
Statistical learning Polynomial regression Piecewise polynomials

Motivation for splines
Statistical learning reading group

Alexander Ly

Psychological Methods
University of Amsterdam

Amsterdam, 23 February 2016

Statistical learning Polynomial regression Piecewise polynomials

Overview

1 Basics of statistical learning theory

2 Polynomial regression

3 Piecewise polynomials

Statistical learning Polynomial regression Piecewise polynomials

The regression problem

The regression assumption: There exists a true function f ∗

such that y = f ∗(x) + ε. Give a single best guess f̂ (x) of
f ∗(x) based on finite samples

(x1
y1

)
, . . . ,

(xn
yn

)
.

Linear regression: The best guess is of the form
f̂ (x) = θ̂0 + θ̂1x .
Goal: Choose f̂ that yields good predictions.

Give a definition of good predictions: Here, minimise
squared error loss.
For each estimate f̂ (x) the risk (expected mean squared
error loss) is given by

E(f ∗(x)− f̂ (x))2 = Bias2(f̂ (x)) + Var(f̂) (1)

(Population) average mean squared error wrt any x , thus,
also not observed ones.

Statistical learning Polynomial regression Piecewise polynomials

The regression problem

The regression assumption: There exists a true function f ∗

such that y = f ∗(x) + ε. Give a single best guess f̂ (x) of
f ∗(x) based on finite samples

(x1
y1

)
, . . . ,

(xn
yn

)
.

Linear regression: The best guess is of the form
f̂ (x) = θ̂0 + θ̂1x .
Goal: Choose f̂ that yields good predictions.
Give a definition of good predictions: Here, minimise
squared error loss.

For each estimate f̂ (x) the risk (expected mean squared
error loss) is given by

E(f ∗(x)− f̂ (x))2 = Bias2(f̂ (x)) + Var(f̂) (1)

(Population) average mean squared error wrt any x , thus,
also not observed ones.

Statistical learning Polynomial regression Piecewise polynomials

The regression problem

The regression assumption: There exists a true function f ∗

such that y = f ∗(x) + ε. Give a single best guess f̂ (x) of
f ∗(x) based on finite samples

(x1
y1

)
, . . . ,

(xn
yn

)
.

Linear regression: The best guess is of the form
f̂ (x) = θ̂0 + θ̂1x .
Goal: Choose f̂ that yields good predictions.
Give a definition of good predictions: Here, minimise
squared error loss.
For each estimate f̂ (x) the risk (expected mean squared
error loss) is given by

E(f ∗(x)− f̂ (x))2 = Bias2(f̂ (x)) + Var(f̂) (1)

(Population) average mean squared error wrt any x , thus,
also not observed ones.

Statistical learning Polynomial regression Piecewise polynomials

True risk versus empirical risk

For each estimate f̂ (x) the risk (expected mean squared
error loss) is given by

E(f ∗(x)− f̂ (x))2 = Bias2(f̂ (x)) + Var(f̂) (2)

(Population) average mean squared error wrt any x , thus,
also not observed ones.

For any x , plugin f ∗(x) = y . Linear regression:
f̂ (x) = θ̂0 + θ̂1x

E(y − θ̂0 − θ̂1x)2 (3)

Problem: cannot evaluate this population mean, thus, find
θ̂ for which this is smallest.
Replace: Population mean by sample mean

1
n

n∑
i=1

(yi − θ̂0 − θ̂1xi)
2 (4)

and pick θ̂ = (θ̂0, θ̂1) that minimises this empirical risk
instead.

Statistical learning Polynomial regression Piecewise polynomials

True risk versus empirical risk

For each estimate f̂ (x) the risk (expected mean squared
error loss) is given by

E(f ∗(x)− f̂ (x))2 = Bias2(f̂ (x)) + Var(f̂) (2)

(Population) average mean squared error wrt any x , thus,
also not observed ones.
For any x , plugin f ∗(x) = y . Linear regression:
f̂ (x) = θ̂0 + θ̂1x

E(y − θ̂0 − θ̂1x)2 (3)

Problem: cannot evaluate this population mean, thus, find
θ̂ for which this is smallest.

Replace: Population mean by sample mean

1
n

n∑
i=1

(yi − θ̂0 − θ̂1xi)
2 (4)

and pick θ̂ = (θ̂0, θ̂1) that minimises this empirical risk
instead.

Statistical learning Polynomial regression Piecewise polynomials

True risk versus empirical risk

For each estimate f̂ (x) the risk (expected mean squared
error loss) is given by

E(f ∗(x)− f̂ (x))2 = Bias2(f̂ (x)) + Var(f̂) (2)

(Population) average mean squared error wrt any x , thus,
also not observed ones.
For any x , plugin f ∗(x) = y . Linear regression:
f̂ (x) = θ̂0 + θ̂1x

E(y − θ̂0 − θ̂1x)2 (3)

Problem: cannot evaluate this population mean, thus, find
θ̂ for which this is smallest.
Replace: Population mean by sample mean

1
n

n∑
i=1

(yi − θ̂0 − θ̂1xi)
2 (4)

and pick θ̂ = (θ̂0, θ̂1) that minimises this empirical risk
instead.

Statistical learning Polynomial regression Piecewise polynomials

The regression estimation procedure

Define a prediction criterion at the population level:

E(y − f̂ (x))2, (5)

This risk is unknown in practice.

For each candidate f̃ from a collection of F approximation
this risk by its empirical version

1
n

n∑
i=1

(yi − f̃ (xi))
2, (6)

Define the best guess f̂ (i.e., point estimate of f ∗) as

f̂ (x) = argmin
f̃∈F

1
n

n∑
i=1

(yi − f̃ (xi))
2 (7)

where the minimisation is over the collection F .

Statistical learning Polynomial regression Piecewise polynomials

The regression estimation procedure

Define a prediction criterion at the population level:

E(y − f̂ (x))2, (5)

This risk is unknown in practice.
For each candidate f̃ from a collection of F approximation
this risk by its empirical version

1
n

n∑
i=1

(yi − f̃ (xi))
2, (6)

Define the best guess f̂ (i.e., point estimate of f ∗) as

f̂ (x) = argmin
f̃∈F

1
n

n∑
i=1

(yi − f̃ (xi))
2 (7)

where the minimisation is over the collection F .

Statistical learning Polynomial regression Piecewise polynomials

The regression estimation procedure

Define a prediction criterion at the population level:

E(y − f̂ (x))2, (5)

This risk is unknown in practice.
For each candidate f̃ from a collection of F approximation
this risk by its empirical version

1
n

n∑
i=1

(yi − f̃ (xi))
2, (6)

Define the best guess f̂ (i.e., point estimate of f ∗) as

f̂ (x) = argmin
f̃∈F

1
n

n∑
i=1

(yi − f̃ (xi))
2 (7)

where the minimisation is over the collection F .

Statistical learning Polynomial regression Piecewise polynomials

Beyond linearity = Changing the collection F

Define the best guess f̂ (i.e., point estimate of f ∗) as

f̂ (x) = argmin
f̃∈F

1
n

n∑
i=1

(yi − f̃ (xi))
2 (8)

where the minimisation is over the collection F .
Example: linear regression: the collection of functions is
given by F := {f : X → Y | f (x) = θ0 + θ1x}

Later: The collection F consists of polynomials,
Later: The collection F consists of natural/regression
splines,
Later: The collection F consists of smoothing splines
Later: The collection F consists of classification and
regression trees, neural networks, support vector
machines, etc, etc

Statistical learning Polynomial regression Piecewise polynomials

Beyond linearity = Changing the collection F

Define the best guess f̂ (i.e., point estimate of f ∗) as

f̂ (x) = argmin
f̃∈F

1
n

n∑
i=1

(yi − f̃ (xi))
2 (8)

where the minimisation is over the collection F .
Example: linear regression: the collection of functions is
given by F := {f : X → Y | f (x) = θ0 + θ1x}
Later: The collection F consists of polynomials,

Later: The collection F consists of natural/regression
splines,
Later: The collection F consists of smoothing splines
Later: The collection F consists of classification and
regression trees, neural networks, support vector
machines, etc, etc

Statistical learning Polynomial regression Piecewise polynomials

Beyond linearity = Changing the collection F

Define the best guess f̂ (i.e., point estimate of f ∗) as

f̂ (x) = argmin
f̃∈F

1
n

n∑
i=1

(yi − f̃ (xi))
2 (8)

where the minimisation is over the collection F .
Example: linear regression: the collection of functions is
given by F := {f : X → Y | f (x) = θ0 + θ1x}
Later: The collection F consists of polynomials,
Later: The collection F consists of natural/regression
splines,

Later: The collection F consists of smoothing splines
Later: The collection F consists of classification and
regression trees, neural networks, support vector
machines, etc, etc

Statistical learning Polynomial regression Piecewise polynomials

Beyond linearity = Changing the collection F

Define the best guess f̂ (i.e., point estimate of f ∗) as

f̂ (x) = argmin
f̃∈F

1
n

n∑
i=1

(yi − f̃ (xi))
2 (8)

where the minimisation is over the collection F .
Example: linear regression: the collection of functions is
given by F := {f : X → Y | f (x) = θ0 + θ1x}
Later: The collection F consists of polynomials,
Later: The collection F consists of natural/regression
splines,
Later: The collection F consists of smoothing splines

Later: The collection F consists of classification and
regression trees, neural networks, support vector
machines, etc, etc

Statistical learning Polynomial regression Piecewise polynomials

Beyond linearity = Changing the collection F

Define the best guess f̂ (i.e., point estimate of f ∗) as

f̂ (x) = argmin
f̃∈F

1
n

n∑
i=1

(yi − f̃ (xi))
2 (8)

where the minimisation is over the collection F .
Example: linear regression: the collection of functions is
given by F := {f : X → Y | f (x) = θ0 + θ1x}
Later: The collection F consists of polynomials,
Later: The collection F consists of natural/regression
splines,
Later: The collection F consists of smoothing splines
Later: The collection F consists of classification and
regression trees, neural networks, support vector
machines, etc, etc

Statistical learning Polynomial regression Piecewise polynomials

Reasons to broaden the collection F

Misspecification: linear regression works best if f ∗(x) is
indeed linear.
More general, F works best if true f ∗ ∈ F , but this is not
known in practice.

Q: Why not choose F just the collection of all possible
functions?
Computationally intensive. Minimisation is then over an
uncountable set of functions.
No unique minimiser
Overfitting: If we can evaluate the (theoretical) average

E(y − f̃ (x))2 =

∫
(y − f̃ (x))2dx (9)

for every possible function f̃ at "every" (uncountably many)
x , thus, also y = f ∗(x). The minimiser over all possible
functions is then f ∗(x).
Overfitting comes from not being able to evaluate Eq. (9).

Statistical learning Polynomial regression Piecewise polynomials

Reasons to broaden the collection F

Q: Why not choose F just the collection of all possible
functions?

Computationally intensive. Minimisation is then over an
uncountable set of functions.
No unique minimiser
Overfitting: If we can evaluate the (theoretical) average

E(y − f̃ (x))2 =

∫
(y − f̃ (x))2dx (9)

for every possible function f̃ at "every" (uncountably many)
x , thus, also y = f ∗(x). The minimiser over all possible
functions is then f ∗(x).
Overfitting comes from not being able to evaluate Eq. (9).

Statistical learning Polynomial regression Piecewise polynomials

Reasons to broaden the collection F

Q: Why not choose F just the collection of all possible
functions?
Computationally intensive. Minimisation is then over an
uncountable set of functions.

No unique minimiser
Overfitting: If we can evaluate the (theoretical) average

E(y − f̃ (x))2 =

∫
(y − f̃ (x))2dx (9)

for every possible function f̃ at "every" (uncountably many)
x , thus, also y = f ∗(x). The minimiser over all possible
functions is then f ∗(x).
Overfitting comes from not being able to evaluate Eq. (9).

Statistical learning Polynomial regression Piecewise polynomials

Reasons to broaden the collection F

Q: Why not choose F just the collection of all possible
functions?
Computationally intensive. Minimisation is then over an
uncountable set of functions.
No unique minimiser

Overfitting: If we can evaluate the (theoretical) average

E(y − f̃ (x))2 =

∫
(y − f̃ (x))2dx (9)

for every possible function f̃ at "every" (uncountably many)
x , thus, also y = f ∗(x). The minimiser over all possible
functions is then f ∗(x).
Overfitting comes from not being able to evaluate Eq. (9).

Statistical learning Polynomial regression Piecewise polynomials

Reasons to broaden the collection F

Q: Why not choose F just the collection of all possible
functions?
Computationally intensive. Minimisation is then over an
uncountable set of functions.
No unique minimiser
Overfitting: If we can evaluate the (theoretical) average

E(y − f̃ (x))2 =

∫
(y − f̃ (x))2dx (9)

for every possible function f̃ at "every" (uncountably many)
x , thus, also y = f ∗(x). The minimiser over all possible
functions is then f ∗(x).

Overfitting comes from not being able to evaluate Eq. (9).

Statistical learning Polynomial regression Piecewise polynomials

Reasons to broaden the collection F

Q: Why not choose F just the collection of all possible
functions?
Computationally intensive. Minimisation is then over an
uncountable set of functions.
No unique minimiser
Overfitting: If we can evaluate the (theoretical) average

E(y − f̃ (x))2 =

∫
(y − f̃ (x))2dx (9)

for every possible function f̃ at "every" (uncountably many)
x , thus, also y = f ∗(x). The minimiser over all possible
functions is then f ∗(x).
Overfitting comes from not being able to evaluate Eq. (9).

Statistical learning Polynomial regression Piecewise polynomials

How to broaden F :

Make it bigger, lower misspecification, but not let the
variance grow too much

1. Practical: Retain computational efficiency.
2.a. Have F big, but have a unique minimiser
2.b. In case of multiple minimisers, choose the "smallest"
solution (i.e., regularisation).

Statistical learning Polynomial regression Piecewise polynomials

How to broaden F :

Make it bigger, lower misspecification, but not let the
variance grow too much
1. Practical: Retain computational efficiency.

2.a. Have F big, but have a unique minimiser
2.b. In case of multiple minimisers, choose the "smallest"
solution (i.e., regularisation).

Statistical learning Polynomial regression Piecewise polynomials

How to broaden F :

Make it bigger, lower misspecification, but not let the
variance grow too much
1. Practical: Retain computational efficiency.
2.a. Have F big, but have a unique minimiser

2.b. In case of multiple minimisers, choose the "smallest"
solution (i.e., regularisation).

Statistical learning Polynomial regression Piecewise polynomials

How to broaden F :

Make it bigger, lower misspecification, but not let the
variance grow too much
1. Practical: Retain computational efficiency.
2.a. Have F big, but have a unique minimiser
2.b. In case of multiple minimisers, choose the "smallest"
solution (i.e., regularisation).

Statistical learning Polynomial regression Piecewise polynomials

Computations: The general regression solution

In general computationally heavy: For each candidate f̃
from F approximation the risk by 1

n
∑n

i=1(yi − f̃ (xi))
2,

Consequently, select the minimiser:

f̂ (x) = argmin
f̃∈F

1
n

n∑
i=1

(yi − f̃ (xi))
2 (10)

Alternatively, Linear regression: y = Xθ + ε with
y ∈ Rn, θ ∈ Rp, X ∈ Rn×p the ordinary least square is

θ̂ = (X T X)−1X T y (11)

The minimiser is basically derived from simple matrix
algebra, i.e., θ̂ = Ay . This idea is exploited in polynomial
and regression splines models.

Statistical learning Polynomial regression Piecewise polynomials

Computations: The general regression solution

In general computationally heavy: For each candidate f̃
from F approximation the risk by 1

n
∑n

i=1(yi − f̃ (xi))
2,

Consequently, select the minimiser:

f̂ (x) = argmin
f̃∈F

1
n

n∑
i=1

(yi − f̃ (xi))
2 (10)

Alternatively, Linear regression: y = Xθ + ε with
y ∈ Rn, θ ∈ Rp, X ∈ Rn×p the ordinary least square is

θ̂ = (X T X)−1X T y (11)

The minimiser is basically derived from simple matrix
algebra, i.e., θ̂ = Ay . This idea is exploited in polynomial
and regression splines models.

Statistical learning Polynomial regression Piecewise polynomials

Computations: The general regression solution

In general computationally heavy: For each candidate f̃
from F approximation the risk by 1

n
∑n

i=1(yi − f̃ (xi))
2,

Consequently, select the minimiser:

f̂ (x) = argmin
f̃∈F

1
n

n∑
i=1

(yi − f̃ (xi))
2 (10)

Alternatively, Linear regression: y = Xθ + ε with
y ∈ Rn, θ ∈ Rp, X ∈ Rn×p the ordinary least square is

θ̂ = (X T X)−1X T y (11)

The minimiser is basically derived from simple matrix
algebra, i.e., θ̂ = Ay . This idea is exploited in polynomial
and regression splines models.

Statistical learning Polynomial regression Piecewise polynomials

Uniqueness and regularisation

Linear regression: Y = Xθ + ε with y ∈ Rn, θ ∈ Rp,
X ∈ Rn×p.

Problem: when p > n then also have Y = X (θ(0) + u) + ε,
where Xu = 0. There are many u s.t. Xu = 0,
non-uniqueness.
Solution: Choose the solution s.t. θ(0) + u is small. In other
words, instead of minimising

∑n
i=1(yi − f̃ (xi))

2 minimise
the following instead

f̂ (x) = argmin
f̃∈F

n∑
i=1

(yi − f̃ (xi))
2 + λpenalty(f̃). (12)

for some fixed λ > 0.
Example: Lasso/ridge/elastic nets and remarkably:
smoothing splines.

Statistical learning Polynomial regression Piecewise polynomials

Uniqueness and regularisation

Linear regression: Y = Xθ + ε with y ∈ Rn, θ ∈ Rp,
X ∈ Rn×p.
Problem: when p > n then also have Y = X (θ(0) + u) + ε,
where Xu = 0. There are many u s.t. Xu = 0,
non-uniqueness.

Solution: Choose the solution s.t. θ(0) + u is small. In other
words, instead of minimising

∑n
i=1(yi − f̃ (xi))

2 minimise
the following instead

f̂ (x) = argmin
f̃∈F

n∑
i=1

(yi − f̃ (xi))
2 + λpenalty(f̃). (12)

for some fixed λ > 0.
Example: Lasso/ridge/elastic nets and remarkably:
smoothing splines.

Statistical learning Polynomial regression Piecewise polynomials

Uniqueness and regularisation

Linear regression: Y = Xθ + ε with y ∈ Rn, θ ∈ Rp,
X ∈ Rn×p.
Problem: when p > n then also have Y = X (θ(0) + u) + ε,
where Xu = 0. There are many u s.t. Xu = 0,
non-uniqueness.
Solution: Choose the solution s.t. θ(0) + u is small. In other
words, instead of minimising

∑n
i=1(yi − f̃ (xi))

2 minimise
the following instead

f̂ (x) = argmin
f̃∈F

n∑
i=1

(yi − f̃ (xi))
2 + λpenalty(f̃). (12)

for some fixed λ > 0.

Example: Lasso/ridge/elastic nets and remarkably:
smoothing splines.

Statistical learning Polynomial regression Piecewise polynomials

Uniqueness and regularisation

Linear regression: Y = Xθ + ε with y ∈ Rn, θ ∈ Rp,
X ∈ Rn×p.
Problem: when p > n then also have Y = X (θ(0) + u) + ε,
where Xu = 0. There are many u s.t. Xu = 0,
non-uniqueness.
Solution: Choose the solution s.t. θ(0) + u is small. In other
words, instead of minimising

∑n
i=1(yi − f̃ (xi))

2 minimise
the following instead

f̂ (x) = argmin
f̃∈F

n∑
i=1

(yi − f̃ (xi))
2 + λpenalty(f̃). (12)

for some fixed λ > 0.
Example: Lasso/ridge/elastic nets and remarkably:
smoothing splines.

Statistical learning Polynomial regression Piecewise polynomials

Polynomial regression

Assumption y = f ∗(x) + ε, take the candidate collection Fm
the family of order-m polynomials:

Fm = {f (x) = θ0x0 + θ1x1 + . . .+ θm−1xm−1 =
m−1∑
j=0

θjx j}

(13)

Example: m = 2: linear regression: {f (x) = θ0 + θ1x}
Idea: Let the order m grow.
Problem: overfitting. Q: How far can we go? How bad is
this problem?

Statistical learning Polynomial regression Piecewise polynomials

Polynomial regression

Assumption y = f ∗(x) + ε, take the candidate collection Fm
the family of order-m polynomials:

Fm = {f (x) = θ0x0 + θ1x1 + . . .+ θm−1xm−1 =
m−1∑
j=0

θjx j}

(13)

Example: m = 2: linear regression: {f (x) = θ0 + θ1x}

Idea: Let the order m grow.
Problem: overfitting. Q: How far can we go? How bad is
this problem?

Statistical learning Polynomial regression Piecewise polynomials

Polynomial regression

Assumption y = f ∗(x) + ε, take the candidate collection Fm
the family of order-m polynomials:

Fm = {f (x) = θ0x0 + θ1x1 + . . .+ θm−1xm−1 =
m−1∑
j=0

θjx j}

(13)

Example: m = 2: linear regression: {f (x) = θ0 + θ1x}
Idea: Let the order m grow.

Problem: overfitting. Q: How far can we go? How bad is
this problem?

Statistical learning Polynomial regression Piecewise polynomials

Polynomial regression

Assumption y = f ∗(x) + ε, take the candidate collection Fm
the family of order-m polynomials:

Fm = {f (x) = θ0x0 + θ1x1 + . . .+ θm−1xm−1 =
m−1∑
j=0

θjx j}

(13)

Example: m = 2: linear regression: {f (x) = θ0 + θ1x}
Idea: Let the order m grow.
Problem: overfitting. Q: How far can we go? How bad is
this problem?

Statistical learning Polynomial regression Piecewise polynomials

Computationally: Exploit matrix algebra

Given a chosen m: Frame the problem as Linear
regression: y = Xθ + ε with y ∈ Rn, θ ∈ Rm, X ∈ Rn×m,
where

X =

1 x1

1 x2
1 . . . xm−1

1
1 x1

2 x2
2 . . . xm−1

2
...

...
...

. . .
...

1 x1
n x2

n . . . xm−1
n

 . (14)

Again, the ordinary least square is

θ̂ = (X T X)−1X T y (15)

exploit this linear structure (matrix algebra). If m < n there
is a unique solution (thus, minimiser).
Of course, how to choose the additional parameter m?
Cross validation, etc etc.

Statistical learning Polynomial regression Piecewise polynomials

Computationally: Exploit matrix algebra

Given a chosen m: Frame the problem as Linear
regression: y = Xθ + ε with y ∈ Rn, θ ∈ Rm, X ∈ Rn×m,
where

X =

1 x1

1 x2
1 . . . xm−1

1
1 x1

2 x2
2 . . . xm−1

2
...

...
...

. . .
...

1 x1
n x2

n . . . xm−1
n

 . (14)

Again, the ordinary least square is

θ̂ = (X T X)−1X T y (15)

exploit this linear structure (matrix algebra). If m < n there
is a unique solution (thus, minimiser).

Of course, how to choose the additional parameter m?
Cross validation, etc etc.

Statistical learning Polynomial regression Piecewise polynomials

Computationally: Exploit matrix algebra

Given a chosen m: Frame the problem as Linear
regression: y = Xθ + ε with y ∈ Rn, θ ∈ Rm, X ∈ Rn×m,
where

X =

1 x1

1 x2
1 . . . xm−1

1
1 x1

2 x2
2 . . . xm−1

2
...

...
...

. . .
...

1 x1
n x2

n . . . xm−1
n

 . (14)

Again, the ordinary least square is

θ̂ = (X T X)−1X T y (15)

exploit this linear structure (matrix algebra). If m < n there
is a unique solution (thus, minimiser).
Of course, how to choose the additional parameter m?
Cross validation, etc etc.

Statistical learning Polynomial regression Piecewise polynomials

Growing model and how bad is bad?

Suppose the true is f ∗(x) = 2x + x2. Data sampled as
Y = f ∗(x) + ε.

3 4 5 6 7

10

20

30

40

50

60

70

Target: estimate 2x+x^2 with n=50

x

y

Statistical learning Polynomial regression Piecewise polynomials

Well-specified, right order

Note f ∗ ∈ Fm when m = 3. Thus, well-specified:

3 4 5 6 7

10

20

30

40

50

60

70

Polydegree 2: estimate 2x+x^2 with n=50

x

y

Statistical learning Polynomial regression Piecewise polynomials

Well-specified, order too large

Note still f ∗ ∈ Fm when m = 9. Thus, well-specified, but m > 3:

3 4 5 6 7

10

20

30

40

50

60

70

Polydegree 9: estimate 2x+x^2 with n=50

x

y

Overfit: Random error is seen as structural.

Statistical learning Polynomial regression Piecewise polynomials

How far can we go with polynomial regression?

Suppose the true is f ∗(x) = 1/(1 + x2). Data sampled as
Y = f ∗(X), uniform X ∈ [−5,5]. Note: no error

−4 −2 0 2 4

0.0

0.2

0.4

0.6

0.8

1.0

Target: estimate 1/(1 + x^2) with n=21

x

y

Statistical learning Polynomial regression Piecewise polynomials

Misspecified, order?

−4 −2 0 2 4

0.0

0.2

0.4

0.6

0.8

1.0

Polydegree 5: estimate 1/(1 + x^2) with n=21

x

y

Statistical learning Polynomial regression Piecewise polynomials

Misspecified, order?

−4 −2 0 2 4

0.0

0.2

0.4

0.6

0.8

1.0

Polydegree 6: estimate 1/(1 + x^2) with n=21

x

y

Statistical learning Polynomial regression Piecewise polynomials

Misspecified, order?

−4 −2 0 2 4

0.0

0.2

0.4

0.6

0.8

1.0

Polydegree 7: estimate 1/(1 + x^2) with n=21

x

y

Statistical learning Polynomial regression Piecewise polynomials

Misspecified, order?

−4 −2 0 2 4

0.0

0.2

0.4

0.6

0.8

1.0

Polydegree 8: estimate 1/(1 + x^2) with n=21

x

y

Statistical learning Polynomial regression Piecewise polynomials

Misspecified, order?

−4 −2 0 2 4

0.0

0.2

0.4

0.6

0.8

1.0

Polydegree 9: estimate 1/(1 + x^2) with n=21

x

y

Statistical learning Polynomial regression Piecewise polynomials

Misspecified, order?

−4 −2 0 2 4

0.0

0.2

0.4

0.6

0.8

1.0

Polydegree 10: estimate 1/(1 + x^2) with n=21

x

y

Statistical learning Polynomial regression Piecewise polynomials

Misspecified, order?

−4 −2 0 2 4

0.0

0.2

0.4

0.6

0.8

1.0

Polydegree 5−10: estimate 1/(1 + x^2) with n=21

x

y

Statistical learning Polynomial regression Piecewise polynomials

How far can we go

Here, the OLS solution works until m = n − 1

−4 −2 0 2 4

0.0

0.2

0.4

0.6

0.8

1.0

Polydegree 19: estimate 1/(1 + x^2) with n=21

x

y

Interpolation.

Statistical learning Polynomial regression Piecewise polynomials

Conclusions

Models have limits, even if there is no error term here.
The target f ∗ is known as Runge example or Runge
phenomenon for interpolation (polynomial regression with
m = n − 1.

Runge phenomenon: When interpolating f ∗(x in [−5,5]
with x having equal step-size in [−5,5] impossible to
interpolate f ∗(x) well within |x | < 3.63 and |x | > 3.63 at
the same time.
Cautious when designing experiments with polynomial
interpolation. (Chebyshev polynomials)
Global (over whole [−5,5]) versus local fits (within
|x | < 3.63) and at the tails.

Statistical learning Polynomial regression Piecewise polynomials

Conclusions

Models have limits, even if there is no error term here.
The target f ∗ is known as Runge example or Runge
phenomenon for interpolation (polynomial regression with
m = n − 1.
Runge phenomenon: When interpolating f ∗(x in [−5,5]
with x having equal step-size in [−5,5] impossible to
interpolate f ∗(x) well within |x | < 3.63 and |x | > 3.63 at
the same time.

Cautious when designing experiments with polynomial
interpolation. (Chebyshev polynomials)
Global (over whole [−5,5]) versus local fits (within
|x | < 3.63) and at the tails.

Statistical learning Polynomial regression Piecewise polynomials

Conclusions

Models have limits, even if there is no error term here.
The target f ∗ is known as Runge example or Runge
phenomenon for interpolation (polynomial regression with
m = n − 1.
Runge phenomenon: When interpolating f ∗(x in [−5,5]
with x having equal step-size in [−5,5] impossible to
interpolate f ∗(x) well within |x | < 3.63 and |x | > 3.63 at
the same time.
Cautious when designing experiments with polynomial
interpolation. (Chebyshev polynomials)

Global (over whole [−5,5]) versus local fits (within
|x | < 3.63) and at the tails.

Statistical learning Polynomial regression Piecewise polynomials

Conclusions

Models have limits, even if there is no error term here.
The target f ∗ is known as Runge example or Runge
phenomenon for interpolation (polynomial regression with
m = n − 1.
Runge phenomenon: When interpolating f ∗(x in [−5,5]
with x having equal step-size in [−5,5] impossible to
interpolate f ∗(x) well within |x | < 3.63 and |x | > 3.63 at
the same time.
Cautious when designing experiments with polynomial
interpolation. (Chebyshev polynomials)
Global (over whole [−5,5]) versus local fits (within
|x | < 3.63) and at the tails.

Statistical learning Polynomial regression Piecewise polynomials

Piecewise polynomials

Assumption y = f ∗(x) + ε, take the candidate collection
Fm,K consisting of polynomials of order-m with K knots
ξ1, . . . , ξK .

Knots split the domain in K + 1 area allowing for global and
local behaviour.

Fm,k = f (x) =

∑m−1
j=0 θj,1x j if x ≤ ξ1∑m−1
j=0 θj,2x j if ξ1 < x ≤ ξ2∑m−1
j=0 θj,kx j if ξk−1 < x ≤ ξk∑m−1
j=0 θj,K x j if ξK−1 < x ≤ ξK

(16)

Note: there are (K + 1)m parameters

Statistical learning Polynomial regression Piecewise polynomials

Piecewise polynomials

Assumption y = f ∗(x) + ε, take the candidate collection
Fm,K consisting of polynomials of order-m with K knots
ξ1, . . . , ξK .
Knots split the domain in K + 1 area allowing for global and
local behaviour.

Fm,k = f (x) =

∑m−1
j=0 θj,1x j if x ≤ ξ1∑m−1
j=0 θj,2x j if ξ1 < x ≤ ξ2∑m−1
j=0 θj,kx j if ξk−1 < x ≤ ξk∑m−1
j=0 θj,K x j if ξK−1 < x ≤ ξK

(16)

Note: there are (K + 1)m parameters

Statistical learning Polynomial regression Piecewise polynomials

Piecewise polynomials

Assumption y = f ∗(x) + ε, take the candidate collection
Fm,K consisting of polynomials of order-m with K knots
ξ1, . . . , ξK .
Knots split the domain in K + 1 area allowing for global and
local behaviour.

Fm,k = f (x) =

∑m−1
j=0 θj,1x j if x ≤ ξ1∑m−1
j=0 θj,2x j if ξ1 < x ≤ ξ2∑m−1
j=0 θj,kx j if ξk−1 < x ≤ ξk∑m−1
j=0 θj,K x j if ξK−1 < x ≤ ξK

(16)

Note: there are (K + 1)m parameters

Statistical learning Polynomial regression Piecewise polynomials

Piecewise polynomials and basis functions

Assumption y = f ∗(x) + ε, take the candidate collection
Fm,K consisting of polynomials of order-m with K knots
ξ1, . . . , ξK .
Knots split the domain in K + 1 area allowing for global and
local behaviour.

Fm,k = f (x) = {
m−1,K∑

j=0,k=1

θj,kgj,k (x)} (17)

where gj,k (x) = x j 1(ξk−1,ξk](x).
Note: there are (K + 1)m parameters

Statistical learning Polynomial regression Piecewise polynomials

Piecewise polynomials with one knot

Knot at ξ1 = 5

3 4 5 6 7

10

20

30

40

50

60

70

Knot at 5: 2x+x^2 with n=50

x

y

Statistical learning Polynomial regression Piecewise polynomials

Piecewise cubic polynomials with one knot

Knot at ξ1 = 5 and M = 4 on each domain.

3 4 5 6 7

10

20

30

40

50

60

70

Knot at 5: 2x+x^2 with n=50

x

y

Statistical learning Polynomial regression Piecewise polynomials

Computationally: Exploit matrix algebra

At each domain do linear regression
Simpler: write it as basis functions. Recall polynomial
regression with X ∈ Rn×m, where

X =

1 x1

1 . . . xm−1
1

1 x1
2 . . . xm−1

2
...

...
. . .

...
1 x1

n . . . xm−1
n

 =

g0(x1) g1(x1) . . . gm−1(x1)
g0(x2) g1(x2) . . . gm−1(x2)

...
...

. . .
...

g0(xn) g1(xn) . . . gm−1(xn)

Again, the ordinary least square is

θ̂ = (X T X)−1X T y (18)

exploit this linear structure (matrix algebra). If m < n there
is a unique solution (thus, minimiser).
Of course, how to choose the additional parameter m and
K and where?

Statistical learning Polynomial regression Piecewise polynomials

Computationally: Exploit matrix algebra

At each domain do linear regression
Simpler: write it as basis functions. Recall polynomial
regression with X ∈ Rn×m, where

X =

1 x1

1 . . . xm−1
1

1 x1
2 . . . xm−1

2
...

...
. . .

...
1 x1

n . . . xm−1
n

 =

g0(x1) g1(x1) . . . gm−1(x1)
g0(x2) g1(x2) . . . gm−1(x2)

...
...

. . .
...

g0(xn) g1(xn) . . . gm−1(xn)

Again, the ordinary least square is

θ̂ = (X T X)−1X T y (18)

exploit this linear structure (matrix algebra). If m < n there
is a unique solution (thus, minimiser).

Of course, how to choose the additional parameter m and
K and where?

Statistical learning Polynomial regression Piecewise polynomials

Computationally: Exploit matrix algebra

At each domain do linear regression
Simpler: write it as basis functions. Recall polynomial
regression with X ∈ Rn×m, where

X =

1 x1

1 . . . xm−1
1

1 x1
2 . . . xm−1

2
...

...
. . .

...
1 x1

n . . . xm−1
n

 =

g0(x1) g1(x1) . . . gm−1(x1)
g0(x2) g1(x2) . . . gm−1(x2)

...
...

. . .
...

g0(xn) g1(xn) . . . gm−1(xn)

Again, the ordinary least square is

θ̂ = (X T X)−1X T y (18)

exploit this linear structure (matrix algebra). If m < n there
is a unique solution (thus, minimiser).
Of course, how to choose the additional parameter m and
K and where?

Statistical learning Polynomial regression Piecewise polynomials

How far can we go with piecewise polynomials?

Note with M = 1 and some number K that this method leads to
functions that look like histograms with the height of the bar
given by the empirical mean of the samples in each domain. As
K increases, say, K is the number of elements in the domain,
you get the space of all functions.

Statistical learning Polynomial regression Piecewise polynomials

Next time

Choosing knots and "continuous" piecewise regressions:
splines
Parameters and smoothing
Smoothing and degrees of freedom
Reproducing kernel Hilbert spaces.

Statistical learning Polynomial regression Piecewise polynomials

References

Bousquet, O, Boucheron, S, Lugosi, G (2004). Introduction
to statistical learning theory
Epperson, JF (1987). On the Runge example
de Boor, C (2001). A practical guide to splines

	Basics of statistical learning theory
	Polynomial regression
	Piecewise polynomials

