Dimensionality reduction

December 7, 2016

Outline

Principal Component Analysis

- What is it?
- Extensions
- Sparse PCA
- Simultaneous Component Analysis (SCA)
- Independent Component Analysis (ICA)

Unsupervised learning: Dimension reduction

- Goal: Estimate a probability distribution $P(X)$
- X mostely multivaiate, possibly huge \boldsymbol{p}
- Different characteristics of interest
- Trying to find a density function $\hat{P}(X)$ that is close to $P(X)$

PCA: What is it?

Goal: Reduce matrix X of dimension p to alternative matrix T of dimension r

- $p=$ number of variables
- $r=$ number of components
- with $r<p$

PCA: What is it?

Dimension reduction by taking orthogonal linear combinations of the original variables such that the new dimensions contain as much variance as possible

$$
T=X P
$$

- $T=$ standardised component scores $(n \times r)$
- $X=$ original standardised data matrix $(n \times p)$
- $P=$ component loadings ($p \times r$)

PCA: What is it?

Dimension reduction by taking linear combinations of the original variables

$$
T=X P
$$

1. Constrain variance to $1: \sum P^{2}=1$
2. Each linear combination is orthogonal with the others: $T_{j}^{T} T_{g}=0$
3. Each linear combination explains as much variance as possible: $\operatorname{var}\left(T_{i}\right)>\operatorname{var}\left(T_{i+1}\right)$

PCA: What is it?

Dimension reduction by taking orthogonal linear combinations of the original variables such that the new dimensions contain as much variance as possible

$$
T=X P
$$

- $T=$ standardised component scores $(n \times r)$
- $X=$ original standardised data matrix $(n \times p)$
- $P=$ component loadings ($p \times r$)
- combination of eigenvectors and eigenvalues

PCA: What is it?

- Eigenvectors: direction of maximal variance
- Eigenvalues: scale of maximal variance

PCA: What is it?

Singular value decomposition (SVD)

$$
X=U S V^{T}
$$

- X is the original $n \times p$ data matrix,
- columns of $n \times n$ matrix U contains the left-singular vectors,
- columns of $p \times p$ matrix V contain the right-singular vectors,
- S is a diagonal $n \times p$ matrix that contains the singular values in descending order.

PCA: What is it?

Singular value decomposition (SVD)

$$
\begin{gathered}
X=U S V^{T} \\
T=X P \\
T=\sqrt{n-1} U(=\text { standardised scores }) \\
P=\frac{S V^{T}}{\sqrt{n-1}}(=\text { loadings })
\end{gathered}
$$

PCA: What is it?

Singular value decomposition (SVD)

$$
\begin{gathered}
X=U S V^{T} \\
U S=\text { principal scores } \\
V^{T}=\text { principal directions }(=\text { eigenvectors })
\end{gathered}
$$

PCA: What is it?

Least squares minimisation problem

$$
(\hat{T}, \hat{P})=\underset{T, P}{\operatorname{argmin}}\left\|X-T P^{T}\right\|_{2}^{2}
$$

PCA: What is it?

Based on some cut-off, take the first r-components

- Proportion variance explained: Choose all components until they cumulative explain certain amount of variance
- Eigenvalue criterion: Choose all components with eigenvalues higher than 1
- Scree plot: Look at the graph of the components and their eigenvalues. Choose all components before the 'elbow'

PCA: What is it?

PCA: What is it?

Extensions: Sparse PCA

- Manually (e.g. set all loadings <0.3 to 0)
- Penalty, such as lasso

$$
(\hat{T}, \hat{P})=\underset{T, P}{\operatorname{argmin}}\left\|X-T P^{T}\right\|_{2}^{2}+\lambda_{l}\|P\|_{1}
$$

Extension: Simultaneous Component Analysis (SCA)

Integrate over multiple data blocks K with either

- common subjects (T) or
- common variables (P)

Extension: Simultaneous Component Analysis (SCA)

Extension: Simultaneous Component Analysis (SCA)

Extension: Simultaneous Component Analysis (SCA)

Integrate over multiple data blocks K with common subjects (T)

$$
\left(\hat{T}, \hat{P}_{k}\right)=\underset{T, P_{k}}{\operatorname{argmin}}\left\|X_{k}-T P_{k}^{T}\right\|_{2}^{2}
$$

Extension: Sparse SCA

$$
\begin{aligned}
& \left(\hat{T}, \hat{P}_{k}\right)=\underset{T, P_{k}}{\operatorname{argmin}}\left\|X_{k}-T P_{k}^{T}\right\|_{2}^{2}+ \\
& \sum\left(\lambda_{g} \sqrt{J_{k}}\left\|P_{k}\right\|_{2}+\lambda_{e}\left\|P_{k}\right\|_{1,2}\right.
\end{aligned}
$$

- λ_{g} group lasso penatly: Selecting groups
- λ_{e} elitist lasso penalty: Selecting variables within groups

Extension: Independent Component Analysis (ICA)

In PCA, you maximise a second-order moment (variance).
In ICA, you maximise higher order moment.

Extension: Independent Component Analysis (ICA)

Standardised data X is a linear mixture of independent, non-Gaussian source signals

$$
X=A S^{T}
$$

- $\mathrm{X}=$ Data
- $A=$ Mixing weights
- $\mathrm{S}=$ Independent components ($=$ sources)

Extension: Independent Component Analysis (ICA)

Maximise independence of components

- Minimise mutual information (maximum entropy)
- Maximise non-Guassianity (kurtosis)

Extension: Independent Component Analysis (ICA)

Extension: Independent Component Analysis (ICA)

Use ICA when data are not

- Guassian
- stationary
- linear

Extension: Independent Component Analysis (ICA)

ICA cannot

- identify the number of source signals
- uniquely order the source signals
- properly scale source signals

Often PCA as preprocessing step

Rotation: What is it about?

- Goal: Make PCA results more interpretable
- How: Rotate T and P as to make P as sparse as possible.

Rotated loadings do not respond to orthogonal eigenvectors

