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Statistical learning

The regression problem

@ The regression assumption: There exists a true function *
such that y = f*(x) + e. Give a single best guess 7(x) of
f*(x) based on finite samples (}!),...., (7).

@ Linear regression: The best guess is of the form
?(X) = éo + é1X.

@ Goal: Choose f that yields good predictions.
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True risk versus empirical risk

@ For each estimate f(x) the risk (expected mean squared
error loss) is given by
E(f*(x) — f(x))? = Bias?(f(x)) + Var(f) )

(Population) average mean squared error wrt any x, thus,
also not observed ones.

@ For any x, plugin f*(x) = y. Linear regression:
F(x) = 0o + 01 x

E(y — 0o — 01x)? 3)
Problem: cannot evaluate this population mean, thus, find

d for which this is smallest.
@ Replace: Population mean by sample mean

1¢ s oA
— D (i o — bix)? ()
i=1
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The regression estimation procedure

@ Define a prediction criterion at the population level:
E(y — F(x))?, (5)

This risk is unknown in practice.
@ For each candidate f from a collection of F approximation
this risk by its empirical version

fZ - 1(x))?, (6)

@ Define the best guess f (i.e., point estimate of f*) as
i . 1 n ~ 2
flx) = argmin_ % (s — F(x) 7)
feF =1

where the minimisation is over the collection F.
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givenby F :={f: X = Y|f(x) =0y + 01x}
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Beyond linearity = Changing the collection F

@ Define the best guess f (i.e., point estimate of f*) as

n

A ~

F(x) = argmin— " (y; — 7(x)))? (8)
feF j=1

where the minimisation is over the collection F.

@ Example: linear regression: the collection of functions is
givenby F :={f: X = Y|f(x) =0y + 01x}

@ Later: The collection F consists of polynomials,

@ Later: The collection F consists of natural/regression
splines,

@ Later: The collection F consists of smoothing splines

@ Later: The collection F consists of classification and
regression trees, neural networks, support vector
machines, etc, etc



Statistical learning

Reasons to broaden the collection F

@ Misspecification: linear regression works best if f*(x) is
indeed linear.

@ More general, F works best if true f* € F, but this is not
known in practice.
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Reasons to broaden the collection F

@ Q: Why not choose F just the collection of all possible
functions?

@ Computationally intensive. Minimisation is then over an
uncountable set of functions.

@ No unique minimiser
@ Overfitting: If we can evaluate the (theoretical) average

E(y - 700 = [ (v -~ TP (©)

for every possible function f at "every" (uncountably many)
x, thus, also y = f*(x). The minimiser over all possible
functions is then f*(x).

@ Overfitting comes from not being able to evaluate Eq. (9).
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How to broaden F:

@ Make it bigger, lower misspecification, but not let the
variance grow too much

@ 1. Practical: Retain computational efficiency.
@ 2.a. Have F big, but have a unique minimiser

@ 2.b. In case of multiple minimisers, choose the "smallest”
solution (i.e., regularisation).
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Computations: The general regression solution

@ In general computationally heavy: For each candidate f
from F approximation the risk by 1 "7 (y; — f(x,))?,
Consequently, select the minimiser:

n

A ~

F(x) = argmin > "(y; - F(x)? (10)
feF =1

@ Alternatively, Linear regression: y = X0 + ¢ with
y € R" 6 € RP, X € R"™P the ordinary least square is

0=X"X)""XTy (11)

@ The minimiser is basically derived from simple matrix
algebra, i.e., § = Ay. This idea is exploited in polynomial
and regression splines models.
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Uniqueness and regularisation

@ Linear regression: Y = X0 + ¢ with y € R", 0 € RP,
X € R™P,

@ Problem: when p > nthen also have Y = X(0o) + u) + ¢,
where Xu = 0. There are many u s.t. Xu =0,
non-uniqueness.

@ Solution: Choose the solution s.t. 6y + v is small. In other
words, instead of minimising >-7_, (y; — f(x;))? minimise
the following instead

n
f(x) = argmin Z(y,- — f(x,))? 4 Apenalty(f). (12)
fer =t
for some fixed A > 0.

@ Example: Lasso/ridge/elastic nets and remarkably:

smoothing splines.
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Polynomial regression

@ Assumption y = f*(x) + ¢, take the candidate collection Fp,
the family of order-m polynomials:

_

m_
Fm={f(x) = 0ox° + 04x" + ... 4 0y x™ 1 = Z Hjxj}
j=0
(13)

@ Example: m = 2: linear regression: {f(x) = 6y + 01x}

@ |dea: Let the order m grow.

@ Problem: overfitting. Q: How far can we go? How bad is
this problem?



Polynomial regression

Computationally: Exploit matrix algebra

@ Given a chosen m: Frame the problem as Linear
regression: y = X0 +¢ with y e R" 6 € R™, X € R™™M,

where
1 x X2 x1
1 2 m—1
X 1T X X5 ... X
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Computationally: Exploit matrix algebra

@ Given a chosen m: Frame the problem as Linear
regression: y = X0 +¢ with y e R" 6 € R™, X € R™™M,

where
1 x X2 x1
1 x] x2 X1
2 2 ..
X = 2 (14)
1 x) x2 ... xP

@ Again, the ordinary least square is
0=(X"X)""XTy (15)

exploit this linear structure (matrix algebra). If m < nthere
is a unique solution (thus, minimiser).

@ Of course, how to choose the additional parameter m?
Cross validation, etc etc.



Polynomial regression

Growing model and how bad is bad?

Suppose the true is f*(x) = 2x + x2. Data sampled as

Y =f(x) +e
Target: estimate 2x+x”2 with n=50
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Polynomial regression

Well-specified, right order

Note f* € F, when m = 3. Thus, well-specified:

Polydegree 2: estimate 2x+x72 with n=50

70
60 -|
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Polynomial regression

Well-specified, order too large

Note still f* € 7, when m = 9. Thus, well-specified, but m > 3:

Polydegree 9: estimate 2x+x"2 with n=50

70 .
60 -
50 -|
40 -
30 -|

20 1

Overfit: Random error is seen as structural.



Polynomial regression

How far can we go with polynomial regression?

Suppose the true is f*(x) = 1/(1 + x?). Data sampled as
Y = f*(X), uniform X € [-5,5]. Note: no error

Target: estimate 1/(1 + x*2) with n=21
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Polynomial regression

Misspecified, order?

Polydegree 5: estimate 1/(1 + x*2) with n=21
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Misspecified, order?

Polydegree 6: estimate 1/(1 + x*2) with n=21
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Polynomial regression

Misspecified, order?

Polydegree 7: estimate 1/(1 + x*2) with n=21
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Misspecified, order?

Polydegree 8: estimate 1/(1 + x*2) with n=21
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Misspecified, order?

Polydegree 9: estimate 1/(1 + x*2) with n=21
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Polynomial regression

Misspecified, order?

Polydegree 10: estimate 1/(1 + x"2) with n=21
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Polynomial regression

Misspecified, order?

Polydegree 5-10: estimate 1/(1 + x"2) with n=21
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Polynomial regression

How far can we go

Here, the OLS solution works until m=n —1

Polydegree 19: estimate 1/(1 + x*2) with n=21
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Interpolation.
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Conclusions

@ Models have limits, even if there is no error term here.

@ The target f* is known as Runge example or Runge
phenomenon for interpolation (polynomial regression with
m=n-—1.

@ Runge phenomenon: When interpolating f*(x in [-5, 5]
with x having equal step-size in [-5, 5] impossible to
interpolate f*(x) well within |x| < 3.63 and |x| > 3.63 at
the same time.

@ Cautious when designing experiments with polynomial
interpolation. (Chebyshev polynomials)

@ Global (over whole [—5, 5]) versus local fits (within
|x| < 3.63) and at the tails.
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Piecewise polynomials

@ Assumption y = f*(x) + ¢, take the candidate collection
Fm.k consisting of polynomials of order-m with K knots

§1,- 058K

@ Knots split the domain in K + 1 area allowing for global and
local behaviour.

S X ifx < &

Yo X WG <x<&
S0 Oiuxdif G < X < &
S O kx i Ek_y < x < &k

Fmk = f(x) = (16)

@ Note: there are (K + 1)m parameters



Piecewise polynomials

Piecewise polynomials and basis functions

@ Assumption y = f*(x) + ¢, take the candidate collection
Fm.k consisting of polynomials of order-m with K knots

SERERNES ¢
@ Knots split the domain in K + 1 area allowing for global and
local behaviour.
m—1,K

Fmk = f(x 0 kGj k(X (17)
j=0,k=1

where gj k(x) = X 1(¢, _, eq(X)-
@ Note: there are (K + 1)m parameters
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Piecewise polynomials with one knot

Knotaté =5
Knot at 5: 2x+x”2 with n=50
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Piecewise polynomials

Piecewise cubic polynomials with one knot

Knot at £ = 5 and M = 4 on each domain.

Knot at 5: 2x+x72 with n=50
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Piecewise polynomials

Computationally: Exploit matrix algebra

@ At each domain do linear regression

@ Simpler: write it as basis functions. Recall polynomial
regression with X € R"*™ where

1 x) X! Go(x1) g1(x1) ... gm-1(x1)
x| X3 o x| Golk) gilk) .. gmo1(Xe)

1 x) ... x7! 9o(Xn) 91(Xn) .. Gm—1(Xn)
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@ Again, the ordinary least square is
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exploit this linear structure (matrix algebra). If m < nthere
is a unique solution (thus, minimiser).
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Computationally: Exploit matrix algebra

@ At each domain do linear regression
@ Simpler: write it as basis functions. Recall polynomial
regression with X € R"*™ where

1 ox{ X Go(x1) g1(x1) ... gm-1(x1)
X 13 oo [golxe) gi(x) ... gmo10%)
1 x) ... X! Go(xn) g1(xn) - Gm-1(Xn)
@ Again, the ordinary least square is
0=(X"X)""XTy (18)

exploit this linear structure (matrix algebra). If m < nthere
is a unique solution (thus, minimiser).

@ Of course, how to choose the additional parameter m and
K and where?
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How far can we go with piecewise polynomials?

Note with M = 1 and some number K that this method leads to
functions that look like histograms with the height of the bar
given by the empirical mean of the samples in each domain. As
K increases, say, K is the number of elements in the domain,
you get the space of all functions.



Piecewise polynomials

Next time

@ Choosing knots and "continuous" piecewise regressions:
splines

@ Parameters and smoothing

@ Smoothing and degrees of freedom

@ Reproducing kernel Hilbert spaces.
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