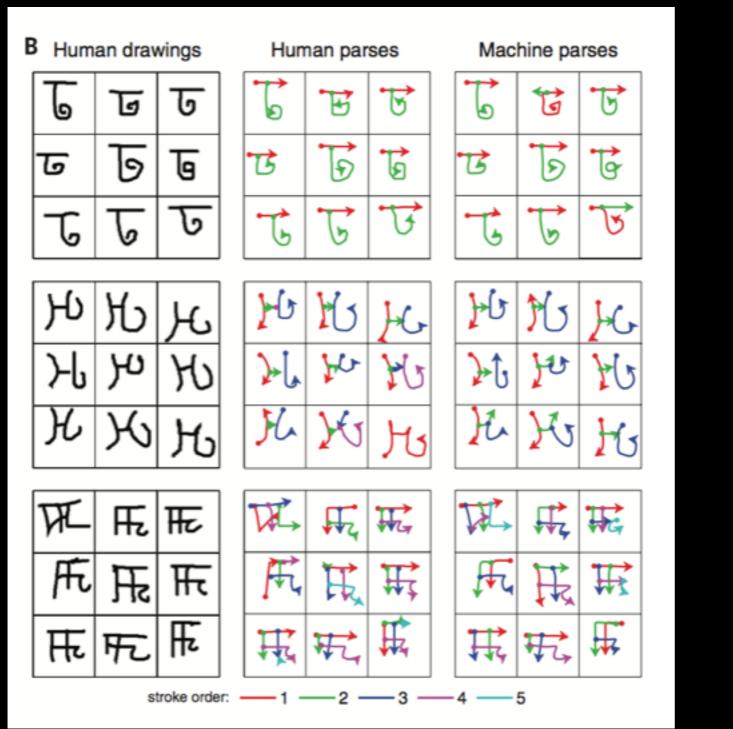


B	B Human drawings				
	6	ৰ	চ		
	ច	ৰ	ভ		
	Շ	ৢ	চ		
	Ю	Η,			
	,,	Ю	Ж		
	ԴႱ	ખ	Ю		
	K	Ю	ዜ		
	TL	脹	₩		
	Æ	Т	म		

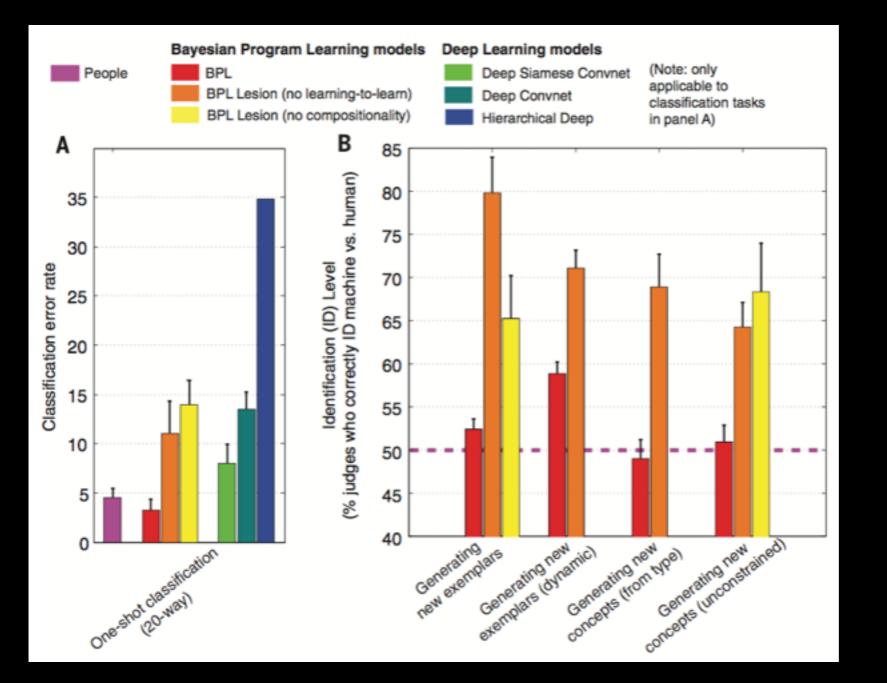


stroke orde

Lake et al. ,2015



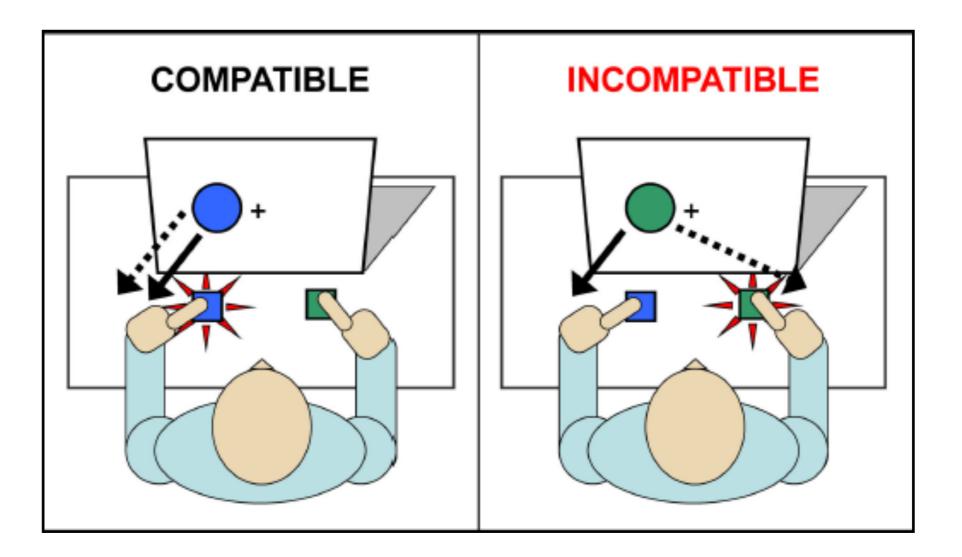
Lake et al. ,2015

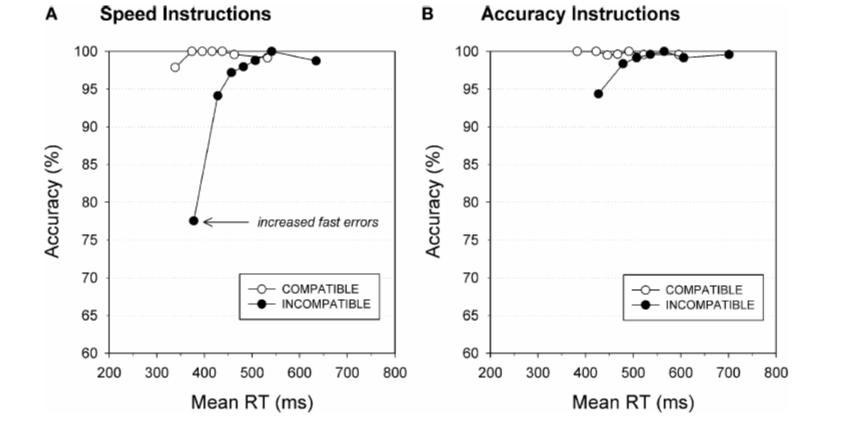


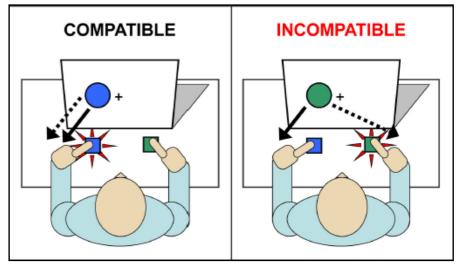
Lake et al. ,2015

Simon task

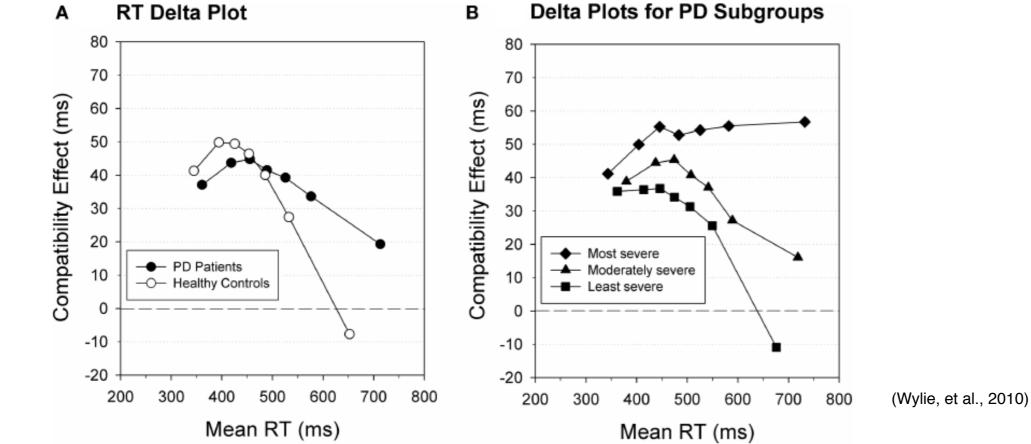
Simon task taps on the executive control function that **inhibits irrelevant response**





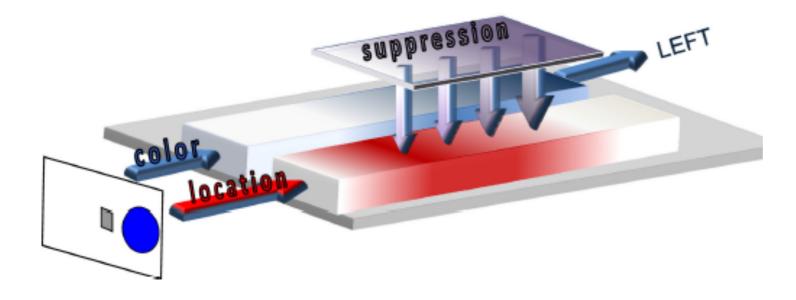


(Wylie, et al., 2009)



Delta Plots for PD Subgroups

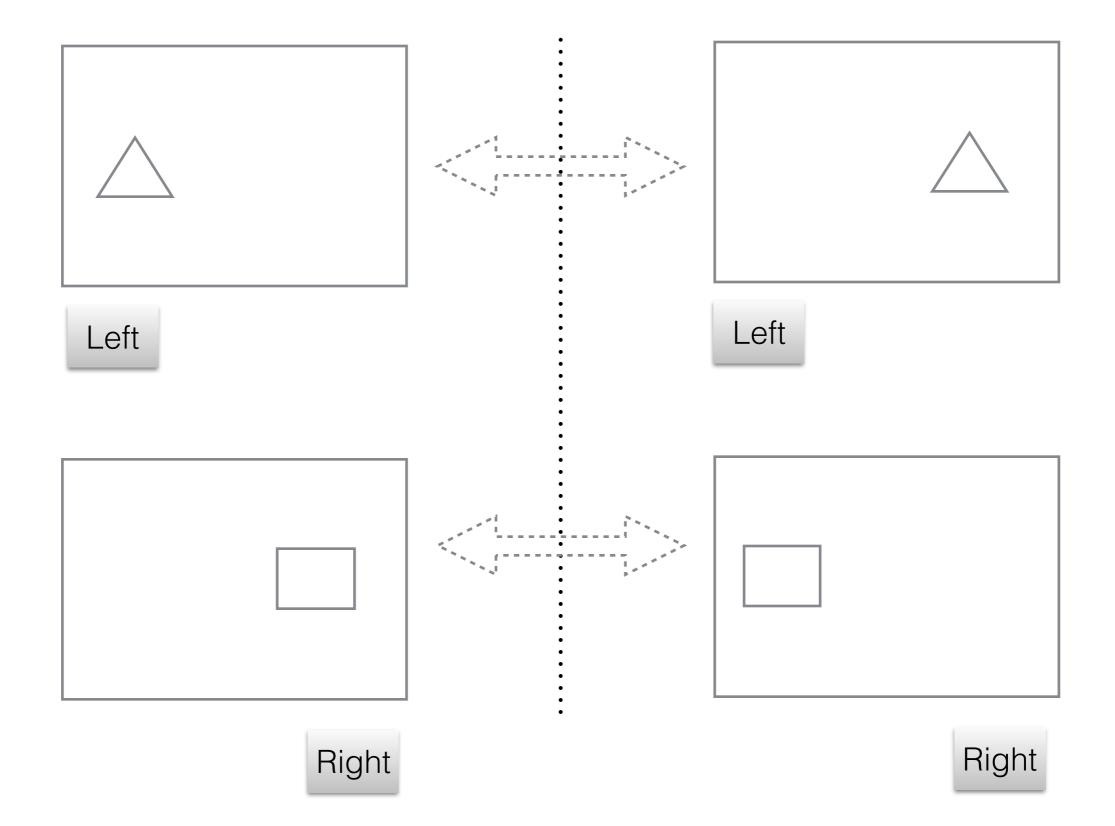
1. Activation-suppression model

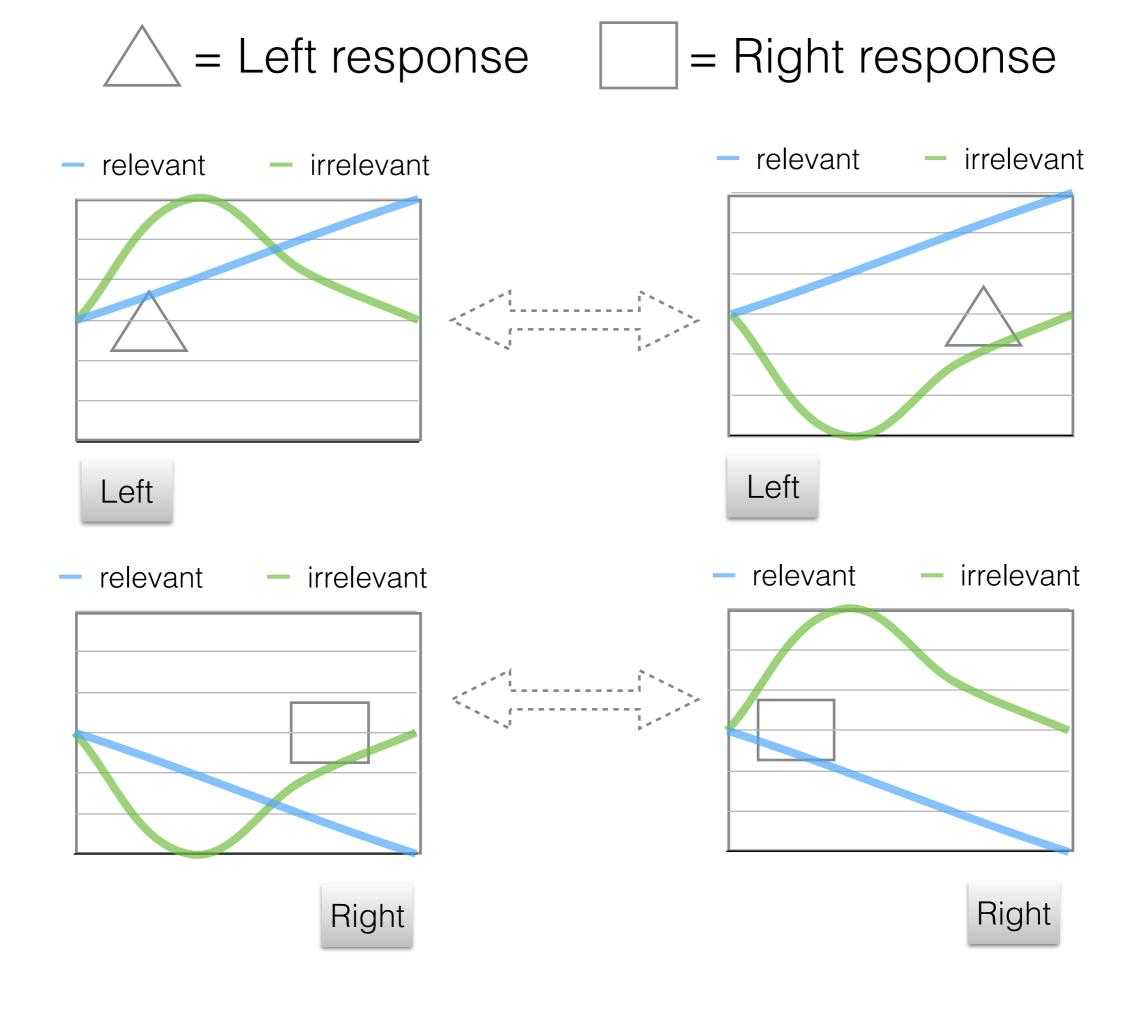


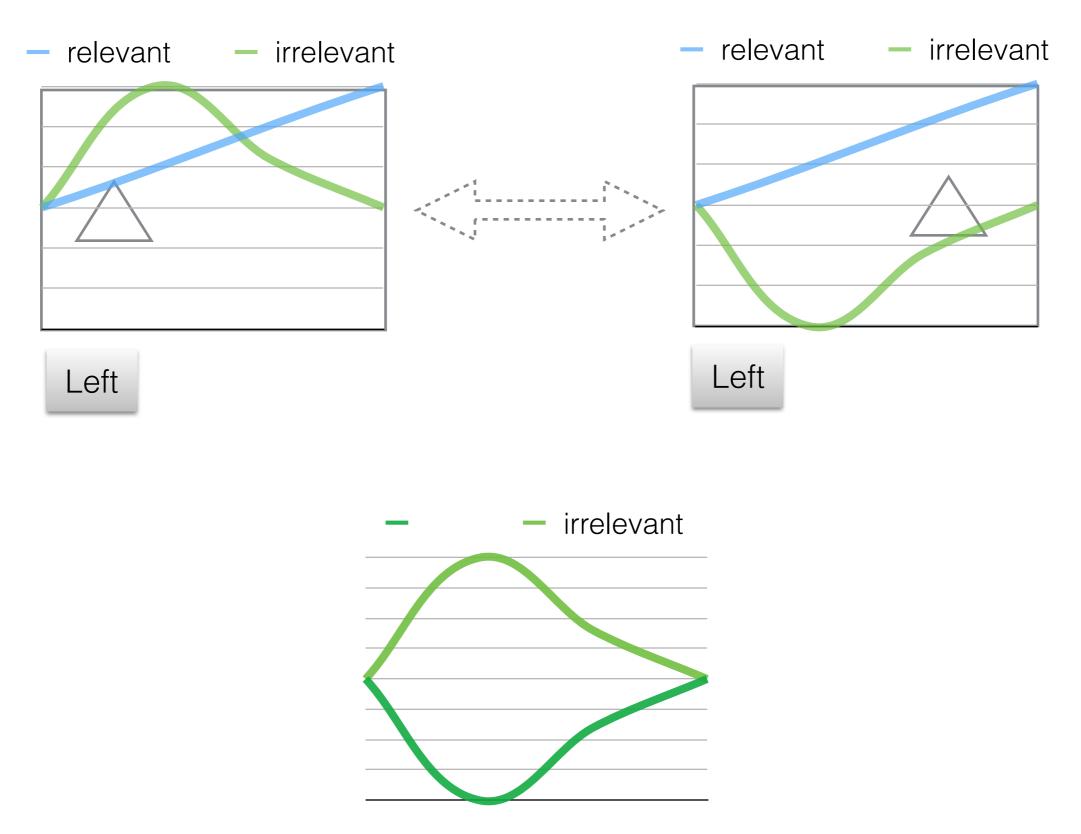
(Van Den Wildenberg, et al., 2010; De Jong et al., 1994; Ridderinkhof, 2002)

2. Passive decay of the spatial attribute (Hommel, 1994)

= Right response

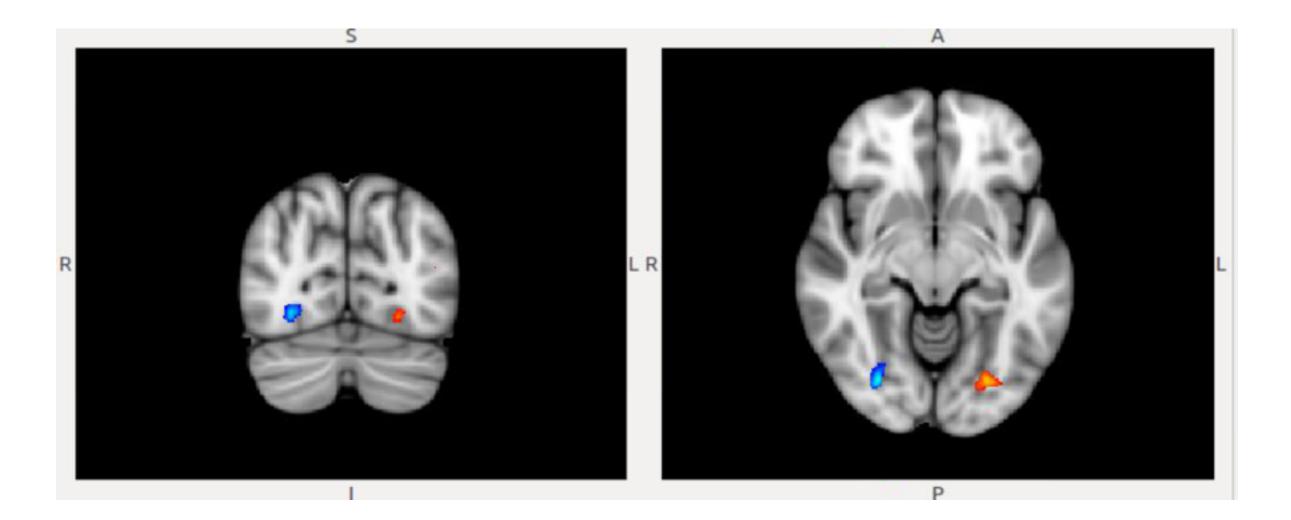




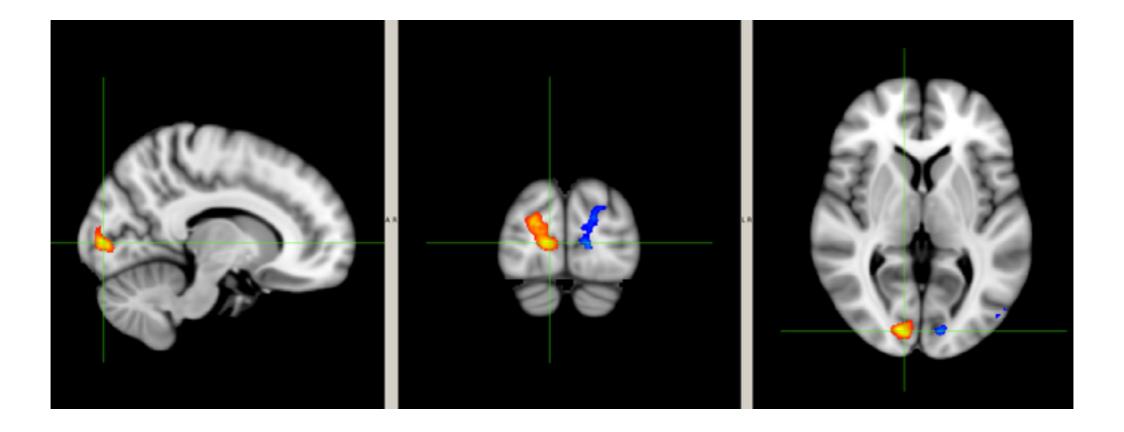


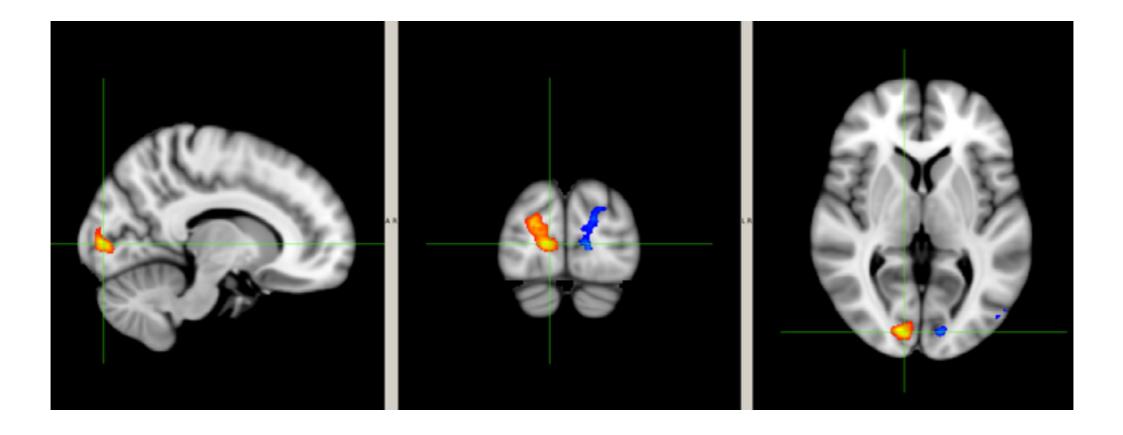
Incongruent > congruent (same response hand)

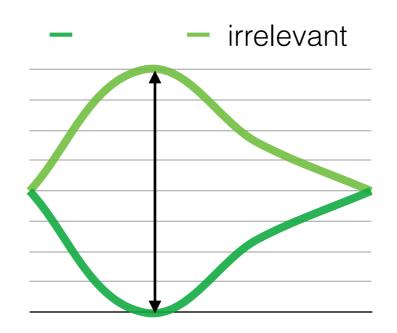
Visual

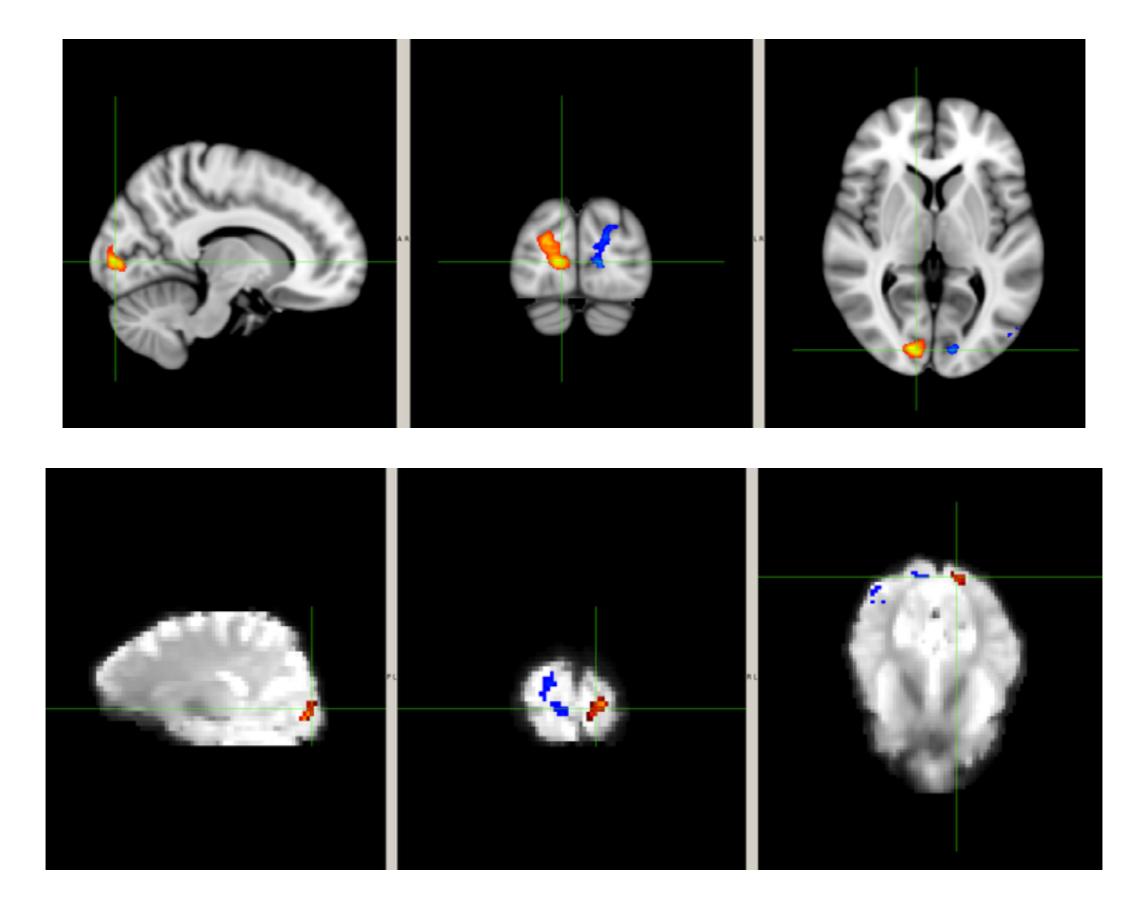


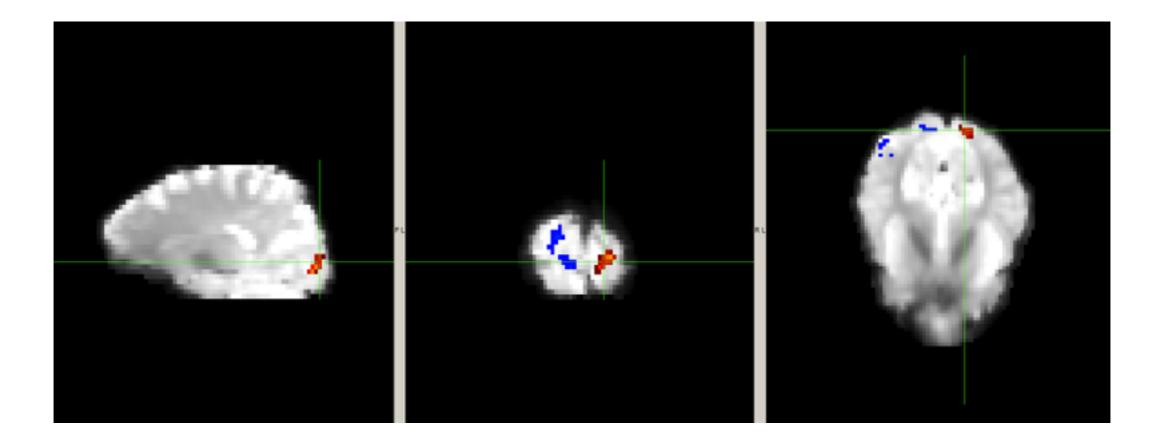
RED: Left_Congruent < Right_Incongruent (Always left response) BLUE: Right_Congruent < Left_Incongruent (Always right response)

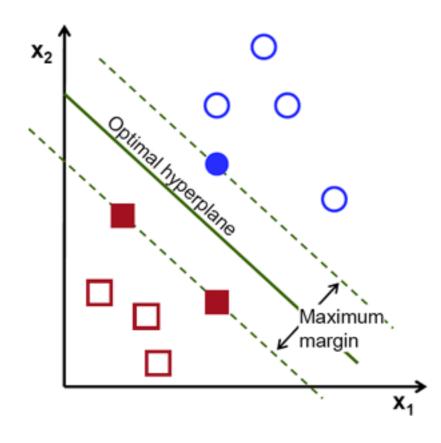


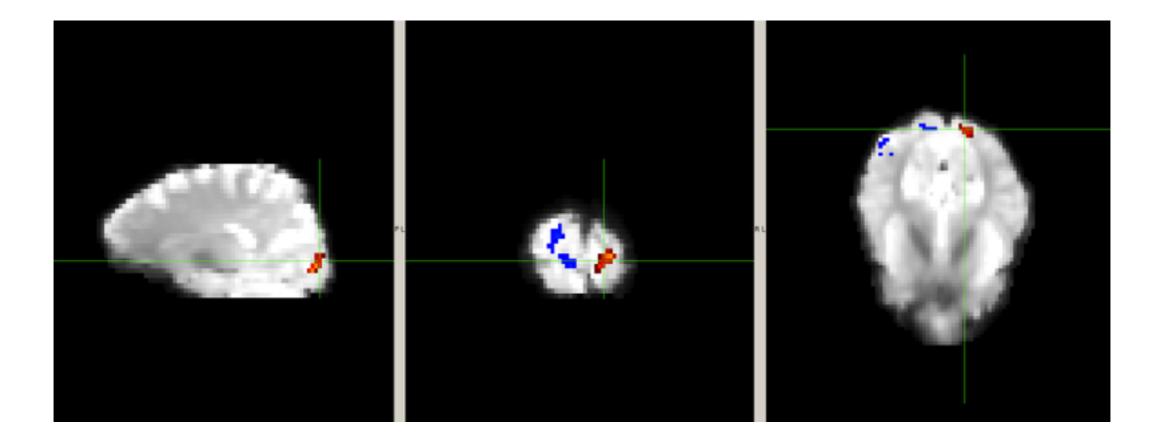


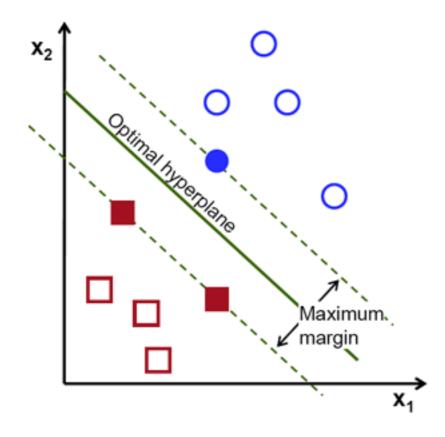






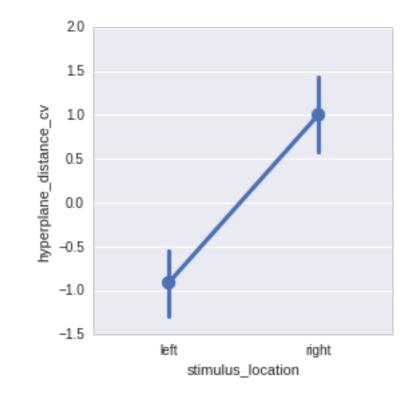




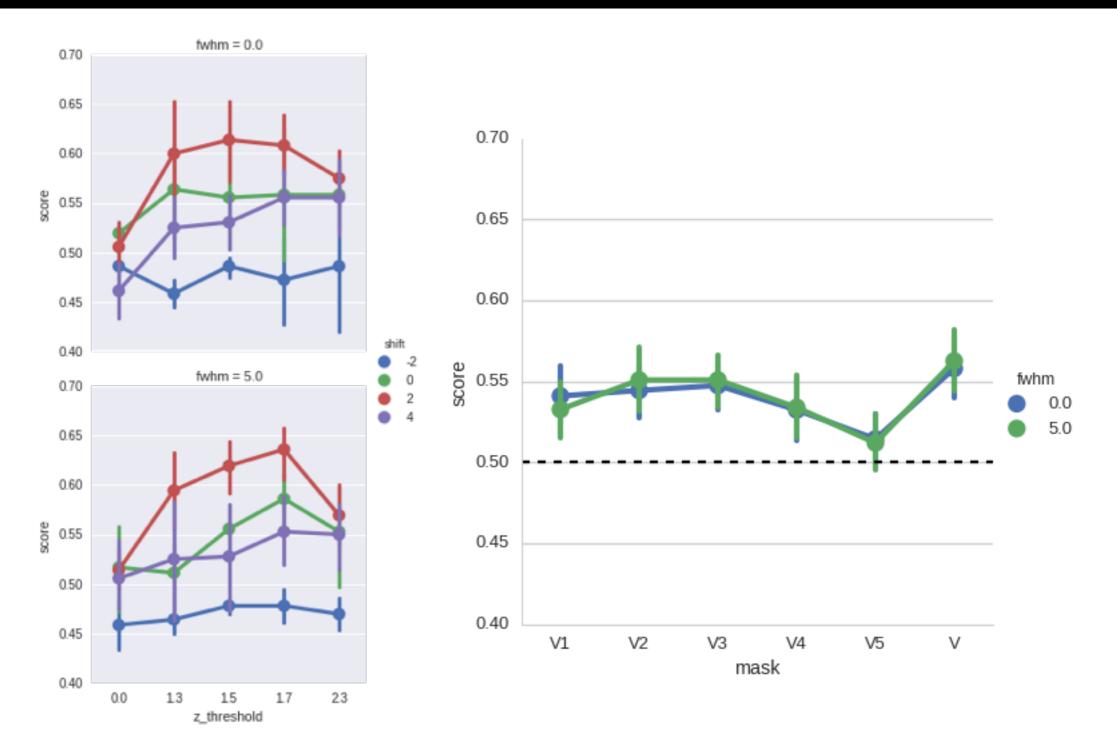


test	train	train
train	test	train
train	train	test

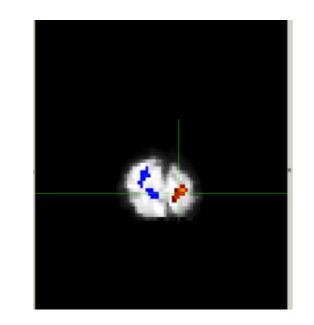
SVM hyperplane distance

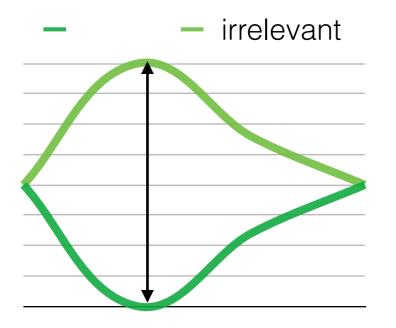


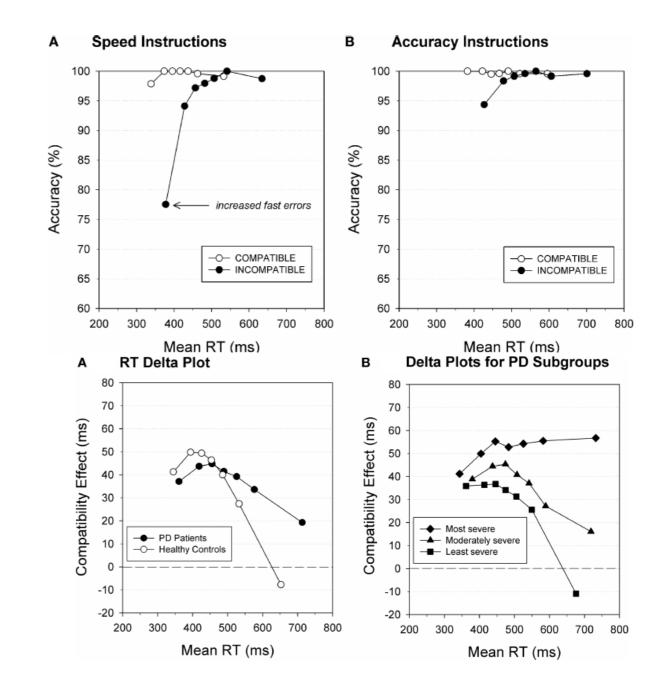
SVM hyperplane distance

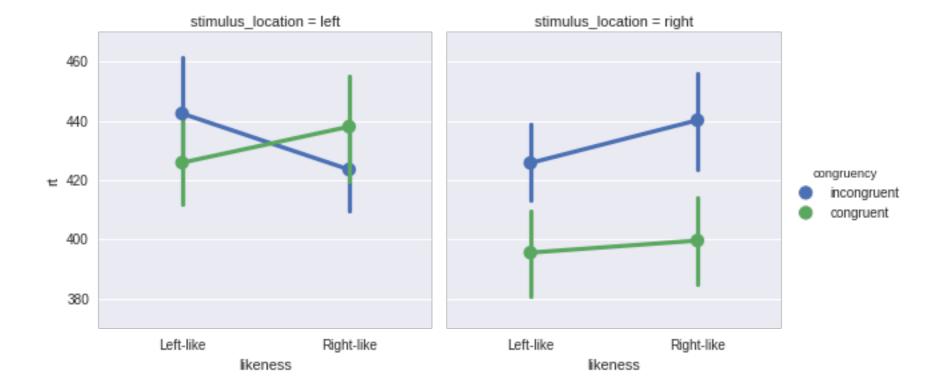


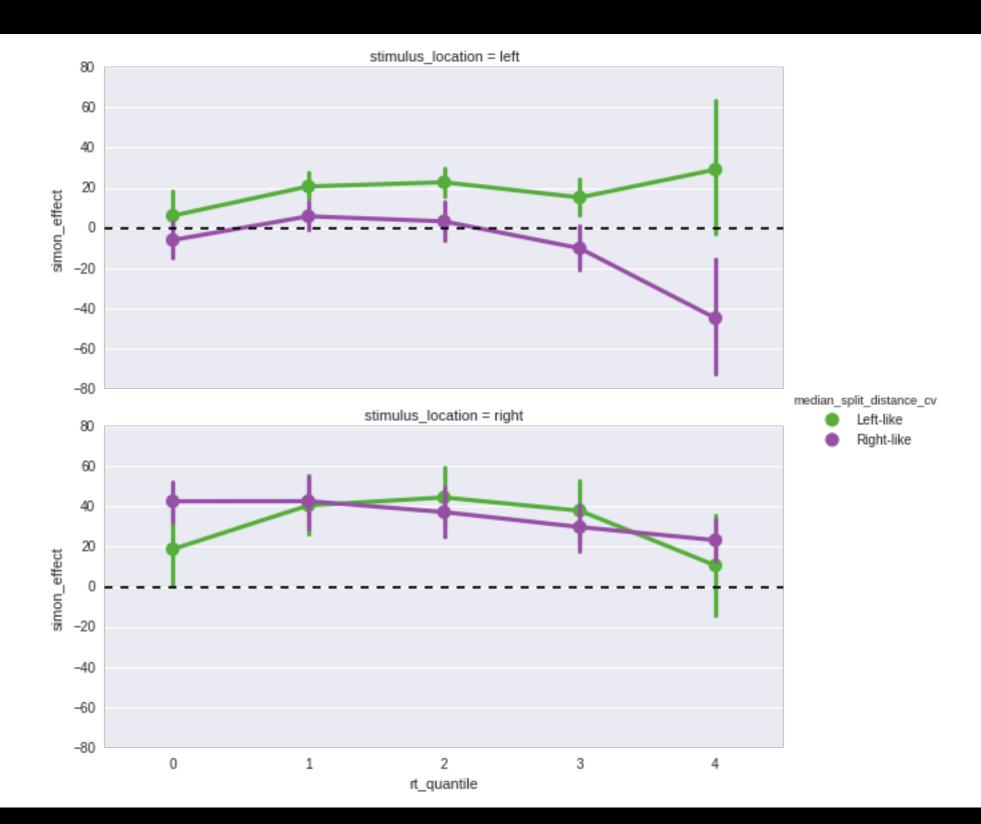
SVM hyperplane distance











Summary

- The "irrelevant feature stimulus" feature can be detected in the visual task using MVPA
- The trial-to-trial fluctuations in this measure predict size and temporal dynamics of Simon effect

Thanks for your attention