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Clustering

Given an initial set of k means my‘),...,m{1) (see below), the algorithm proceeds by alternating between two steps:[°]

Assignment step: Assign each observation to the cluster whose mean yields the Ieast within-cluster sum of squares (WCSS). Since the sum
of squares is the squared Euclidean distance, this is intuitively the "nearest" mean.!! (Mathematically, this means partitioning the observations
according to the Voronoi diagram generated by the means).
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where each z,, is assigned to exactly one S®) evenif it could be assigned to two or more of them.

Update step: Calculate the new means to be the centroids of the observations in the new clusters.
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1. Begin with the disjoint clustering having level L(0) = 0 and sequence number m = 0.
2. Find the least dissimilar pair of clusters in the current clustering, say pair (r), (s), according to

d[(r).(s)] = min d[(i).(j)]

where the minimum is over all pairs of clusters in the current clustering.
3. Increment the sequence number : m = m +1. Merge clusters (r) and (s) into a single cluster to form the next clustering m.
Set the level of this clustering to

L(m) = d[(r).(s)]

4. Update the proximity matrix, D, by deleting the rows and columns corresponding to clusters (r) and (s) and adding a row
and column corresponding to the newly formed cluster. The proximity between the new cluster, denoted (r.s) and old
cluster (k) is defined in this way:

d[(k), (ns)] = min d[(k).(r)], d[(k).(s)]
5. If all objects are in one cluster, stop. Else, go to step 2.




Clustering

* Divide data over clusters minimising some
guantity:

* Distance of data points to cluster center

* Dissimilarity of data points within cluster

* Many forms of distance (Euclidian, Manhattan,

)

e “Algorithmic” approach




Mixture model

» (Generative Probabilistic Model
e “(Generative Story”
e |nterpretable parameters
* Likelihood function

« Maximum Likelihood apparatus

e Bayesian apparatus



Mixture model




Mixture model




Mixture model

A maxture distribution is a convex combination
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How to fit a mixture model?

 Maximum Likelihood

e Bayesian
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|[dentifiability iIssues

e Label switching

o Qverfitting



|_abel Switching




|_abel Switching

|

pN (1, 01) + (L = p)N (12, 02) = (1 — p)N (12, 02) + pN (111, 01)

— / —_

K!'labeling orderings (1, 2, 6, 24, 120, 720...1)




Overfitting




Overfitting
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(Weight of third component is 0.)



Overfitting

0.0¢ 0 0%

Parameters of 2nd and 3rd component
are identical



Larry Wasserman

e “[ have decided that
mixtures, like tequila,
are inherently evil and
should be avoided at
all costs.”




Formal constraints

 Parameters of every component have to be different
e (How different)
e (At least one? Or all?)
» Ordering of components is based on parameter values

e €.9., The component with the smallest mean is
component number 1, etc.

o (What if two components have same mean, but
different stand deviations)



Andrew Gelman

a mixture model can be a
“beast” (as Larry puts it), but this
beast can be tamed with a good
prior distribution.
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Linear summation Marginalising over
of Gaussians Possible values of z




In p(X|m, p, X) Zln{Zn N (x|, Ek)}

eNo closed-form solution for maximum
e[ xpectation maximisation
o((Generic optimisation)



EXpectation maximisation

Expectation maximisation

set parameters to some initial estimate

Repeat until convergence:
 E

 Assume certain cluster parameters

* Find out “responsibilities” of every data point for every cluster
« M

e Set parameters of distributions to ML estimates, weighted by
responsibilities of datapoints



EXpectation maximisation

0 2 0 2 0 2

Figure 9.8 lllustration of the EM algorithm using the Old Faithful set as used for the illustration of the K-means
algorithm in Figure 9.1. See the text for details.




EXpectation maximisation

e Guaranteed to increase likelihood after every
step by O or more

* (Find local minima)



Other methods

e Optimisation

e SIMPLEX

e Differential evolution

e Particle swarm



Problems with ML

 “Wrong”

* No use of prior
information

 More susceptible to
singularities




Bayesian perspective

» Use of priors

e | oc and scale
parameters

e Normal/halfnormal/
cauchy

* Weights

- Dirichlet




-INd posterior

« MCMC sampling methods

e Gibbs (Geman & Geman, 1984)

* Metropolis-Hasting (Hastings, 1970)
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-INd posterior

e Still hard:
e Label switching
e | ocal maxima

* [rregular likelihood function



How many clusters?

 Model comparison problem
 BIC/AIC/DIC
e Cross-validation

 Bayes Factors (Marin & Robert, 2013)





















Goal of a Mixture model

 Marin & Robert (2013): two goals of mixture
models

e Clustering perspective

e Semiparametric perspective



Conclusion

Mixture models offer a class of models that can
describe data coming from multiple distributions

Their likelihood functions come with some
additional challenges

Parameters can be estimated using both ML anad
Bayesian technigues.

There is a bag of tricks to find out “the” number of
clusters, given a model specification.
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