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The regression problem

The regression assumption: There exists a true function f ∗

such that y = f ∗(x) + ε. Give a single best guess f̂ (x) of
f ∗(x) based on finite samples

(x1
y1

)
, . . . ,

(xn
yn

)
.

Linear regression: The best guess is of the form
f̂ (x) = θ̂0 + θ̂1x .
Goal: Choose f̂ that yields good predictions.

Give a definition of good predictions: Here, minimise
squared error loss.
For each estimate f̂ (x) the risk (expected mean squared
error loss) is given by

E(f ∗(x)− f̂ (x))2 = Bias2(f̂ (x)) + Var(f̂ ) (1)

(Population) average mean squared error wrt any x , thus,
also not observed ones.
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True risk versus empirical risk

For each estimate f̂ (x) the risk (expected mean squared
error loss) is given by

E(f ∗(x)− f̂ (x))2 = Bias2(f̂ (x)) + Var(f̂ ) (2)

(Population) average mean squared error wrt any x , thus,
also not observed ones.

For any x , plugin f ∗(x) = y . Linear regression:
f̂ (x) = θ̂0 + θ̂1x

E(y − θ̂0 − θ̂1x)2 (3)

Problem: cannot evaluate this population mean, thus, find
θ̂ for which this is smallest.
Replace: Population mean by sample mean

1
n

n∑
i=1

(yi − θ̂0 − θ̂1xi)
2 (4)

and pick θ̂ = (θ̂0, θ̂1) that minimises this empirical risk
instead.
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The regression estimation procedure

Define a prediction criterion at the population level:

E(y − f̂ (x))2, (5)

This risk is unknown in practice.

For each candidate f̃ from a collection of F approximation
this risk by its empirical version

1
n

n∑
i=1

(yi − f̃ (xi))
2, (6)

Define the best guess f̂ (i.e., point estimate of f ∗) as

f̂ (x) = argmin
f̃∈F

1
n

n∑
i=1

(yi − f̃ (xi))
2 (7)

where the minimisation is over the collection F .
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Beyond linearity = Changing the collection F

Define the best guess f̂ (i.e., point estimate of f ∗) as

f̂ (x) = argmin
f̃∈F

1
n

n∑
i=1

(yi − f̃ (xi))
2 (8)

where the minimisation is over the collection F .
Example: linear regression: the collection of functions is
given by F := {f : X → Y | f (x) = θ0 + θ1x}

Later: The collection F consists of polynomials,
Later: The collection F consists of natural/regression
splines,
Later: The collection F consists of smoothing splines
Later: The collection F consists of classification and
regression trees, neural networks, support vector
machines, etc, etc
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Reasons to broaden the collection F

Misspecification: linear regression works best if f ∗(x) is
indeed linear.
More general, F works best if true f ∗ ∈ F , but this is not
known in practice.

Q: Why not choose F just the collection of all possible
functions?
Computationally intensive. Minimisation is then over an
uncountable set of functions.
No unique minimiser
Overfitting: If we can evaluate the (theoretical) average

E(y − f̃ (x))2 =

∫
(y − f̃ (x))2dx (9)

for every possible function f̃ at "every" (uncountably many)
x , thus, also y = f ∗(x). The minimiser over all possible
functions is then f ∗(x).
Overfitting comes from not being able to evaluate Eq. (9).
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How to broaden F :

Make it bigger, lower misspecification, but not let the
variance grow too much

1. Practical: Retain computational efficiency.
2.a. Have F big, but have a unique minimiser
2.b. In case of multiple minimisers, choose the "smallest"
solution (i.e., regularisation).
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Computations: The general regression solution

In general computationally heavy: For each candidate f̃
from F approximation the risk by 1

n
∑n

i=1(yi − f̃ (xi))
2,

Consequently, select the minimiser:

f̂ (x) = argmin
f̃∈F

1
n

n∑
i=1

(yi − f̃ (xi))
2 (10)

Alternatively, Linear regression: y = Xθ + ε with
y ∈ Rn, θ ∈ Rp, X ∈ Rn×p the ordinary least square is

θ̂ = (X T X )−1X T y (11)

The minimiser is basically derived from simple matrix
algebra, i.e., θ̂ = Ay . This idea is exploited in polynomial
and regression splines models.
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Uniqueness and regularisation

Linear regression: Y = Xθ + ε with y ∈ Rn, θ ∈ Rp,
X ∈ Rn×p.

Problem: when p > n then also have Y = X (θ(0) + u) + ε,
where Xu = 0. There are many u s.t. Xu = 0,
non-uniqueness.
Solution: Choose the solution s.t. θ(0) + u is small. In other
words, instead of minimising

∑n
i=1(yi − f̃ (xi))

2 minimise
the following instead

f̂ (x) = argmin
f̃∈F

n∑
i=1

(yi − f̃ (xi))
2 + λpenalty(f̃ ). (12)

for some fixed λ > 0.
Example: Lasso/ridge/elastic nets and remarkably:
smoothing splines.
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Polynomial regression

Assumption y = f ∗(x) + ε, take the candidate collection Fm
the family of order-m polynomials:

Fm = {f (x) = θ0x0 + θ1x1 + . . .+ θm−1xm−1 =
m−1∑
j=0

θjx j}

(13)

Example: m = 2: linear regression: {f (x) = θ0 + θ1x}
Idea: Let the order m grow.
Problem: overfitting. Q: How far can we go? How bad is
this problem?
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Computationally: Exploit matrix algebra

Given a chosen m: Frame the problem as Linear
regression: y = Xθ + ε with y ∈ Rn, θ ∈ Rm, X ∈ Rn×m,
where

X =


1 x1

1 x2
1 . . . xm−1

1
1 x1

2 x2
2 . . . xm−1

2
...

...
...

. . .
...

1 x1
n x2

n . . . xm−1
n

 . (14)

Again, the ordinary least square is

θ̂ = (X T X )−1X T y (15)

exploit this linear structure (matrix algebra). If m < n there
is a unique solution (thus, minimiser).
Of course, how to choose the additional parameter m?
Cross validation, etc etc.
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Growing model and how bad is bad?

Suppose the true is f ∗(x) = 2x + x2. Data sampled as
Y = f ∗(x) + ε.
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Well-specified, right order

Note f ∗ ∈ Fm when m = 3. Thus, well-specified:

3 4 5 6 7

10

20

30

40

50

60

70

Polydegree 2: estimate 2x+x^2 with n=50
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Well-specified, order too large

Note still f ∗ ∈ Fm when m = 9. Thus, well-specified, but m > 3:

3 4 5 6 7
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70

Polydegree 9: estimate 2x+x^2 with n=50

x

y

Overfit: Random error is seen as structural.
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How far can we go with polynomial regression?

Suppose the true is f ∗(x) = 1/(1 + x2). Data sampled as
Y = f ∗(X ), uniform X ∈ [−5,5]. Note: no error
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Target: estimate 1/(1 + x^2) with n=21
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Misspecified, order?
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Misspecified, order?

−4 −2 0 2 4

0.0

0.2

0.4

0.6

0.8

1.0

Polydegree 8: estimate 1/(1 + x^2) with n=21

x

y



Statistical learning Polynomial regression Piecewise polynomials

Misspecified, order?
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Misspecified, order?
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Misspecified, order?
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How far can we go

Here, the OLS solution works until m = n − 1
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Conclusions

Models have limits, even if there is no error term here.
The target f ∗ is known as Runge example or Runge
phenomenon for interpolation (polynomial regression with
m = n − 1.

Runge phenomenon: When interpolating f ∗(x in [−5,5]
with x having equal step-size in [−5,5] impossible to
interpolate f ∗(x) well within |x | < 3.63 and |x | > 3.63 at
the same time.
Cautious when designing experiments with polynomial
interpolation. (Chebyshev polynomials)
Global (over whole [−5,5]) versus local fits (within
|x | < 3.63) and at the tails.
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Piecewise polynomials

Assumption y = f ∗(x) + ε, take the candidate collection
Fm,K consisting of polynomials of order-m with K knots
ξ1, . . . , ξK .

Knots split the domain in K + 1 area allowing for global and
local behaviour.

Fm,k = f (x) =



∑m−1
j=0 θj,1x j if x ≤ ξ1∑m−1
j=0 θj,2x j if ξ1 < x ≤ ξ2∑m−1
j=0 θj,kx j if ξk−1 < x ≤ ξk∑m−1
j=0 θj,K x j if ξK−1 < x ≤ ξK

(16)

Note: there are (K + 1)m parameters
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Piecewise polynomials and basis functions

Assumption y = f ∗(x) + ε, take the candidate collection
Fm,K consisting of polynomials of order-m with K knots
ξ1, . . . , ξK .
Knots split the domain in K + 1 area allowing for global and
local behaviour.

Fm,k = f (x) = {
m−1,K∑

j=0,k=1

θj,kgj,k (x)} (17)

where gj,k (x) = x j 1(ξk−1,ξk ](x).
Note: there are (K + 1)m parameters
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Piecewise polynomials with one knot

Knot at ξ1 = 5
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Piecewise cubic polynomials with one knot

Knot at ξ1 = 5 and M = 4 on each domain.
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Computationally: Exploit matrix algebra

At each domain do linear regression
Simpler: write it as basis functions. Recall polynomial
regression with X ∈ Rn×m, where

X =


1 x1

1 . . . xm−1
1

1 x1
2 . . . xm−1

2
...

...
. . .

...
1 x1

n . . . xm−1
n

 =


g0(x1) g1(x1) . . . gm−1(x1)
g0(x2) g1(x2) . . . gm−1(x2)

...
...

. . .
...

g0(xn) g1(xn) . . . gm−1(xn)



Again, the ordinary least square is

θ̂ = (X T X )−1X T y (18)

exploit this linear structure (matrix algebra). If m < n there
is a unique solution (thus, minimiser).
Of course, how to choose the additional parameter m and
K and where?
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How far can we go with piecewise polynomials?

Note with M = 1 and some number K that this method leads to
functions that look like histograms with the height of the bar
given by the empirical mean of the samples in each domain. As
K increases, say, K is the number of elements in the domain,
you get the space of all functions.
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Next time

Choosing knots and "continuous" piecewise regressions:
splines
Parameters and smoothing
Smoothing and degrees of freedom
Reproducing kernel Hilbert spaces.
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