Motivation for splines Statistical learning reading group

Alexander Ly

Psychological Methods University of Amsterdam

Amsterdam, 23 February 2016

- 2 Polynomial regression
- Piecewise polynomials

The regression problem

- The regression assumption: There exists a true function f^* such that $y = f^*(x) + \epsilon$. Give a *single* best guess $\hat{f}(x)$ of $f^*(x)$ based on finite samples $\binom{x_1}{y_1}, \ldots, \binom{x_n}{y_n}$.
- Linear regression: The best guess is of the form $\hat{f}(x) = \hat{\theta}_0 + \hat{\theta}_1 x$.
- Goal: Choose \hat{f} that yields good predictions.

The regression problem

- The regression assumption: There exists a true function f^* such that $y = f^*(x) + \epsilon$. Give a *single* best guess $\hat{f}(x)$ of $f^*(x)$ based on finite samples $\binom{x_1}{y_1}, \ldots, \binom{x_n}{y_n}$.
- Linear regression: The best guess is of the form $\hat{f}(x) = \hat{\theta}_0 + \hat{\theta}_1 x$.
- Goal: Choose \hat{f} that yields good predictions.
- Give a definition of good predictions: Here, minimise squared error loss.

The regression problem

- The regression assumption: There exists a true function f^* such that $y = f^*(x) + \epsilon$. Give a *single* best guess $\hat{f}(x)$ of $f^*(x)$ based on finite samples $\binom{x_1}{y_1}, \ldots, \binom{x_n}{y_n}$.
- Linear regression: The best guess is of the form $\hat{f}(x) = \hat{\theta}_0 + \hat{\theta}_1 x$.
- Goal: Choose \hat{f} that yields good predictions.
- Give a definition of good predictions: Here, minimise squared error loss.
- For each estimate f
 (x) the risk (expected mean squared error loss) is given by

$$E(f^*(x) - \hat{f}(x))^2 = \operatorname{Bias}^2(\hat{f}(x)) + \operatorname{Var}(\hat{f})$$
(1)

(Population) average mean squared error wrt any x, thus, also not observed ones.

True risk versus empirical risk

For each estimate f(x) the risk (expected mean squared error loss) is given by

$$E(f^*(x) - \hat{f}(x))^2 = \text{Bias}^2(\hat{f}(x)) + \text{Var}(\hat{f})$$
 (2)

(Population) average mean squared error wrt *any x*, thus, also not observed ones.

True risk versus empirical risk

For each estimate f(x) the risk (expected mean squared error loss) is given by

$$E(f^*(x) - \hat{f}(x))^2 = \text{Bias}^2(\hat{f}(x)) + \text{Var}(\hat{f})$$
 (2)

(Population) average mean squared error wrt *any x*, thus, also not observed ones.

• For any x, plugin $f^*(x) = y$. Linear regression: $\hat{f}(x) = \hat{\theta}_0 + \hat{\theta}_1 x$

$$E(y - \hat{\theta}_0 - \hat{\theta}_1 x)^2 \tag{3}$$

Problem: cannot evaluate this population mean, thus, find $\hat{\theta}$ for which this is smallest.

True risk versus empirical risk

For each estimate f(x) the risk (expected mean squared error loss) is given by

$$E(f^*(x) - \hat{f}(x))^2 = \text{Bias}^2(\hat{f}(x)) + \text{Var}(\hat{f})$$
 (2)

(Population) average mean squared error wrt *any x*, thus, also not observed ones.

• For any x, plugin $f^*(x) = y$. Linear regression: $\hat{f}(x) = \hat{\theta}_0 + \hat{\theta}_1 x$

$$E(y - \hat{\theta}_0 - \hat{\theta}_1 x)^2 \tag{3}$$

Problem: cannot evaluate this population mean, thus, find $\hat{\theta}$ for which this is smallest.

• Replace: Population mean by sample mean

$$\frac{1}{n}\sum_{i=1}^{n}(y_{i}-\hat{\theta}_{0}-\hat{\theta}_{1}x_{i})^{2}$$
(4)

The regression estimation procedure

• Define a prediction criterion at the population level:

$$E(y - \hat{f}(x))^2, \tag{5}$$

This risk is unknown in practice.

The regression estimation procedure

• Define a prediction criterion at the population level:

$$E(y-\hat{f}(x))^2, \qquad (5)$$

This risk is unknown in practice.

 For each candidate *f* from a collection of *F* approximation this risk by its empirical version

$$\frac{1}{n}\sum_{i=1}^{n}(y_{i}-\tilde{f}(x_{i}))^{2},$$
(6)

The regression estimation procedure

• Define a prediction criterion at the population level:

$$E(y-\hat{f}(x))^2, \qquad (5)$$

This risk is unknown in practice.

 For each candidate *f* from a collection of *F* approximation this risk by its empirical version

$$\frac{1}{n}\sum_{i=1}^{n}(y_{i}-\tilde{f}(x_{i}))^{2},$$
(6)

Define the best guess f̂ (i.e., point estimate of f*) as

$$\hat{f}(x) = \underset{\tilde{f} \in \mathcal{F}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} (y_i - \tilde{f}(x_i))^2$$
(7)

• Define the best guess \hat{f} (i.e., point estimate of f^*) as

$$\hat{f}(x) = \underset{\tilde{f} \in \mathcal{F}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} (y_i - \tilde{f}(x_i))^2$$
(8)

where the minimisation is over the collection \mathcal{F} .

Example: linear regression: the collection of functions is given by *F* := {*f* : *X* → *Y* | *f*(*x*) = θ₀ + θ₁*x*}

• Define the best guess \hat{f} (i.e., point estimate of f^*) as

$$\hat{f}(x) = \underset{\tilde{f} \in \mathcal{F}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} (y_i - \tilde{f}(x_i))^2$$
(8)

- Example: linear regression: the collection of functions is given by *F* := {*f* : *X* → *Y* | *f*(*x*) = θ₀ + θ₁*x*}
- Later: The collection \mathcal{F} consists of polynomials,

• Define the best guess \hat{f} (i.e., point estimate of f^*) as

$$\hat{f}(x) = \underset{\tilde{f} \in \mathcal{F}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} (y_i - \tilde{f}(x_i))^2$$
(8)

- Example: linear regression: the collection of functions is given by *F* := {*f* : *X* → *Y* | *f*(*x*) = θ₀ + θ₁*x*}
- Later: The collection \mathcal{F} consists of polynomials,
- Later: The collection \mathcal{F} consists of natural/regression splines,

• Define the best guess \hat{f} (i.e., point estimate of f^*) as

$$\hat{f}(x) = \underset{\tilde{f} \in \mathcal{F}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} (y_i - \tilde{f}(x_i))^2$$
(8)

- Example: linear regression: the collection of functions is given by *F* := {*f* : *X* → *Y* | *f*(*x*) = θ₀ + θ₁*x*}
- Later: The collection \mathcal{F} consists of polynomials,
- Later: The collection \mathcal{F} consists of natural/regression splines,
- Later: The collection $\mathcal F$ consists of smoothing splines

• Define the best guess \hat{f} (i.e., point estimate of f^*) as

$$\hat{f}(x) = \underset{\tilde{f} \in \mathcal{F}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} (y_i - \tilde{f}(x_i))^2$$
(8)

- Example: linear regression: the collection of functions is given by *F* := {*f* : *X* → *Y* | *f*(*x*) = θ₀ + θ₁*x*}
- Later: The collection \mathcal{F} consists of polynomials,
- Later: The collection \mathcal{F} consists of natural/regression splines,
- Later: The collection $\mathcal F$ consists of smoothing splines
- Later: The collection *F* consists of classification and regression trees, neural networks, support vector machines, etc, etc

- Misspecification: linear regression works best if f*(x) is indeed linear.
- More general, *F* works best if true *f*^{*} ∈ *F*, but this is not known in practice.

• Q: Why not choose \mathcal{F} just the collection of all possible functions?

- Q: Why not choose \mathcal{F} just the collection of all possible functions?
- Computationally intensive. Minimisation is then over an uncountable set of functions.

- Q: Why not choose \mathcal{F} just the collection of all possible functions?
- Computationally intensive. Minimisation is then over an uncountable set of functions.
- No unique minimiser

- Q: Why not choose \mathcal{F} just the collection of all possible functions?
- Computationally intensive. Minimisation is then over an uncountable set of functions.
- No unique minimiser
- Overfitting: If we can evaluate the (theoretical) average

$$E(y - \tilde{f}(x))^2 = \int (y - \tilde{f}(x))^2 dx$$
(9)

for every possible function \tilde{f} at "every" (uncountably many) x, thus, also $y = f^*(x)$. The minimiser over all possible functions is then $f^*(x)$.

- Q: Why not choose \mathcal{F} just the collection of all possible functions?
- Computationally intensive. Minimisation is then over an uncountable set of functions.
- No unique minimiser
- Overfitting: If we can evaluate the (theoretical) average

$$E(y - \tilde{f}(x))^2 = \int (y - \tilde{f}(x))^2 dx$$
(9)

for every possible function \tilde{f} at "every" (uncountably many) x, thus, also $y = f^*(x)$. The minimiser over all possible functions is then $f^*(x)$.

• Overfitting comes from not being able to evaluate Eq. (9).

• Make it bigger, lower misspecification, but not let the variance grow too much

- Make it bigger, lower misspecification, but not let the variance grow too much
- 1. Practical: Retain computational efficiency.

- Make it bigger, lower misspecification, but not let the variance grow too much
- 1. Practical: Retain computational efficiency.
- 2.a. Have \mathcal{F} big, but have a unique minimiser

- Make it bigger, lower misspecification, but not let the variance grow too much
- 1. Practical: Retain computational efficiency.
- 2.a. Have \mathcal{F} big, but have a unique minimiser
- 2.b. In case of multiple minimisers, choose the "smallest" solution (i.e., regularisation).

Computations: The general regression solution

In general computationally heavy: For each candidate *f* from *F* approximation the risk by ¹/_n ∑ⁿ_{i=1}(y_i − *f*(x_i))², Consequently, select the minimiser:

$$\hat{f}(x) = \underset{\tilde{f} \in \mathcal{F}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} (y_i - \tilde{f}(x_i))^2$$
(10)

Computations: The general regression solution

In general computationally heavy: For each candidate *f* from *F* approximation the risk by ¹/_n ∑ⁿ_{i=1}(y_i − *f*(x_i))², Consequently, select the minimiser:

$$\hat{f}(x) = \underset{\tilde{f} \in \mathcal{F}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} (y_i - \tilde{f}(x_i))^2$$
(10)

 Alternatively, Linear regression: y = Xθ + ε with y ∈ ℝⁿ, θ ∈ ℝ^p, X ∈ ℝ^{n×p} the ordinary least square is

$$\hat{\theta} = (X^T X)^{-1} X^T y \tag{11}$$

Computations: The general regression solution

In general computationally heavy: For each candidate *f* from *F* approximation the risk by ¹/_n ∑ⁿ_{i=1}(y_i − *f*(x_i))², Consequently, select the minimiser:

$$\hat{f}(x) = \underset{\tilde{f} \in \mathcal{F}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} (y_i - \tilde{f}(x_i))^2$$
(10)

 Alternatively, Linear regression: y = Xθ + ε with y ∈ ℝⁿ, θ ∈ ℝ^p, X ∈ ℝ^{n×p} the ordinary least square is

$$\hat{\theta} = (X^T X)^{-1} X^T y \tag{11}$$

• The minimiser is basically derived from simple matrix algebra, i.e., $\hat{\theta} = Ay$. This idea is exploited in polynomial and regression splines models.

• Linear regression: $Y = X\theta + \epsilon$ with $y \in \mathbb{R}^n, \theta \in \mathbb{R}^p$, $X \in \mathbb{R}^{n \times p}$.

- Linear regression: $Y = X\theta + \epsilon$ with $y \in \mathbb{R}^n, \theta \in \mathbb{R}^p$, $X \in \mathbb{R}^{n \times p}$.
- Problem: when p > n then also have $Y = X(\theta_{(0)} + u) + \epsilon$, where Xu = 0. There are many u s.t. Xu = 0, non-uniqueness.

• Linear regression: $Y = X\theta + \epsilon$ with $y \in \mathbb{R}^n, \theta \in \mathbb{R}^p$, $X \in \mathbb{R}^{n \times p}$.

• Problem: when p > n then also have $Y = X(\theta_{(0)} + u) + \epsilon$, where Xu = 0. There are many u s.t. Xu = 0, non-uniqueness.

Solution: Choose the solution s.t. θ₍₀₎ + u is small. In other words, instead of minimising ∑ⁿ_{i=1}(y_i − f̃(x_i))² minimise the following instead

$$\hat{f}(x) = \operatorname*{argmin}_{\tilde{f} \in \mathcal{F}} \sum_{i=1}^{n} (y_i - \tilde{f}(x_i))^2 + \lambda \operatorname{penalty}(\tilde{f}).$$
 (12)

for some fixed $\lambda > 0$.

• Linear regression: $Y = X\theta + \epsilon$ with $y \in \mathbb{R}^n, \theta \in \mathbb{R}^p$, $X \in \mathbb{R}^{n \times p}$.

• Problem: when p > n then also have $Y = X(\theta_{(0)} + u) + \epsilon$, where Xu = 0. There are many u s.t. Xu = 0, non-uniqueness.

Solution: Choose the solution s.t. θ₍₀₎ + u is small. In other words, instead of minimising ∑ⁿ_{i=1}(y_i − f̃(x_i))² minimise the following instead

$$\hat{f}(x) = \operatorname*{argmin}_{\tilde{f} \in \mathcal{F}} \sum_{i=1}^{n} (y_i - \tilde{f}(x_i))^2 + \lambda \operatorname{penalty}(\tilde{f}).$$
 (12)

for some fixed $\lambda > 0$.

• Example: Lasso/ridge/elastic nets and remarkably: smoothing splines.

Polynomial regression

 Assumption y = f*(x) + ε, take the candidate collection F_m the family of order-m polynomials:

$$\mathcal{F}_{m} = \{f(x) = \theta_{0}x^{0} + \theta_{1}x^{1} + \ldots + \theta_{m-1}x^{m-1} = \sum_{j=0}^{m-1} \theta_{j}x^{j}\}$$
(13)

Polynomial regression

 Assumption y = f*(x) + ε, take the candidate collection F_m the family of order-m polynomials:

$$\mathcal{F}_{m} = \{f(x) = \theta_{0}x^{0} + \theta_{1}x^{1} + \ldots + \theta_{m-1}x^{m-1} = \sum_{j=0}^{m-1} \theta_{j}x^{j}\}$$
(13)

• Example: m = 2: linear regression: $\{f(x) = \theta_0 + \theta_1 x\}$

Polynomial regression

 Assumption y = f*(x) + ε, take the candidate collection F_m the family of order-m polynomials:

$$\mathcal{F}_{m} = \{f(x) = \theta_{0}x^{0} + \theta_{1}x^{1} + \ldots + \theta_{m-1}x^{m-1} = \sum_{j=0}^{m-1} \theta_{j}x^{j}\}$$
(13)

Example: m = 2: linear regression: {f(x) = θ₀ + θ₁x}
Idea: Let the order *m* grow.

Polynomial regression

 Assumption y = f*(x) + ε, take the candidate collection F_m the family of order-m polynomials:

$$\mathcal{F}_{m} = \{f(x) = \theta_{0}x^{0} + \theta_{1}x^{1} + \ldots + \theta_{m-1}x^{m-1} = \sum_{j=0}^{m-1} \theta_{j}x^{j}\}$$
(13)

- Example: m = 2: linear regression: $\{f(x) = \theta_0 + \theta_1 x\}$
- Idea: Let the order *m* grow.
- Problem: overfitting. Q: How far can we go? How bad is this problem?

• Given a chosen *m*: Frame the problem as Linear regression: $y = X\theta + \epsilon$ with $y \in \mathbb{R}^n, \theta \in \mathbb{R}^m, X \in \mathbb{R}^{n \times m}$, where

$$X = \begin{pmatrix} 1 & x_1^1 & x_1^2 & \dots & x_1^{m-1} \\ 1 & x_2^1 & x_2^2 & \dots & x_2^{m-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n^1 & x_n^2 & \dots & x_n^{m-1} \end{pmatrix}.$$
 (14)

• Given a chosen *m*: Frame the problem as Linear regression: $y = X\theta + \epsilon$ with $y \in \mathbb{R}^n, \theta \in \mathbb{R}^m, X \in \mathbb{R}^{n \times m}$, where

$$X = \begin{pmatrix} 1 & x_1^1 & x_1^2 & \dots & x_1^{m-1} \\ 1 & x_2^1 & x_2^2 & \dots & x_2^{m-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n^1 & x_n^2 & \dots & x_n^{m-1} \end{pmatrix}.$$
 (14)

• Again, the ordinary least square is

$$\hat{\theta} = (X^T X)^{-1} X^T y \tag{15}$$

exploit this linear structure (matrix algebra). If m < n there is a unique solution (thus, minimiser).

• Given a chosen *m*: Frame the problem as Linear regression: $y = X\theta + \epsilon$ with $y \in \mathbb{R}^n, \theta \in \mathbb{R}^m, X \in \mathbb{R}^{n \times m}$, where

$$X = \begin{pmatrix} 1 & x_1^1 & x_1^2 & \dots & x_1^{m-1} \\ 1 & x_2^1 & x_2^2 & \dots & x_2^{m-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n^1 & x_n^2 & \dots & x_n^{m-1} \end{pmatrix}.$$
 (14)

• Again, the ordinary least square is

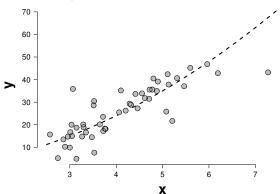
$$\hat{\theta} = (X^T X)^{-1} X^T y \tag{15}$$

exploit this linear structure (matrix algebra). If m < n there is a unique solution (thus, minimiser).

• Of course, how to choose the additional parameter *m*? Cross validation, etc etc.

Growing model and how bad is bad?

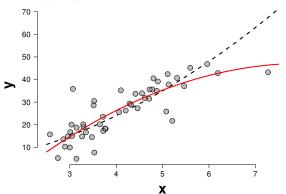
Suppose the true is $f^*(x) = 2x + x^2$. Data sampled as $Y = f^*(x) + \epsilon$.



Target: estimate 2x+x^2 with n=50

Well-specified, right order

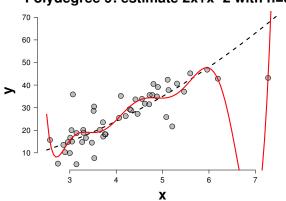
Note $f^* \in \mathcal{F}_m$ when m = 3. Thus, well-specified:



Polydegree 2: estimate 2x+x^2 with n=50

Well-specified, order too large

Note still $f^* \in \mathcal{F}_m$ when m = 9. Thus, well-specified, but m > 3:

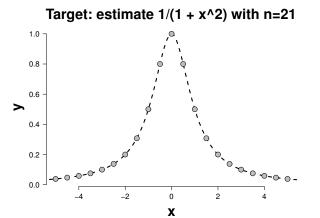


Polydegree 9: estimate 2x+x^2 with n=50

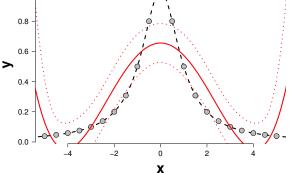
Overfit: Random error is seen as structural.

How far can we go with polynomial regression?

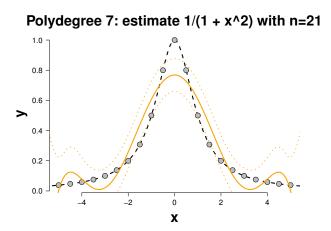
Suppose the true is $f^*(x) = 1/(1 + x^2)$. Data sampled as $Y = f^*(X)$, uniform $X \in [-5, 5]$. Note: no error

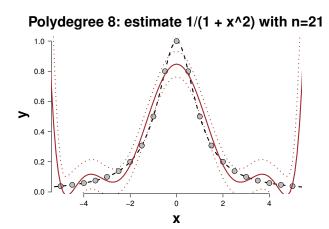


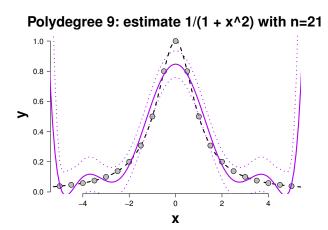
Polydegree 5: estimate 1/(1 + x^2) with n=21



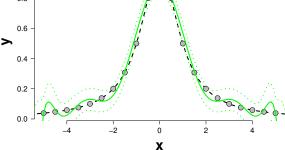
Polydegree 6: estimate $1/(1 + x^2)$ with n=21 1.0 0.8 0.6 > 0.4 ۲. ف 0.2 -00 à. 0.0 -2 n 2 X



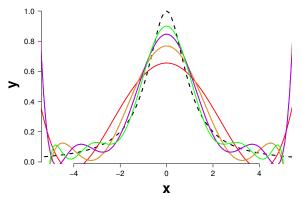




Polydegree 10: estimate 1/(1 + x^2) with n=21

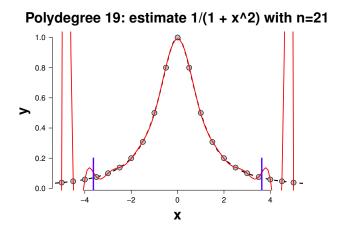


Polydegree 5–10: estimate 1/(1 + x^2) with n=21



How far can we go

Here, the OLS solution works until m = n - 1



Interpolation.

- Models have limits, even if there is no error term here.
- The target f^* is known as Runge example or Runge phenomenon for interpolation (polynomial regression with m = n 1.

- Models have limits, even if there is no error term here.
- The target f^* is known as Runge example or Runge phenomenon for interpolation (polynomial regression with m = n 1.
- Runge phenomenon: When interpolating $f^*(x \text{ in } [-5,5])$ with x having equal step-size in [-5,5] *impossible* to interpolate $f^*(x)$ well within |x| < 3.63 and |x| > 3.63 at the same time.

- Models have limits, even if there is no error term here.
- The target f^* is known as Runge example or Runge phenomenon for interpolation (polynomial regression with m = n 1.
- Runge phenomenon: When interpolating $f^*(x \text{ in } [-5,5])$ with x having equal step-size in [-5,5] *impossible* to interpolate $f^*(x)$ well within |x| < 3.63 and |x| > 3.63 at the same time.
- Cautious when designing experiments with polynomial interpolation. (Chebyshev polynomials)

- Models have limits, even if there is no error term here.
- The target f^* is known as Runge example or Runge phenomenon for interpolation (polynomial regression with m = n 1.
- Runge phenomenon: When interpolating $f^*(x \text{ in } [-5,5])$ with x having equal step-size in [-5,5] *impossible* to interpolate $f^*(x)$ well within |x| < 3.63 and |x| > 3.63 at the same time.
- Cautious when designing experiments with polynomial interpolation. (Chebyshev polynomials)
- Global (over whole [-5, 5]) versus local fits (within |x| < 3.63) and at the tails.

• Assumption $y = f^*(x) + \epsilon$, take the candidate collection $\mathcal{F}_{m,K}$ consisting of polynomials of order-*m* with *K* knots ξ_1, \ldots, ξ_K .

- Assumption $y = f^*(x) + \epsilon$, take the candidate collection $\mathcal{F}_{m,K}$ consisting of polynomials of order-*m* with *K* knots ξ_1, \ldots, ξ_K .
- Knots split the domain in K + 1 area allowing for global and local behaviour.

$$\mathcal{F}_{m,k} = f(x) = \begin{cases} \sum_{j=0}^{m-1} \theta_{j,1} x^j & \text{if } x \le \xi_1 \\ \sum_{j=0}^{m-1} \theta_{j,2} x^j & \text{if } \xi_1 < x \le \xi_2 \\ \sum_{j=0}^{m-1} \theta_{j,k} x^j & \text{if } \xi_{k-1} < x \le \xi_k \\ \sum_{j=0}^{m-1} \theta_{j,K} x^j & \text{if } \xi_{K-1} < x \le \xi_K \end{cases}$$
(16)

- Assumption $y = f^*(x) + \epsilon$, take the candidate collection $\mathcal{F}_{m,K}$ consisting of polynomials of order-*m* with *K* knots ξ_1, \ldots, ξ_K .
- Knots split the domain in K + 1 area allowing for global and local behaviour.

$$\mathcal{F}_{m,k} = f(x) = \begin{cases} \sum_{j=0}^{m-1} \theta_{j,1} x^j & \text{if } x \le \xi_1 \\ \sum_{j=0}^{m-1} \theta_{j,2} x^j & \text{if } \xi_1 < x \le \xi_2 \\ \sum_{j=0}^{m-1} \theta_{j,k} x^j & \text{if } \xi_{k-1} < x \le \xi_k \\ \sum_{j=0}^{m-1} \theta_{j,K} x^j & \text{if } \xi_{K-1} < x \le \xi_K \end{cases}$$
(16)

• Note: there are (K + 1)m parameters

Piecewise polynomials and basis functions

- Assumption $y = f^*(x) + \epsilon$, take the candidate collection $\mathcal{F}_{m,K}$ consisting of polynomials of order-*m* with *K* knots ξ_1, \ldots, ξ_K .
- Knots split the domain in K + 1 area allowing for global and local behaviour.

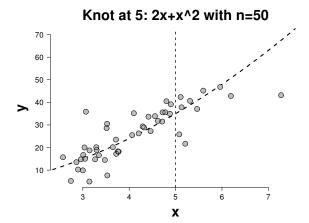
$$\mathcal{F}_{m,k} = f(x) = \{\sum_{j=0,k=1}^{m-1,K} \theta_{j,k} g_{j,k}(x)\}$$
(17)

where $g_{j,k}(x) = x^j \mathbf{1}_{(\xi_{k-1},\xi_k]}(x)$.

• Note: there are (K + 1)m parameters

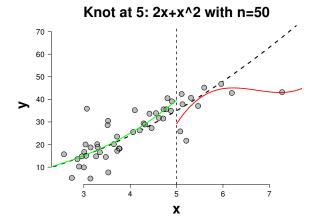
Piecewise polynomials with one knot

Knot at $\xi_1 = 5$



Piecewise cubic polynomials with one knot

Knot at $\xi_1 = 5$ and M = 4 on each domain.



- At each domain do linear regression
- Simpler: write it as basis functions. Recall polynomial regression with $X \in \mathbb{R}^{n \times m}$, where

$$X = \begin{pmatrix} 1 & x_1^1 & \dots & x_1^{m-1} \\ 1 & x_2^1 & \dots & x_2^{m-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_n^1 & \dots & x_n^{m-1} \end{pmatrix} = \begin{pmatrix} g_0(x_1) & g_1(x_1) & \dots & g_{m-1}(x_1) \\ g_0(x_2) & g_1(x_2) & \dots & g_{m-1}(x_2) \\ \vdots & \vdots & \ddots & \vdots \\ g_0(x_n) & g_1(x_n) & \dots & g_{m-1}(x_n) \end{pmatrix}$$

- At each domain do linear regression
- Simpler: write it as basis functions. Recall polynomial regression with $X \in \mathbb{R}^{n \times m}$, where

$$X = \begin{pmatrix} 1 & x_1^1 & \dots & x_1^{m-1} \\ 1 & x_2^1 & \dots & x_2^{m-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_n^1 & \dots & x_n^{m-1} \end{pmatrix} = \begin{pmatrix} g_0(x_1) & g_1(x_1) & \dots & g_{m-1}(x_1) \\ g_0(x_2) & g_1(x_2) & \dots & g_{m-1}(x_2) \\ \vdots & \vdots & \ddots & \vdots \\ g_0(x_n) & g_1(x_n) & \dots & g_{m-1}(x_n) \end{pmatrix}$$

• Again, the ordinary least square is

$$\hat{\theta} = (X^T X)^{-1} X^T y \tag{18}$$

exploit this linear structure (matrix algebra). If m < n there is a unique solution (thus, minimiser).

- At each domain do linear regression
- Simpler: write it as basis functions. Recall polynomial regression with $X \in \mathbb{R}^{n \times m}$, where

$$X = \begin{pmatrix} 1 & x_1^1 & \dots & x_1^{m-1} \\ 1 & x_2^1 & \dots & x_2^{m-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_n^1 & \dots & x_n^{m-1} \end{pmatrix} = \begin{pmatrix} g_0(x_1) & g_1(x_1) & \dots & g_{m-1}(x_1) \\ g_0(x_2) & g_1(x_2) & \dots & g_{m-1}(x_2) \\ \vdots & \vdots & \ddots & \vdots \\ g_0(x_n) & g_1(x_n) & \dots & g_{m-1}(x_n) \end{pmatrix}$$

• Again, the ordinary least square is

$$\hat{\theta} = (X^T X)^{-1} X^T y \tag{18}$$

exploit this linear structure (matrix algebra). If m < n there is a unique solution (thus, minimiser).

• Of course, how to choose the additional parameter *m* and *K* and where?

How far can we go with piecewise polynomials?

Note with M = 1 and some number K that this method leads to functions that look like histograms with the height of the bar given by the empirical mean of the samples in each domain. As K increases, say, K is the number of elements in the domain, you get the space of all functions.

- Choosing knots and "continuous" piecewise regressions: splines
- Parameters and smoothing
- Smoothing and degrees of freedom
- Reproducing kernel Hilbert spaces.

- Bousquet, O, Boucheron, S, Lugosi, G (2004). Introduction to statistical learning theory
- Epperson, JF (1987). On the Runge example
- de Boor, C (2001). A practical guide to splines