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Classification Problem |

Separate n-dimensional data x; into 2 classes y;:

L[ -1 iff(x;) <0
=1 i f(x) > 0

» Simplest case: separable classes
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Separating Hyperplanes

» Problem: choosing a separating hyperplane

» A good criterion would be prediction performance, i.e.
minimal misclassification of test data

» Maximise separating margin
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Separating Hyperplanes

» Problem: choosing a separating hyperplane

» A good criterion would be prediction performance, i.e.
minimal misclassification of test data

» Maximise separating margin
Separating hyperplane L is given by:
0= IBT - X+ 507

which means B/||8|| is normal to the hyperplane and the signed
distance of any data point x; to the plane is given by:

d(L,x;)) = (B" -x; + 50)/|IBl



Maximising the Margin
The unsigned distance is (y; = £1):
d(L,x;) = yi(B" - xi + Bo)/IIBIl
and the optimisation problem is:

max M
B,5o,1BlI=1

with inequality constraint:

vilBT -xi+Bo) > M,i=1...N.



Maximising the Margin
Setting ||B]| = 1/M, the problem becomes:

1
min —
min > 1

with inequality constraint:
vi(BT -xi+Bo) > 1,i=1...N.

Convex (quadratic) optimisation problem with linear inequality con-
straints.



Maximising the Margin

Introducing KKT-conditions and Lagrange multipliers «;:
ailyi(BT - xi + Bo) — 1] =0 Vi,

the solution has the form:

N
B = Z QiYiXi
i=1

= if a; > 0, x; is on the boundary (support point)
= if x; is not on the boundary, a; =0
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Prediction
Separating hyperplane:
F(x) =BT x+ 5o

Prediction:
y = sign(f(x))



Classification Problem Il

» Things get more interesting when classes are not (linearly)
separable

» Possible solution: allow for some violation of the margin (soft
margin)



Predictor 1

Z loplipaid



Support Vector Classifier

Introducing slack variables:

yi(BT - xi + Bo) > M(1 - &)

with constraints:

N
Y & < K.and & >0Vi.
i=1

> & > 0 = observation lies within the margin
> & > 1 = observation misclassified
> ZfV:l & < K bounds total number of misclassifications to | K|



Maximising the Soft Margin

The optimisation problem is:

max M
B,Bo,1BlI=1

with:
vi(BT - xi + Bo) > M(1—¢&;), and

N
Y G <K, &>0Vi

i=1



Maximising the Soft Margin
Setting ||B]| = 1/M, this becomes:

nin — ﬁ
ﬂﬁo 2” H

with inequality constraints:

yi(B" - x;+ Bo) > 1— ¢, and

N
Y &G<K &=0Vi

i=1



Maximising the Soft Margin

For computational optimisation, constraints on the slack variables
are added to the objective function:

N
1 5
min — + C g ;
B.50 2”ﬂ | prt &i

(explicit minimisation w.r.t. &;)

» C is the cost for boundary violations
» C = oo forces perfect separation

» C provides tradeoff between fit and generalisability

v

Optimal C can be estimated by cross-validation

Convex (quadratic) optimisation problem with linear inequality con-
straints.



Optimal Solution

Introducing KKT conditions and Lagrange multipliers, the solution
has the form:
N
B=> aiyixi
i=1

» Only observations on or within the margin contribute to ﬁ
(support points)
» Points on the margin contribute with weight 0 < a;; < C

» Points within the margin contribute with weight o; = C



C=0.1

Predictor 1

Z loplipaid




Predictor 1

Z loplipaid



Prediction

Prediction as before:

>

(X)ZBT'X+30

>

y = sign(f(x))



Classification Problem llI

» Things get more interesting when classes are not (linearly)
separable

» Possible solution: allow for some misclassification

» Further extension through non-linear boundaries



Enlarged Feature Space
Goal: improved classification
Procedure:

» Add transformations of input features hy,(x), m=1,.
to basis

M

» Fit SV classifier to enlarged feature space
h(x;) = (h1(xi), ha(xi), - - -, hm(xi))

» Linear boundary in enlarged space = nonlinear boundary in
original space

» Potential problems are computational costs for h and
overfitting



Reproducing Kernel Hilbert Space

Hilbert Space # of functions over some bounded domain X C R*,
and for each x € X, the evaluation functionals Fy:

Fx[f] = f(x)
are linear, bounded functionals, i.e. U = Uy, € RT :
[ Fx[fll = [f(x)| < U[|f]].

Then there is a unique positive definite function K(x,y), the repro-
ducing kernel, with reproducing property:

f(x) = (fly), K(x,y))n Vf € H



Constructing an RKHS

For linearly independent functions ¢p(x),

[e.e]

f(x) = Z am¢m(x)

m=0
and

K(X>.y) = Z )\mﬁbm(x)qu(y)'
m=0

Define the scalar product:

[e.e] [e.e] [e.e] mdm
(F(x). 80N = (3 ambm(x). D drnbm()re = > 5
m=0 m=0 m=0 m
which gives the reproducing property:
s m>\m m
(). Ky = 3 2mAnml) _ iy

Am

m=0



Constructing an RKHS

and norm:

o 2
I = > 32



Example

For x = [x1, xo] € R? and basis h(x) =
(1,v2x1,v2x2, X2, x2,\/2x1x2) (2nd degree polynomial):

(h(x), h(y)) Z hm

= 1 + 2x1y1 + 20y> + XLYE + X3 Ys + 2x1y1%0)>

= ((x,y) +1)?
= K(x,y) with K = ((x,y) + 1)?

Inner products in the enlarged feature space can be computed
through the Kernel function.



Kernel Functions

Regularisation Network

Kernel Function

Polynomial of degree d  K(x,y) = ((x,y) + 1)¢
Gaussian radial basis K(x,y) = exp(—l||x — y|?)
Thin plate spline K(x,y) = [|x — y|>" 1

K(x.y) = Ix — yIP"log(lx — y )
Multilayer perceptron  K(x,y) = tanh({x,y) — 0)

(See Evgeniou et al., 1999 for more examples)



Non-Linear Boundaries as Inner Products

We want to solve the optimisation problem:
1 N
- 2
min — +C j
gin 51817 + ¢3¢

on the enlarged feature space h(x) instead of x.
Introducing KKT conditions and Lagrange multipliers, the solution

has the form:
N
= ajyih(x;)
i=1

which can be rewritten as a scalar product:

,8 Za,y, h(x), h Za,y, (x,x;).



Non-Linear Boundaries as Inner Products

Role of the cost parameter C:

» Large C = wiggly boundary (overfit)
» Small C = smooth boundary
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SVMs as a Penalisation Method

'he optimisation problem:
1 N
- 2
min =||8]| + C E i
,B,ﬁo 2 || || P gl

is equivalent to the problem:

N

K
min 1—yif(x; + = 2,
i >0 ) + 5161

which is of the form loss + penalty.
Hinge loss is preferable to other loss functions, e.g., squared loss,
that also penalise correctly classified points.



Loss

3.0
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0.0

== Hinge Loss
Binomial Deviance
Squared Error
= (Class Huber




SVMs and the Curse of Dimensionality
The optimisation problem:
N K
min > (1~ yif () + 21812

B.Bo Pl

can be expressed in terms of the (infinite-dimensional) basis of the
expanded feature space:

N

%g ; (1 —yi(Bo+ n;lgm¢(xi) ) g g

(using hm(x) = ¢'g—r(nx) and 0, = iﬂm)
k controls complexity of f. larger k = smoother f

y‘i'\’



SVMs and the Curse of Dimensionality

o
K 62,

N o0
B ,; (1 = i(fo + mZ::I9m<z5(xf)))+ +3 >

This problem has a finite-dimensional solution under relatively gen-
eral conditions.

Finding the solution might still be computationally expensive and
requires adaptive methods (or substantial prior knowledge)



Summary

» Goal: find function that separates 2 classes

» Maximise separating margin for best generalisation to new
data

» Support Vector Classifier separates classes using soft margin

» C parameter controls complexity (smaller C = greater
flexibility)

» Further flexibility through non-linear boundaries

» Kernel property (and some mild assumptions) guarantees
finite-dimensional solution

» Finding the solution might still be computationally expensive



Thank You

More about SVMs: http://www.kernel-machines.org

Intro to RKHS and SVMs: Evgeniou, T., Pontil, M., & Poggio, T.
(2000). Regularization Networks and Support Vector Machines.
Advances in Computational Mathematics, 13(1), 1-50. DOI:
10.1023/A:1018946025316


http://www.kernel-machines.org
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