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Classification Problem I

Separate n-dimensional data xxx i into 2 classes yi :

ŷi =

{
−1 if f̂ (xxx i ) < 0

1 if f̂ (xxx i ) > 0

I Simplest case: separable classes
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Separating Hyperplanes

I Problem: choosing a separating hyperplane

I A good criterion would be prediction performance, i.e.
minimal misclassification of test data

I Maximise separating margin
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Separating Hyperplanes

I Problem: choosing a separating hyperplane

I A good criterion would be prediction performance, i.e.
minimal misclassification of test data

I Maximise separating margin

Separating hyperplane L is given by:

0 = βββT · xxx + β0,

which means βββ/‖βββ‖ is normal to the hyperplane and the signed
distance of any data point xxx i to the plane is given by:

d(L,xxx i ) = (βββT · xxx i + β0)/‖βββ‖



Maximising the Margin

The unsigned distance is (yi = ±1):

d(L,xxx i ) = yi (βββ
T · xxx i + β0)/‖βββ‖

and the optimisation problem is:

max
βββ,β0,‖βββ‖=1

M

with inequality constraint:

yi (βββ
T · xxx i + β0) ≥ M, i = 1 . . .N.



Maximising the Margin

Setting ‖βββ‖ = 1/M, the problem becomes:

min
βββ,β0

1

2
‖βββ‖2

with inequality constraint:

yi (βββ
T · xxx i + β0) ≥ 1, i = 1 . . .N.

Convex (quadratic) optimisation problem with linear inequality con-
straints.



Maximising the Margin

Introducing KKT-conditions and Lagrange multipliers αi :

αi [yi (βββ
T · xxx i + β0)− 1] = 0 ∀i ,

the solution has the form:

β̂̂β̂β =
N∑
i=1

αiyixxx i

⇒ if αi > 0, xxx i is on the boundary (support point)
⇒ if xxx i is not on the boundary, αi = 0
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Prediction

Separating hyperplane:

f̂ (xxx) = β̂̂β̂βT · xxx + β̂0

Prediction:
ŷ = sign(f̂ (xxx))



Classification Problem II

I Things get more interesting when classes are not (linearly)
separable

I Possible solution: allow for some violation of the margin (soft
margin)
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Support Vector Classifier

Introducing slack variables:

yi (βββ
T · xxx i + β0) ≥ M(1− ξi )

with constraints:

N∑
i=1

ξi ≤ K , and ξi ≥ 0 ∀i .

I ξi > 0⇒ observation lies within the margin

I ξi > 1⇒ observation misclassified

I
∑N

i=1 ξi ≤ K bounds total number of misclassifications to bKc



Maximising the Soft Margin

The optimisation problem is:

max
βββ,β0,‖βββ‖=1

M

with:
yi (βββ

T · xxx i + β0) ≥ M(1− ξi ), and

N∑
i=1

ξi ≤ K , ξi ≥ 0 ∀i .



Maximising the Soft Margin

Setting ‖βββ‖ = 1/M, this becomes:

min
βββ,β0

1

2
‖βββ‖2

with inequality constraints:

yi (βββ
T · xxx i + β0) ≥ 1− ξi , and

N∑
i=1

ξi ≤ K , ξi ≥ 0 ∀i .



Maximising the Soft Margin

For computational optimisation, constraints on the slack variables
are added to the objective function:

min
βββ,β0

1

2
‖βββ‖2 + C

N∑
i=1

ξi

(explicit minimisation w.r.t. ξi )

I C is the cost for boundary violations

I C =∞ forces perfect separation

I C provides tradeoff between fit and generalisability

I Optimal C can be estimated by cross-validation

Convex (quadratic) optimisation problem with linear inequality con-
straints.



Optimal Solution

Introducing KKT conditions and Lagrange multipliers, the solution
has the form:

β̂̂β̂β =
N∑
i=1

αiyixxx i

I Only observations on or within the margin contribute to β̂̂β̂β
(support points)

I Points on the margin contribute with weight 0 < αi < C

I Points within the margin contribute with weight αi = C



C=0.1
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C=5
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Prediction

Prediction as before:

f̂ (xxx) = β̂̂β̂βT · xxx + β̂0

ŷ = sign(f̂ (xxx))



Classification Problem III

I Things get more interesting when classes are not (linearly)
separable

I Possible solution: allow for some misclassification

I Further extension through non-linear boundaries



Enlarged Feature Space

Goal: improved classification
Procedure:

I Add transformations of input features hm(xxx), m = 1, . . . ,M
to basis

I Fit SV classifier to enlarged feature space
hhh(xi ) = (h1(xi ), h2(xi ), . . . , hM(xi ))

I Linear boundary in enlarged space = nonlinear boundary in
original space

I Potential problems are computational costs for hhh and
overfitting



Reproducing Kernel Hilbert Space

Hilbert Space H of functions over some bounded domain X ⊂ Rk ,
and for each xxx ∈ X , the evaluation functionals Fxxx :

Fxxx [f ] = f (xxx)

are linear, bounded functionals, i.e. ∃U = Uxxx ∈ R+ :

|Fxxx [f ]| = |f (xxx)| ≤ U‖f ‖.

Then there is a unique positive definite function K (xxx ,yyy), the repro-
ducing kernel, with reproducing property:

f (xxx) = 〈f (yyy),K (xxx ,yyy)〉H ∀f ∈ H



Constructing an RKHS

For linearly independent functions φn(xxx),

f (xxx) =
∞∑

m=0

amφm(xxx)

and

K (xxx ,yyy) =
∞∑

m=0

λmφm(xxx)φm(yyy).

Define the scalar product:

〈f (xxx), g(xxx)〉H = 〈
∞∑

m=0

amφm(xxx),
∞∑

m=0

dmφm(xxx)〉H =
∞∑

m=0

amdm
λm

,

which gives the reproducing property:

〈f (yyy),K (yyy ,xxx)〉H =
∞∑

m=0

amλmφm(xxx)

λm
= f (xxx)



Constructing an RKHS

and norm:

‖f ‖2K =
∞∑

m=0

a2m
λm

.



Example

For xxx = [x1, x2] ∈ R2 and basis h(xxx) =
(1,
√

2x1,
√

2x2, x
2
1 , x

2
2 ,
√

2x1x2) (2nd degree polynomial):

〈h(xxx), h(yyy)〉 =
6∑

m=1

hm(xxx)hm(yyy)

= 1 + 2x1y1 + 2x2y2 + x21y
2
1 + x22y

2
2 + 2x1y1x2y2

= (〈xxx ,yyy〉+ 1)2

= K (xxx ,yyy) with K = (〈xxx ,yyy〉+ 1)2

Inner products in the enlarged feature space can be computed
through the Kernel function.



Kernel Functions

Regularisation Network Kernel Function

Polynomial of degree d K (xxx ,yyy) = (〈xxx ,yyy〉+ 1)d

Gaussian radial basis K (xxx ,yyy) = exp(−γ‖xxx − yyy‖2)
Thin plate spline K (xxx ,yyy) = ‖xxx − yyy‖2n−1

K (xxx ,yyy) = ‖xxx − yyy‖2nlog(‖xxx − yyy‖)
Multilayer perceptron K (xxx ,yyy) = tanh(〈xxx ,yyy〉 − θ)

(See Evgeniou et al., 1999 for more examples)



Non-Linear Boundaries as Inner Products

We want to solve the optimisation problem:

min
βββ,β0

1

2
‖βββ‖2 + C

N∑
i=1

ξi

on the enlarged feature space h(xxx) instead of xxx .
Introducing KKT conditions and Lagrange multipliers, the solution
has the form:

β̂̂β̂β =
N∑
i=1

αiyih(xxx i )

which can be rewritten as a scalar product:

β̂̂β̂β =
N∑
i=1

αiyi 〈h(xxx), h(xxx i )〉 =
N∑
i=1

αiyiK (xxx ,xxx i ).



Non-Linear Boundaries as Inner Products

Role of the cost parameter C :

I Large C ⇒ wiggly boundary (overfit)

I Small C ⇒ smooth boundary
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SVMs as a Penalisation Method

The optimisation problem:

min
βββ,β0

1

2
‖βββ‖2 + C

N∑
i=1

ξi

is equivalent to the problem:

min
βββ,β0

N∑
i=1

(1− yi f (xxx i ))+ +
κ

2
‖βββ‖2,

which is of the form loss + penalty.
Hinge loss is preferable to other loss functions, e.g., squared loss,
that also penalise correctly classified points.





SVMs and the Curse of Dimensionality

The optimisation problem:

min
βββ,β0

N∑
i=1

(1− yi f (xxx i ))+ +
κ

2
‖βββ‖2,

can be expressed in terms of the (infinite-dimensional) basis of the
expanded feature space:

min
βββ,β0

N∑
i=1

(
1− yi

(
β0 +

∞∑
m=1

θmφ(xxx i )
))

+
+
κ

2

∞∑
m=1

θ2m
λm

,

(using hm(xxx) = φm(xxx)
am

and θm = 1
am
βm)

κ controls complexity of f̂ ; larger κ⇒ smoother f̂



SVMs and the Curse of Dimensionality

min
βββ,β0

N∑
i=1

(
1− yi

(
β0 +

∞∑
m=1

θmφ(xxx i )
))

+
+
κ

2

∞∑
m=1

θ2m
λm

,

This problem has a finite-dimensional solution under relatively gen-
eral conditions.
Finding the solution might still be computationally expensive and
requires adaptive methods (or substantial prior knowledge)



Summary

I Goal: find function that separates 2 classes

I Maximise separating margin for best generalisation to new
data

I Support Vector Classifier separates classes using soft margin

I C parameter controls complexity (smaller C ⇒ greater
flexibility)

I Further flexibility through non-linear boundaries

I Kernel property (and some mild assumptions) guarantees
finite-dimensional solution

I Finding the solution might still be computationally expensive



Thank You

More about SVMs: http://www.kernel-machines.org

Intro to RKHS and SVMs: Evgeniou, T., Pontil, M., & Poggio, T.
(2000). Regularization Networks and Support Vector Machines.
Advances in Computational Mathematics, 13(1), 1-50. DOI:

10.1023/A:1018946025316

http://www.kernel-machines.org
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