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Unsupervised learning: Dimension reduction

I Goal: Estimate a probability distribution P(X)
I X mostely multivaiate, possibly huge p
I Different characteristics of interest
I Trying to find a density function P̂(X ) that is close to P(X)



PCA: What is it?

Goal: Reduce matrix X of dimension p to alternative matrix T of
dimension r

I p = number of variables
I r = number of components
I with r < p



PCA: What is it?

Dimension reduction by taking orthogonal linear combinations of
the original variables such that the new dimensions contain as much
variance as possible

T = XP

I T = standardised component scores (n x r)
I X = original standardised data matrix (n x p)
I P = component loadings (p x r)



PCA: What is it?

Dimension reduction by taking linear combinations of the original
variables

T = XP

1. Constrain variance to 1:
∑

P2 = 1
2. Each linear combination is orthogonal with the others:

T T
j Tg = 0

3. Each linear combination explains as much variance as possible:
var(Ti) > var(Ti+1)



PCA: What is it?

Dimension reduction by taking orthogonal linear combinations of
the original variables such that the new dimensions contain as much
variance as possible

T = XP

I T = standardised component scores (n x r)
I X = original standardised data matrix (n x p)
I P = component loadings (p x r)

I combination of eigenvectors and eigenvalues



PCA: What is it?

I Eigenvectors: direction of maximal variance
I Eigenvalues: scale of maximal variance



PCA: What is it?

Singular value decomposition (SVD)

X = USV T

I X is the original n x p data matrix,
I columns of n x n matrix U contains the left-singular vectors,
I columns of p x p matrix V contain the right-singular vectors,
I S is a diagonal n x p matrix that contains the singular values in

descending order.



PCA: What is it?

Singular value decomposition (SVD)

X = USV T

T = XP

T =
√

n − 1U (= standardised scores)

P = SV T
√

n − 1
(= loadings)



PCA: What is it?

Singular value decomposition (SVD)

X = USV T

US = principal scores

V T = principal directions (= eigenvectors)



PCA: What is it?

Least squares minimisation problem

(T̂ , P̂) = argmin
T ,P

||X − TPT ||22



PCA: What is it?

Based on some cut-off, take the first r-components
I Proportion variance explained: Choose all components until

they cumulative explain certain amount of variance
I Eigenvalue criterion: Choose all components with eigenvalues

higher than 1
I Scree plot: Look at the graph of the components and their

eigenvalues. Choose all components before the ‘elbow’



PCA: What is it?



PCA: What is it?



Extensions: Sparse PCA

I Manually (e.g. set all loadings <0.3 to 0)
I Penalty, such as lasso

(T̂ , P̂) = argmin
T ,P

||X − TPT ||22 + λl ||P||1



Extension: Simultaneous Component Analysis (SCA)

Integrate over multiple data blocks K with either
I common subjects (T) or
I common variables (P)



Extension: Simultaneous Component Analysis (SCA)



Extension: Simultaneous Component Analysis (SCA)



Extension: Simultaneous Component Analysis (SCA)

Integrate over multiple data blocks K with common subjects (T)

(T̂ , P̂k) = argmin
T ,Pk

||Xk − TPT
k ||22



Extension: Sparse SCA

(T̂ , P̂k) = argmin
T ,Pk

||Xk − TPT
k ||22 +

∑
(λg

√
Jk ||Pk ||2 + λe ||Pk ||1,2

I λg group lasso penatly: Selecting groups
I λe elitist lasso penalty: Selecting variables within groups



Extension: Independent Component Analysis (ICA)

In PCA, you maximise a second-order moment (variance).
In ICA, you maximise higher order moment.



Extension: Independent Component Analysis (ICA)

Standardised data X is a linear mixture of independent,
non-Gaussian source signals

X = AST

I X = Data
I A = Mixing weights
I S = Independent components ( = sources)



Extension: Independent Component Analysis (ICA)

Maximise independence of components
I Minimise mutual information (maximum entropy)
I Maximise non-Guassianity (kurtosis)



Extension: Independent Component Analysis (ICA)



Extension: Independent Component Analysis (ICA)

Use ICA when data are not
I Guassian
I stationary
I linear



Extension: Independent Component Analysis (ICA)

ICA cannot
I identify the number of source signals
I uniquely order the source signals
I properly scale source signals

Often PCA as preprocessing step





Rotation: What is it about?

I Goal: Make PCA results more interpretable
I How: Rotate T and P as to make P as sparse as possible.

Rotated loadings do not respond to orthogonal eigenvectors


