New programme

Organisation

Next meeting

Recap: Supervised learning Statistical learning reading group

Alexander Ly

Psychological Methods University of Amsterdam

Amsterdam, 2 November 2016

Overview

Last year: Supervised learning

2 This year: More topics and applications

Organisation

4 Next meeting

Goal of supervised learning

Problem statement: Supervised learning

Based on *n* pairs of data $\binom{x_1}{y_1}, \ldots, \binom{x_n}{y_n}$, where x_i are features (input) and y_i are outcomes (output), predict future outcomes y_{new} given x_{new} .

Assumptions of mean regression

• There exists a true function *f** such that

$$y = f^*(x) + \epsilon \tag{1}$$

where ϵ is an error and $E(\epsilon) = 0$.

- Goal 1: Give a "best guess" $\hat{f}(x)$ of the unknown true f^* .
- Goal 2: Based on the best guess f(x), estimate a prediction error.

Recap: Supervise learning ⊙●೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦	New programme	Organisation	Next meeting
Goal of supervised learning			
Regression			

- There exists a true function f* such that y = f*(x) + ε.
 Goal: Give a *single* best guess f(x) of f*(x) based on finite samples (x1/y1),..., (xn/yn).
- Step 1: Défine "best guess" aka define a loss function

$$E(f^*(x) - \hat{f}(x))^2$$
 (2)

- Step 2: Define a candidate collection of functions ${\cal F}$
- Step 3: Calculate the (empirical) loss for each single candidate *f* in *F*

$$\frac{1}{n}\sum_{i=1}^{n}(y_{i}-\tilde{f}(x_{i}))^{2}$$
(3)

• Step 4: Minimise: Take as best guess:

$$\hat{f}(x) = \underset{\tilde{f} \in \mathcal{F}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} (y_i - \tilde{f}(x_i))^2$$
(4)

New programme

Organisation

Next meeting

Goal of supervised learning

Example of \mathcal{F}_2 : Linear regression

Candidate set

$$\mathcal{F}_{2} := \left\{ f(x) = \theta_{0} + \theta_{1} x \,|\, \theta_{0}, \theta_{1} \in \mathbb{R} \right\}$$
(5)

Trick: Rephrase in terms of matrix algebra:

$$y = X\theta + \epsilon \tag{6}$$

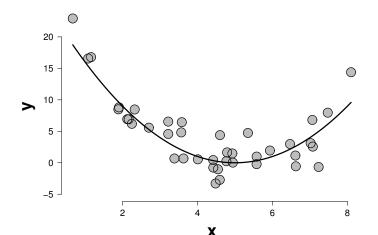
observed $y \in \mathbb{R}^n$, observed design matrix $X \in \mathbb{R}^{n \times 2}$, parameters $\theta \in \mathbb{R}^2$

- Pro:
 - Computationally: No need to calculate the loss for each $f \in \mathcal{F}$. Solve by matrix algebra $\hat{\theta} = (X^T X)^{-1} X^T y$
 - Unique minimiser: is the plugin $\hat{f}(x_{new}) = \hat{\theta}x_{new}$
- Con:
 - Misspecification The true f^* is most likely not linear, thus, $f^* \notin \mathcal{F}_2$

Goal of supervised learning

Example: Data generated from $f^*(x) = (x - 5)^2 + \epsilon$

True data generating $f^*(x) = (x - 5)^2 + \epsilon$, where $\epsilon \sim \mathcal{N}(0, 2^2)$



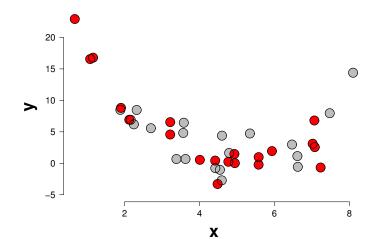
New programme

Organisation

Next meeting

Goal of supervised learning

Sample splitting: Training set vs test set



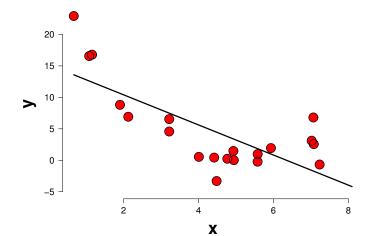
New programme

Organisatio

Next meeting

Goal of supervised learning

Learning on training set: Estimate the best fit



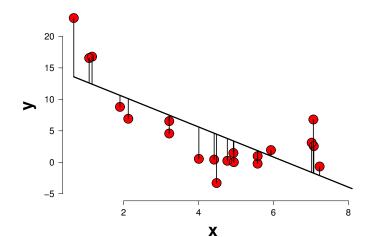
New programme

Drganisatio

Next meeting

Goal of supervised learning

Learning on training set: In-sample error: 4.45



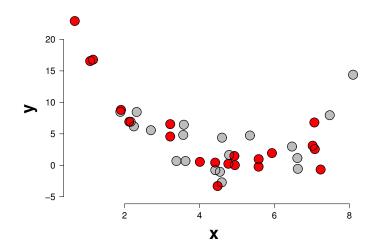
New programme

Organisatic

Next meeting

Goal of supervised learning

Prediction based on test set



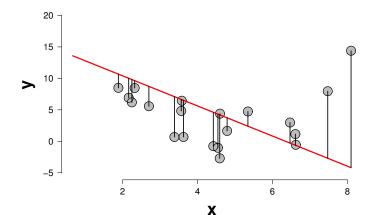
New programme

Organisatior

Next meeting

Goal of supervised learning

Generalisation: Out-of-sample error: 5.93



Recap: Supervise learning	New programme	Organisation	Next meeting
Goal of supervised learning			
Underfitting			

In this case, we know

- True $f^{*}(x) = (x 5)^{2} + \epsilon$
- Thus, misspecification

$$f^*
ot\in \mathcal{F}_2 := \Big\{ f(x) = heta_0 + heta_1 x \,|\, heta \in \mathbb{R}^2 \Big\}.$$

- In fact, underfitting
- Why not take a bigger set candidate collection *F*?

• Try
$$\mathcal{F}_3 := \left\{ f(x) = heta_0 + heta_1 x + heta_2 x^2 \,|\, heta \in \mathbb{R}^3
ight\}$$

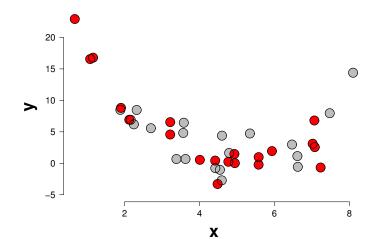
New programme

Organisation

Next meeting

Goal of supervised learning

Sample splitting: Training set vs test set



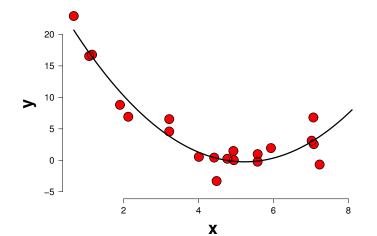
New programme

Organisatio

Next meeting

Goal of supervised learning

Learning on training set: Estimate the best fit



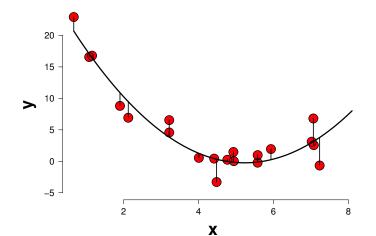
New programme

Organisatio

Next meeting

Goal of supervised learning

Learning on training set: In-sample error: 1.98



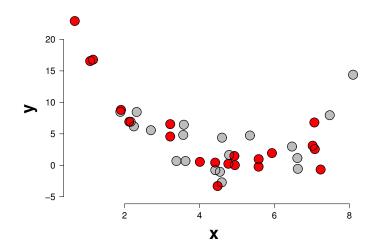
New programme

Organisatic

Next meeting

Goal of supervised learning

Prediction based on test set



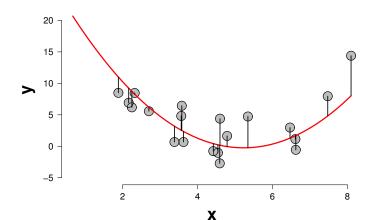
New programme

Organisatior

Next meeting

Goal of supervised learning

Generalisation: Out-of-sample error: 2.86



Recap: Supervise learning	New programme	Organisation	Next meeting
Goal of supervised learning			
Reality			

- We do not know the true f*
- Why not try to use $\mathcal{F}_{p} := \left\{ \theta_{0} + \theta_{1} x^{1} + \ldots + \theta_{p-1} x^{p-1} \, | \, \theta \in \mathbb{R}^{p} \right\}$
- Overfitting :(

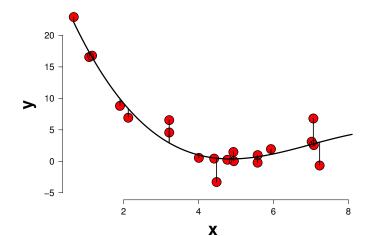
New programme

Organisation

Next meeting

Goal of supervised learning

Learning on training set p = 4: In-sample error: 1.85



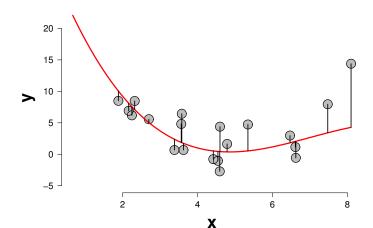
New programme

Organisatio

Next meeting

Goal of supervised learning

Generalisation: Out-of-sample error p = 4: 3.33



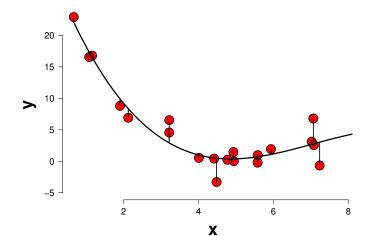
New programme

Organisation

Next meeting

Goal of supervised learning

Learning on training set p = 5: In-sample error: 1.85



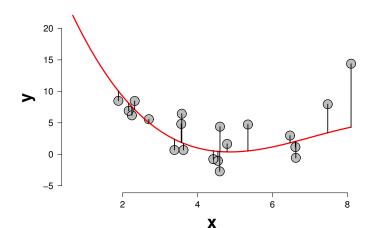
New programme

Organisatio

Next meeting

Goal of supervised learning

Generalisation: Out-of-sample error p = 5: 3.29



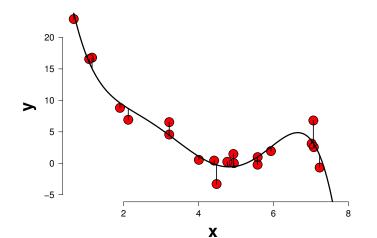
New programme

)rganisatio

Next meeting

Goal of supervised learning

Learning on training set p = 6: In-sample error: 1.52



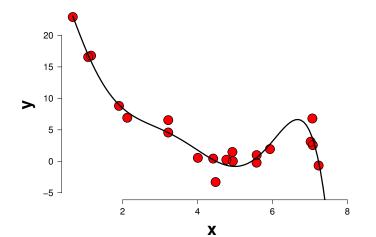
New programme

Organisatior

Next meeting

Goal of supervised learning

Generalisation: Out-of-sample error p = 6: 10.61



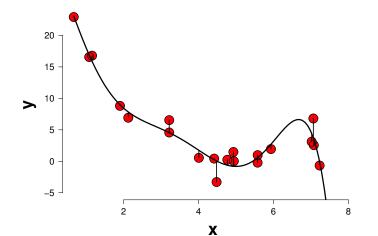
New programme

Organisation

Next meeting

Goal of supervised learning

Learning on training set p = 7: In-sample error: 1.39



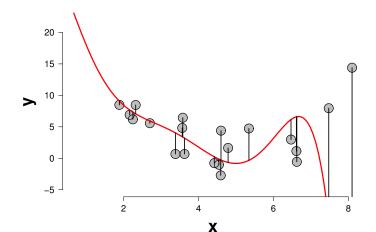
New programme

Organisatio

Next meeting

Goal of supervised learning

Generalisation: Out-of-sample error p = 7: 19.93



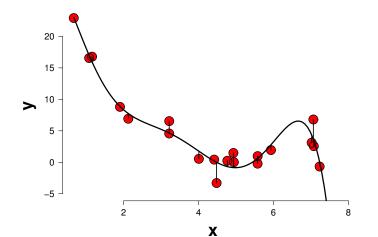
New programme

Organisatio

Next meeting

Goal of supervised learning

Learning on training set p = 8: In-sample error: 1.39



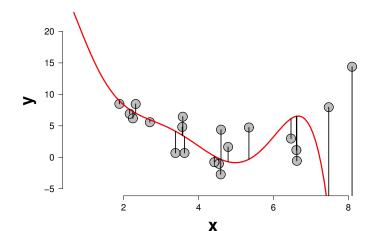
New programme

Organisatior

Next meeting

Goal of supervised learning

Generalisation: Out-of-sample error p = 8: 18.28



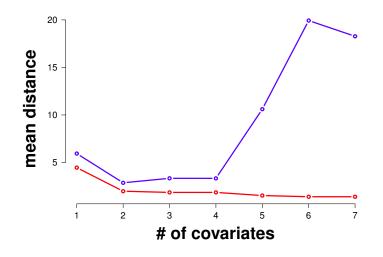
New programme

Organisatio

Next meeting

Goal of supervised learning

In-sample vs out-of-sample error



- Within sample error vs out-of-sample error
- Generalisation based on a point estimate: best guess
- Uncertainty quantification (within model): Bootstrapping (Quentin)
- Goal 2: Give an estimate prediction error use three-way splitting. Training set, cross validation set, test set. Cross validation (Johnny)
- Small to big model

 The best guess was based on linear algebra: Write the problem in terms of

$$\mathbf{y} = \mathbf{X}\boldsymbol{\theta} + \boldsymbol{\epsilon},\tag{7}$$

note: resulting best guess $\hat{f}(x)$ was polynomial, though, trick is to write it as a linear combination of basis functions: x^1, x^2, \ldots, x^p .

• Minimiser is given by

$$\theta = (X^T X)^{-1} X^T y \tag{8}$$

where $X \in \mathbb{R}^{n \times p}$.

• Problem $n \ll p$: $X^T X$ is not invertible.

Goal of supervised learning

The $n \ll p$ regime: $X^T X$ is not invertible

- This means that there is not a unique solution: If θ₀ is such that y = Xθ₀ + ε then also y = X(θ₀ + u) + ε.
- Solution: Choose amongst all solutions, choose θ "small" by adding a penalty.

$$\hat{\theta} = \operatorname*{argmin}_{\theta \in \mathbb{R}^{p}} \left\{ \frac{1}{n} \| y - X\theta \|_{2}^{2} + \lambda \|\theta\|_{q} \right\}$$
(9)

Lasso: q = 1, Ridge: q = 2, Elastic net: combination of both.

• Regularisation: We add (Lagrange multiplier) constraints to make the singular matrix regular.

New programme

Organisation

Next meeting

Goal of supervised learning

Same theme: Cross-validation

Solution: Penalised regression

$$\hat{\theta} = \operatorname*{argmin}_{\theta \in \mathbb{R}^{p}} \left\{ \frac{1}{n} \| y - X\theta \|_{2}^{2} + \lambda \|\theta\|_{q} \right\}$$
(10)

- Candidate set: $\mathcal{F}_{\lambda,q} = \left\{ f(x) = X\theta \mid \|\theta\|_q = \lambda \right\}$
- Choose λ , use cross validation, see Johnny
- Different forms with q = 1, see Lourens.

 Goal: Give a *single* best guess *f*(*x*) of *f**(*x*). Step 1: Define "best guess" aka define a loss function

$$E(f^*(x) - \hat{f}(x))^2$$
 (11)

- Step 2: Define a candidate collection of functions *F*
- Step 3a: Find a good basis for *F* use linear algebra trick to find the minimium
- Step 4a: Grow model *F*_{ρ,q,λ}
- Step 5a: Regularise and cross validate

Goal of supervised learning

Regression problem: *Y* is continuous

- Different types of $\mathcal{F}s$:
 - Linear regression: Tahira
 - Polynomial, local, regression, splines: Alexander
- Choosing basis:
 - Smoothing splines, Gaussian process priors: Alexander
 - Wavelets
 - Gabor patches: Gilles
 - Reproducing Hilbert space kernels
 - Neural networks: Joost (composition basis)
- Multivariate X:
 - Generalised additive models (GAMs)
 - Regression trees: Riet
 - Gaussian graphical models: Lourens
 - B-splines

New programme

Organisation

Next meeting

Goal of supervised learning

Classification problems: Y is discrete

- Different types of $\mathcal{F}s$:
 - Logistic regression: Lourens
- Multivariate X:
 - Classification trees: Riet
 - Support vector machines: Udo
 - k-nearest neighbours
 - random forests

Other topics

- Unsupervised learning:
 - Principle component analysis, independent component analysis
 - Clustering: Jonas
 - Topic modelling: Claire/Quentin
 - Mixture models and the EM algorithm
- Reinforcement learning:
 - Act-R: Leendert
 - Decision and game theory: Udo
 - Learning automata: Lourens
 - Bandit problems
 - Markov decision processes
- Internet stuff:
 - Page ranking: Johnny
 - Recommender systems: Don

Other topics

- State-space models:
 - Time series: Sacha
 - Kalman filters
 - Hidden markov models: Ingmar
 - Bayesian time series
 - Kriging: Gaussian processes
- Techniques
 - Boosting
 - Bayesian model averaging
 - More lassos
 - Stochastic gradient descent
 - Wavelets
- Applications:
 - Neural networks for psychological data

• ...

- Same set-up as last year. Do a presentation
- Requires a small peak in preparation of a talk
- Not necessary to understand everything. Can be practical and theoretical
- Still good to read things in advanced. Also website with literature, youtube clips are available.

- Wednesday 23rd of November: 12.00 13.00
- Wednesday 23rd of November: 13.00 14.00
- ???