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Unsupervised learning: Dimension reduction

Goal: Estimate a probability distribution P(X)

X mostely multivaiate, possibly huge p

Different characteristics of interest

Trying to find a density function P(X) that is close to P(X)
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PCA: What is it?

Goal: Reduce matrix X of dimension p to alternative matrix T of
dimension r

» p = number of variables
» r = number of components
> with r <p



PCA: What is it?

Dimension reduction by taking orthogonal linear combinations of
the original variables such that the new dimensions contain as much
variance as possible

T =XP

» T = standardised component scores (n x r)
» X = original standardised data matrix (n x p)
» P = component loadings (p x r)



PCA: What is it?

Dimension reduction by taking linear combinations of the original
variables

T =XP

1. Constrain variance to 1: . P> =1

2. Each linear combination is orthogonal with the others:
TjT Tg=0
3. Each linear combination explains as much variance as possible:

var(T;) > var(Tit1)



PCA: What is it?

Dimension reduction by taking orthogonal linear combinations of
the original variables such that the new dimensions contain as much
variance as possible

T =XP

» T = standardised component scores (n x r)
» X = original standardised data matrix (n x p)
» P = component loadings (p x r)

» combination of eigenvectors and eigenvalues



PCA: What is it?
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» Eigenvectors: direction of maximal variance
» Eigenvalues: scale of maximal variance



PCA: What is it?

Singular value decomposition (SVD)
X =uUsvT’

X is the original n x p data matrix,

columns of n x n matrix U contains the left-singular vectors,
columns of p x p matrix V contain the right-singular vectors,
Sis a diagonal n x p matrix that contains the singular values in
descending order.
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PCA: What is it?

Singular value decomposition (SVD)

X =USsvT
T =XP

T = v/n—1U (= standardised scores)
svT

P =
vn—1

(= loadings)



PCA: What is it?

Singular value decomposition (SVD)

X =UsvT

US = principal scores

VT = principal directions (= eigenvectors)



PCA: What is it?

Least squares minimisation problem

(T, P) = argmin||X — TPT||3
T,P



PCA: What is it?

Based on some cut-off, take the first ~components

» Proportion variance explained: Choose all components until
they cumulative explain certain amount of variance

» Eigenvalue criterion: Choose all components with eigenvalues
higher than 1

» Scree plot: Look at the graph of the components and their
eigenvalues. Choose all components before the ‘elbow’



PCA: What is it?
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PCA: What is it?

variances

Comp.1 Comp.3 Comp.5



Extensions: Sparse PCA

» Manually (e.g. set all loadings <0.3 to 0)
» Penalty, such as lasso

(T, P) = argmin||X — TPT||3 + \/||P||1
T,P



Extension: Simultaneous Component Analysis (SCA)

Integrate over multiple data blocks K with either

» common subjects (T) or
» common variables (P)



Extension: Simultaneous Component Analysis (SCA)
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Extension: Simultaneous Component Analysis (SCA)

Nz



Extension: Simultaneous Component Analysis (SCA)

Integrate over multiple data blocks K with common subjects (T)

(T, P) = argmin|| Xk — TP/ |3
T

Pk



Extension: Sparse SCA

(T, By) = argmin|[ X, — TP] |3 +

sk

> eV IklIPillz + AellPxll12

> Ag group lasso penatly: Selecting groups
> ). elitist lasso penalty: Selecting variables within groups



Extension: Independent Component Analysis (ICA)

In PCA, you maximise a second-order moment (variance).
In ICA, you maximise higher order moment.



Extension: Independent Component Analysis (ICA)

Standardised data X is a linear mixture of independent,
non-Gaussian source signals

X =AST
» X = Data

> A = Mixing weights
» S = Independent components ( = sources)



Extension: Independent Component Analysis (ICA)

Maximise independence of components

» Minimise mutual information (maximum entropy)
» Maximise non-Guassianity (kurtosis)



Extension: Independent Component Analysis (ICA)

Source Signals Measured Signals

PCA Saolution ICA Solution




Extension: Independent Component Analysis (ICA)

Use ICA when data are not

» Guassian
» stationary
> linear



Extension: Independent Component Analysis (ICA)

ICA cannot

» identify the number of source signals
> uniquely order the source signals
» properly scale source signals

Often PCA as preprocessing step
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Rotation: What is it about?

> Goal: Make PCA results more interpretable
» How: Rotate T and P as to make P as sparse as possible.

Rotated loadings do not respond to orthogonal eigenvectors



