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In this dissertation we advocate the use of Bayes factors in empirical research to 
replace or complement standard null hypothesis tests based on p-values. These 
Bayes factors were specifically designed to quantify the evidence for or against 
the existence of an effect. This was done by comparing two models with the same 
distributional assumptions, where the alternative model is an extension of the null model 
by incorporating one extra parameter. Instead of returning a decision to “reject” or 
“not reject”, a Bayes factor BF10(d) returns a non-negative number that represents 
the evidence provided by the observed data d for the model that includes the  
effect. The returned number can be seen as a refinement of the binary decision with  
BF10(d) = ∞ and BF10(d) = 0 corresponding to definite rejection and acceptance of 
the null, respectively. Moreover, the Bayes factor allows its users to forgo the binary 
decision and acknowledge uncertainty, so that the evidence can be updated continually 
in light of new data, directly and easily. For empirical scientists to be able to use these 
Bayes factors, we implemented them in Jeffreys’s Amazing Statistics Program, JASP, 
which is freely available and open-source.
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Chapter 1

Introduction

Abstract

The goal of this project was to develop and promote Bayesian hypothesis
tests for social scientists. By and large, social scientists have ignored the
Bayesian revolution in statistics, and, consequently, most social scientists
still assess the veracity of experimental e↵ects using the same methodology
that was used by their advisors and the advisors before them. This state of
a↵airs is undesirable: social scientists conduct groundbreaking, innovative
research only to analyse their results using methods that are old-fashioned
or even inappropriate. This imbalance between the science and the statistics
has gradually increased the pressure on the field to change the way inferences
are drawn from their data. However, three requirements need to be fulfilled
before social scientists are ready to adopt Bayesian tests of hypotheses. First,
the Bayesian tests need to be developed for problems that social scientists
work with on a regular basis; second, the Bayesian tests need to be default
or objective; and, third, the Bayesian tests need to be available in a user-
friendly computer program.

1.1 Bayesian model learning

The Bayesian hypothesis tests developed here are designed to help empirical scien-
tist (i) quantify the evidence in favour or against a hypothesis from the observed
data, and, more importantly, (ii) extract information from the observed data to
learn, construct and grow models and theories.

A statistical model is a simplification of reality and defines a functional re-
lationship f(d | ✓) between data d and so-called parameters. For instance, d can
represent blood pressure measurements before and after treatment of a sample of
patients, while ✓ represents the e↵ect size of the treatment in the population of
patients, and f is typically a normal distribution that accounts for the noise, due
to only measuring a small sample of a larger population.

To test whether the treatment has an e↵ect on the population of patients we
compare the null model M

0

, the statistical model with the e↵ect size restricted

1



1. Introduction

at zero ✓ = 0, against the alternative model M
1

where the e↵ect size ✓ is free to
vary.

The prior plausibility of there being an e↵ect before any datum is observed
depends on the treatment. For instance, the prior probability of there being an
e↵ect is relatively high, say, P (M

1

) = 0.9 and P (M
0

) = 0.1, when the treatment
involves the intake of a pill that includes an active component designed to lower
blood pressure. Equivalently, we then say that the prior model odds of there being
an e↵ect is nine to one, that is, P (M1)

P (M0)
= 9. The prior model odds can be updated

in light of the observed data d using Bayes’ rule which leads to the crucial equation

P (M
1

| d)
P (M

0

| d)
| {z }

Posterior model odds

=
p(d |M

1

)

p(d |M
0

)
| {z }

BF10(d)

P (M
1

)

P (M
0

)
| {z }

prior model odds

(1.1.1)

where P (M
i

| d) is the posterior model probability of model M
i

updated by the
data and p(d |M

i

) is the marginal likelihood ofM
i

. The term BF
10

(d) is known as
the Bayes factor and equals the change from prior to posterior model odds brought
about by the observed data d. The Bayes factor has an intuitive interpretation:
BF

10

(d) = 7 indicates that the observed data are 7 times more likely under M
1

than under M
0

, whereas BF
10

(d) = .2 indicates that the observed data are 5
times more likely under M

0

than under M
1

. In general, the Bayes factor returns
a non-negative number given the observed data d, and the higher (lower) the
value of BF

10

(d), the more (less) evidence for M
1

over M
0

. In a similar fashion,
if the patients’ activity levels were also measured one can investigate whether the
treatment makes people tired. Slowly and gradually one can then chart how the
treatment influences the population of patients.

The Bayes factor is given by a ratio of marginal likelihood p(d |M
i

) that rep-
resents how well model M

i

fits the observed data. This marginal likelihood can
be thought of as the functional relationship f

i

(d | ✓) of model M
i

at the observed
data d and weighted with respect to a so-called prior distribution ⇡

i

(✓) at each
possible parameter value ✓:

p(d |M
i

) =

Z

f
i

(d | ✓)⇡
i

(✓)d✓. (1.1.2)

Hence, given two models, that is, the functional relationships f
1

(d | ✓) and f
0

(d | ✓),
the statistician is required to choose two priors, namely, ⇡

0

(✓) and ⇡
1

(✓) to con-
struct a Bayes factor. For the Bayes factor to be accessible to practitioners, they
have to be computable for any data set d. This dissertation discuss both issues:
The choice of priors for a Bayes factor, and its computations.

1.2 Chapter outline

1.2.1 Part I. Bayes factor rationale

The first part of the dissertation focusses on the philosophy, motivation and the
construction of Bayes factors based on the work of Harold Je↵reys.

2



1.2. Chapter outline

Chapter 2 elaborates on the principles upon which the Bayes factor is founded,
how it is interpreted, and presents a general scheme with which Je↵reys selected
prior distributions and constructed Bayes factors. The idea is to propose a Bayes
factor that is predictively matched and information consistent. A predictively
matched Bayes factor returns one for inconclusive data, whilst an information
consistent Bayes factor returns infinite support for the alternative when the data
are overwhelmingly in favour of there being an e↵ect. This scheme is extracted
from how Je↵reys treated the test of nullity of a normal mean, the Bayesian t-
test and, subsequently, applied to construct a novel Je↵reys’s Bayes factor for
Pearson’s correlation. This Bayes factor is analytic, thus, easily computed.

Chapter 3 gives additional insights on Bayes factors as a response to two com-
ments from renowned researchers. In this rejoinder we took the opportunity to
further elaborate on the Je↵reys-Lindley-Bartlett paradox, the distinction between
inference and decision making as well on the di↵erence between a testing and an
estimation problem.

1.2.2 Part II. Bayes factors for common designs

The second part of the dissertation focusses on the Bayes factors that were devel-
oped for other scenarios that empirical scientists commonly encounter.

Chapter 4 outlines a Bayesian methodology to estimate and test the Kendall
rank correlation coe�cient ⌧ . The key idea is to model the test statistic rather
than the data, and exploit the analytic result derived for the Bayes factor for
Pearson’s correlation.

Chapter 5 also exploits the result derived for Pearson’s correlation, but this
time to define, if one wishes, an informed Bayes factor to test the nullity of a
normal mean. An extension of Je↵reys’s default t-test is presented that allows
researchers to incorporate expert knowledge into the prior specification of the ef-
fect size parameter �. Specifically, two families of prior distributions for � are
considered: the family of shifted and scaled t distributions (which includes Jef-
freys’s Cauchy prior as a special case) and the family of shifted and scaled normal
distributions. For both families we derive the marginal posterior distribution of
� and the Bayes factor. For the normal family the solutions are completely an-
alytic; for the t family the solutions contain a one-dimensional integral that can
easily be evaluated numerically. The impact of incorporation of prior knowledge
is illustrated with three examples.

Chapter 6 introduces the desideratum of limit-consistency as a means to facil-
itate the selection of prior distribution with good properties. This desideratum is
relevant for tests of equality between two processes, and it concerns the hypothet-
ical scenario where data acquisition for one process is terminated early whereas
data acquisition of the second process continues indefinitely. In such cases, the
Bayes factor ought to approach a finite limit. The Bayes factor Je↵reys proposed
for the two-sample Poisson problem, unfortunately, violates limit-consistency and
we propose a generalisation of Je↵reys’s test that is limit-consistent.

3



1. Introduction

1.2.3 Part III. Scientific learning with Bayes factors

The third part of the dissertation focusses on the use of Bayes factors in the
empirical sciences as a tool for scientific learning. It also touches upon the “crisis
of confidence” (e.g., Baker, 2016, Levelt et al., 2012, Pashler and Wagenmakers,
2012).

Chapter 7 highlights how psychologists have been at the forefront of e↵orts
to assess and improve reproducibility in science by way of large-scale replication
initiatives, such as the Reproducibility Project: Psychology (Open Science Col-
laboration, 2015), the Social Psychology special issue on replication (Nosek and
Lakens, 2014), and the various ManyLabs e↵orts (Ebersole et al., 2016; Klein
et al., 2014). This chapter is a comment on Witte and Zenker (2016) who believe
that a “di↵erent” use of p-values can resolve the crisis of confidence. We disagree,
as statistics alone cannot avoid another crisis. Instead, we argue that confirma-
tory research should be preregistered. By preregistering an experiment one avoids
hindsight bias and controls the problem of multiple testing. Moreover, we also
believe that science should be open and transparent, and that researchers should
acknowledge uncertainty, as this gives a more honest and better reflection of the
scientific process.

Chapter 8 shows how easy it is to do a Bayesian reanalysis even without access
to the full data set. This is interesting for researchers who want to complement
their p-values with a Bayes factor. A Bayesian reanalysis is also useful for edi-
tors, reviewers, readers, and reporters, as it allows for the quantification of the
evidence on a continuous scale. In addition, we also provide tools that allow for
an assessment of the robustness of the evidence within the data to changes to the
prior distribution. Furthermore, by expanding a summary statistic into a posterior
one can gauge which posterior parameter ranges are more credible than others.
Moreover, this posterior can be used as an informed prior for a subsequent study.

Chapter 9 describes a general method that allows experimenters to quantify the
evidence from the data of a direct replication attempt given data already acquired
from an original study. This general method was designed to help researchers build
a body of knowledge based on the data from the increased number of replication
studies in response to psychology’s crisis of confidence.

1.2.4 Part IV. Analytic results

The fourth part presents various analytic results that have been used in the con-
struction of the Bayesian tests presented in this dissertation.

Chapter 10 provides the analytic posterior for Pearson’s correlation coe�cient
for a large class of priors, and Bernardo’s reference prior in particular. This result
is used to construct the analytic Bayes factor given in Chapter 2 and forms the
basis of Chapters 4 and 5.

Chapter 11 provides various analytic posteriors for two scenarios involving
discrete data. One of these results is used in Chapter 6 and can also be used to
define a robustness analysis in a binomial test. In addition, analytic expression are
given from which one can construct a one-sided binomial Bayes factor. The last

4



1.2. Chapter outline

result is an analytic expression for the odds ratio in a 2-by-2 contingency table,
which is a topic for future research.

1.2.5 Part V. Two tutorials

The fifth part of the dissertation focusses on tools to construct Bayes factors and
statistical modelling in general.

Chapter 12 elaborates on how bridge sampling (Meng and Wong, 1996) can
be used to transform MCMC output into an estimate of the marginal likelihood.
The bridge sampler is particularly useful for complicated models with hierarchical
structures and when the marginal likelihood is intractable.

Chapter 13 gives general background on mathematical statistics and the role of
Fisher information in particular. In this tutorial we clarify the concept of Fisher in-
formation as it manifests itself across three di↵erent statistical paradigms. Firstly,
in the frequentist paradigm, Fisher information is used to construct hypothesis
tests and confidence intervals using maximum likelihood estimators; secondly, in
the Bayesian paradigm, Fisher information is used to define a default prior; fi-
nally, in the minimum description length paradigm, Fisher information is used to
measure model complexity.

The dissertation is concluded with a discussion on future directions.

5
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Bayes Factor Rationale
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Chapter 2

Harold Je↵reys’s Default Bayes
Factor Hypothesis Tests:

Explanation, Extension, and
Application in Psychology

Abstract

Harold Je↵reys pioneered the development of default Bayes factor hy-
pothesis tests for standard statistical problems. Using Je↵reys’s Bayes fac-
tor hypothesis tests, researchers can grade the decisiveness of the evidence
that the data provide for a point null hypothesis H

0

versus a composite al-
ternative hypothesis H

1

. Consequently, Je↵reys’s tests are of considerable
theoretical and practical relevance for empirical researchers in general and
for experimental psychologists in particular. To highlight this relevance and
to facilitate the interpretation and use of Je↵reys’s Bayes factor tests we
focus on two common inferential scenarios: testing the nullity of a normal
mean (i.e., the Bayesian equivalent of the t-test) and testing the nullity of a
correlation. For both Bayes factor tests, we explain their development, we
extend them to one-sided problems, and we apply them to concrete examples
from experimental psychology.

Keywords: Correlation test, hypothesis testing, model selection, statistical
evidence, t-test.

This chapter is published as Ly, A., Verhagen, A. J., & Wagenmakers, E.–J. (2016a). Harold
Je↵reys’s default Bayes factor hypothesis tests: Explanation, extension, and application in psy-
chology. Journal of Mathematical Psychology, 72, 19–32. doi: http://dx.doi.org/10.1016/

j.jmp.2015.06.004
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2. Harold Jeffreys’s Default Bayes Factor Hypothesis Tests:
Explanation, Extension, and Application in Psychology

2.1 Introduction

Consider the common scenario where a researcher entertains two competing hy-
potheses. One, the null hypothesis H

0

, is implemented as a statistical model that
stipulates the nullity of a parameter of interest (i.e., µ = 0); the other, the al-
ternative hypothesis H

1

, is implemented as a statistical model that allows the
parameter of interest to di↵er from zero. How should one quantify the relative
support that the observed data provide for H

0

versus H
1

? Harold Je↵reys argued
that this is done by assigning prior mass to the point null hypothesis (or “general
law”) H

0

, and then calculate the degree to which the data shift one’s prior beliefs
about the relative plausibility of H

0

versus H
1

. The factor by which the data
shift one’s prior beliefs about the relative plausibility of two competing models is
now widely known as the Bayes factor, and it is arguably the gold standard for
Bayesian model comparison and hypothesis testing (e.g., Berger, 2006; Lee and
Wagenmakers, 2013; Lewis and Raftery, 1997; Myung and Pitt, 1997; O’Hagan
and Forster, 2004).

In his brilliant monograph “Theory of Probability”, Je↵reys introduced a series
of default Bayes factor tests for common statistical scenarios. Despite their consid-
erable theoretical and practical appeal, however, these tests are hardly ever used
in experimental psychology and other empirical disciplines. A notable exception
concerns Je↵reys’s equivalent of the t-test, which has recently been promoted by
Je↵rey Rouder, Richard Morey, and colleagues (e.g., Rouder et al., 2009). One of
the reasons for the relative obscurity of Je↵reys’s default tests may be that a thor-
ough understanding of “Theory of Probability” requires not only an a�nity with
mathematics but also a willingness to decipher Je↵reys’s non-standard notation.

In an attempt to make Je↵reys’s default Bayes factor tests accessible to a wider
audience we explain the basic principles that drove their development and then
focus on two popular inferential scenarios: Testing the nullity of a normal mean
(i.e., the Bayesian t-test), and testing the nullity of a correlation. We illustrate
Je↵reys’s methodology using data sets from psychological studies. The chapter is
organised as follows: The first section provides some historical background and
outlines four of Je↵reys’s convictions regarding scientific learning. The second
section shows how the Bayes factor is a natural consequence of these four con-
victions. We decided to include Je↵reys’s own words where appropriate, so as to
give the reader an accurate impression of Je↵reys’s ideas as well as his compelling
style of writing. The third section presents the procedure from which so-called
default Bayes factors can be constructed. This procedure is illustrated with the
redevelopment of the Bayesian counterpart for the t-test and the Bayesian corre-
lation test. For both the t-test and the correlation test, we also derive one-sided
versions of Je↵reys’s original tests. We apply the resulting Bayes factors to data
sets from psychological studies. The last section concludes with a summary and
a discussion.
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2.2. Historical and philosophical background of the Bayes factor

2.2 Historical and philosophical background of the Bayes
factor

2.2.1 Life and work

Sir Harold Je↵reys was born in 1891 in County Durham, United Kingdom, and
died in 1989 in Cambridge. Je↵reys first earned broad academic recognition in
geophysics when he discovered the earth’s internal structure (Bolt, 1982; Je↵reys,
1924). In 1946, Je↵reys was awarded the Plumian Chair of Astronomy, a position
he held until 1958. After his “retirement” Je↵reys continued his research to com-
plete a record-breaking 75 years of continuous academic service at any Oxbridge
college, during which he was awarded medals by the geological, astronomical, me-
teorological, and statistical communities (Cook, 1990; Huzurbazar, 1991; Lindley,
1991; Swirles, 1991). His mathematical ability is on display in the book “Methods
of Mathematical Physics”, which he wrote together with his wife (Je↵reys and
Je↵reys, 1946).

Our first focus is on the general philosophical framework for induction and sta-
tistical inference put forward by Je↵reys in his monographs “Scientific Inference”
(Je↵reys, 1931, second edition 1955, third edition 1973) and “Theory of Probabil-
ity” (henceforth ToP; first edition 1939, second edition 1948, third edition 1961).
An extended modern summary of ToP is provided by (Robert et al., 2009). Jef-
freys’s ToP rests on a principled philosophy of scientific learning (ToP, Chapter I).
In ToP, Je↵reys distinguishes sharply between problems of parameter estimation
and problems of hypothesis testing. For estimation problems, Je↵reys outlines
his famous parameterisation-invariant “Je↵reys’s priors” (ToP, Chapter III); for
testing problems, Je↵reys proposes a series of default Bayes factor tests to grade
the support that observed data provide for a point null hypothesis H

0

versus a
composite H

1

(ToP, Chapter V). A detailed summary of Je↵reys’s contributions
to statistics is available online at www.economics.soton.ac.uk/staff/aldrich/
jeffreysweb.htm.

For several decades, Je↵reys was one of only few scientists who actively devel-
oped, used, and promoted Bayesian methods. In recognition of Je↵reys’s persis-
tence in the face of relative isolation, E. T. Jaynes’s dedication of his own book,
“Probability theory: The logic of science”, reads: “Dedicated to the memory of Sir
Harold Je↵reys, who saw the truth and preserved it” (Jaynes, 2003). In 1980, the
seminal work of Je↵reys was celebrated in the 29-chapter book “Bayesian Analysis
in Econometrics and Statistics: Essays in Honor of Harold Je↵reys” (e.g, Geisser,
1980; Good, 1980; Lindley, 1980; Zellner, 1980). In one of its chapters, Dennis
Lindley discusses ToP and argues that “The Theory is a wonderfully rich book.
Open it at almost any page, read carefully, and you will discover some pearl.”
(Lindley, 1980, p. 37).

Despite discovering the internal structure of the earth and proposing a famous
rule for developing parameterisation-invariant prior distributions, Je↵reys him-
self considered his greatest scientific achievement to be the development of the
Bayesian hypothesis test by means of default Bayes factors (Senn, 2009). In what
follows, we explain the rationale behind Je↵reys’s Bayes factors and demonstrate
their use for two concrete tests.
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2.2.2 Je↵reys’s view of scientific learning

Je↵reys developed his Bayes factor hypothesis tests as a natural consequence of his
perspective on statistical inference, a philosophy guided by principles and convic-
tions inspired by Karl Pearson’s classic book The Grammar of Science and by the
work of W. E. Johnson and Dorothy Wrinch. Without any claim to completeness
or objectivity, here we outline four of Je↵reys’s principles and convictions that we
find particularly informative and relevant.

2.2.2.1 Conviction i: Inference is inductive

Je↵reys’s first conviction was that scientific progress depends primarily on induc-
tion (i.e., learning from experience). For instance, he states “There is a solid mass
of belief reached inductively, ranging from common experience and the meanings
of words, to some of the most advanced laws of physics, on which there is general
agreement among people that have studied the data.” (Je↵reys, 1955, p. 276) and,
similarly: “When I taste the contents of a jar labelled ‘raspberry jam’ I expect
a definite sensation, inferred from previous instances. When a musical composer
scores a bar he expects a definite set of sounds to follow when an orchestra plays
it. Such inferences are not deductive, nor indeed are they made with certainty at
all, though they are still widely supposed to be.” (Je↵reys, 1973, p. 1). The same
sentiment is stated more forcefully in ToP: “(...) the fact that deductive logic
provides no explanation of the choice of the simplest law is an absolute proof that
deductive logic is grossly inadequate to cover scientific and practical requirements”
(Je↵reys, 1961, p. 5). Hence, inference is inductive and should be guided by the
data we observe.

2.2.2.2 Conviction ii: Induction requires a logic of partial belief

Je↵reys’s second conviction is that in order to formalise induction one requires
a logic of partial belief: “The idea of a reasonable degree of belief intermediate
between proof and disproof is fundamental. It is an extension of ordinary logic,
which deals only with the extreme cases.” (Je↵reys, 1955, p. 275). This logic of
partial belief, Je↵reys showed, needs to obey the rules of probability calculus in
order to fulfil general desiderata of consistent reasoning –thus, degrees of belief can
be thought of as probabilities (cf. Ramsey, 1926). Hence, all the unknowns should
be instantiated as random variables by specifying so-called prior distributions
before any datum is collected. Using Bayes’ theorem, these priors can then be
updated to posteriors conditioned on the data that were actually observed.

2.2.2.3 Conviction iii: The test of a general law requires it be given
prior probability

Je↵reys’s third conviction stems from his rejection of treating a testing issue as
one of estimation. This is explained clearly and concisely by Je↵reys himself:

“My chief interest is in significance tests. This goes back to a re-
mark in Pearson’s Grammar of Science and to a paper of 1918 by C. D.
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Broad. Broad used Laplace’s theory of sampling, which supposes that
if we have a population of n members, r of which may have a property
�, and we do not know r, the prior probability of any particular value
of r (0 to n) is 1/(n + 1). Broad showed that on this assessment, if
we take a sample of number m and find them all with �, the posterior
probability that all n are �s is (m+ 1)/(n+ 1). A general rule would
never acquire a high probability until nearly the whole of the class had
been inspected. We could never be reasonably sure that apple trees
would always bear apples (if anything). The result is preposterous,
and started the work of Wrinch and myself in 1919–1923. Our point
was that giving prior probability 1/(n+ 1) to a general law is that for
n large we are already expressing strong confidence that no general
law is true. The way out is obvious. To make it possible to get a high
probability for a general law from a finite sample the prior probability
must have at least some positive value independent of n.” (Je↵reys,
1980, p. 452)

The allocation of probability to the null hypothesis is known as the simplicity
postulate (Wrinch and Je↵reys, 1921), that is, the notion that scientific hypotheses
can be assigned prior plausibility in accordance with their complexity, such that
“the simpler laws have the greater prior probabilities” (e.g., Je↵reys, 1961, p. 47;
see also Je↵reys, 1973, p. 38). In the case of testing a point null hypothesis, the
simplicity postulate expresses itself through the recognition that the point null
hypothesis represents a general law and, hence, requires a separate, non-zero prior
probability.

Je↵reys’s view of the null hypothesis as a general law is influenced by his
background in (geo)physics. For instance, Newton’s law of gravity postulates the
existence of a fixed universal gravitational constant G. Clearly, this law is more
than just a statement about a constant; it provides a model of motion that relates
data to parameters. In this context, the null hypothesis should be identified with
its own separate null model M

0

rather than be perceived as a simplified version
of an encompassing model M

1

.
Hence, Je↵reys’s third conviction holds that in order to test the adequacy of a

null hypothesis, the model that instantiates that hypothesis needs to be assigned
a separate prior probability, which can be updated by the data to a posterior
probability.

2.2.2.4 Conviction iv: Classical tests are inadequate

Je↵reys’s fourth conviction was that classical “Fisherian” p-values are inadequate
for the purpose of hypothesis testing. In the preface to the first edition of ToP,
Je↵reys outlines the core problem: “Modern statisticians have developed extensive
mathematical techniques, but for the most part have rejected the notion of the
probability of a hypothesis, and thereby deprived themselves of any way of saying
precisely what they mean when they decide between hypotheses” (Je↵reys, 1961,
p. ix). Specifically, Je↵reys pointed out that the p-value significance test “(...)
does not give the probability of the hypothesis; what it does give is a convenient,
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though rough, criterion of whether closer investigation is needed.” (Je↵reys, 1973,
p. 49). Thus, by selectively focusing on the adequacy of predictions under the null
hypothesis —and by neglecting the adequacy of predictions under the alternative
hypotheses— researchers may reach conclusions that are premature (see also the
Gosset-Berkson critique, Berkson, 1938; Wagenmakers et al., 2017c):

“Is it of the slightest use to reject a hypothesis until we have some
idea of what to put in its place? If there is no clearly stated alternative,
and the null hypothesis is rejected, we are simply left without any rule
at all, whereas the null hypothesis, though not satisfactory, may at
any rate show some sort of correspondence with the facts.” (Je↵reys,
1961, p. 390).

Je↵reys also argued against the logical validity of p-values, famously pointing out
that they depend on more extreme events that have not been observed: “What
the use of P implies, therefore, is that a hypothesis that may be true may be
rejected because it has not predicted observable results that have not occurred.
This seems a remarkable procedure.” (Je↵reys, 1961, p. 385). In a later paper,
Je↵reys clarifies this statement: “I have always considered the arguments for the
use of P absurd. They amount to saying that a hypothesis that may or may not be
true is rejected because a greater departure from the trial value was improbable;
that is, that it has not predicted something that has not happened.” (Je↵reys,
1980, p. 453).

In sum, Je↵reys was convinced that induction is an extended form of logic; that
this “logic of partial beliefs” needs to treat degrees of belief as probabilities; that
simple laws or hypotheses should be viewed as separate models that are allocated
non-zero prior probabilities, and that a useful and logically consistent method of
hypothesis testing needs to be comparative, and needs to be based on the data at
hand rather then on data that were never observed. These convictions coalesced
in Je↵reys’s development of the Bayes factor, an attempt to provide a consistent
method of model selection and hypothesis testing that remedies the weaknesses
and limitations inherent to p-value statistical hypothesis testing.

2.2.3 The Bayes factor hypothesis test

In reverse order, we elaborate on the way in which each of Je↵reys’s convictions
motivated the construction of his Bayes factor alternative to the classical hypoth-
esis test.

2.2.3.1 ad. Conviction iv: Classical tests are inadequate

Je↵reys’s development of a Bayesian hypothesis test was motivated in part by his
conviction that the use of classical p values is “absurd”. Nevertheless, Je↵reys
reported that the use of Bayes factors generally yields conclusions similar to those
reached by means of p values: “As a matter of fact I have applied my significance
tests to numerous applications that have also been worked out by Fisher’s, and
have not yet found a disagreement in the actual decisions reached” (Je↵reys, 1961,
p. 393); thus, “In spite of the di↵erence in principle between my tests and those
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based on the P integrals (...) it appears that there is not much di↵erence in
the practical recommendations.” (Je↵reys, 1961). However, Je↵reys was acutely
aware of the fact that disagreements can occur (see also Edwards et al., 1963;
Lindley, 1957). In psychology, these disagreements appear to arise repeatedly,
especially for cases in which the p value is in the interval from .01 to .05 (Johnson,
2013; Wetzels et al., 2011).

2.2.3.2 ad. Conviction iii: The test of a general law requires it be
given prior probability

Je↵reys first identified the null hypothesis with a separate null model M
0

that
represents a general law and pits it against the alternative model M

1

which
relaxes the restriction imposed by the law. For instance, for the t-test, M

0

:
normal data X with µ = 0 –the law says that the population mean is zero– and
M

1

: normal data X that allows µ to vary freely. As we do not know whether
the data were generated according to M

0

or M
1

we consider the model choice a
random variable such that P (M

1

) + P (M
0

) = 1.

2.2.3.3 ad. Conviction ii: Induction requires a logic of partial belief

As the unknowns are considered to be random, we can apply Bayes’ rule to yield
posterior model probabilities given the observed data, as follows

P (M
1

| d) = p(d |M
1

)P (M
1

)

P (d)
, (2.2.1)

P (M
0

| d) = p(d |M
0

)P (M
0

)

P (d)
, (2.2.2)

where p(d |M
i

) is known as the marginal likelihood which represents the “likeli-
hood of the data being generated from model M

i

”. By taking the ratio of the two
expressions above, the common term P (d) drops out yielding the key expression

P (M
1

| d)
P (M

0

| d)
| {z }

Posterior odds

=
p(d |M

1

)

p(d |M
0

)
| {z }

BF10(d)

P (M
1

)

P (M
0

)
| {z }

Prior odds

. (2.2.3)

This equation has three crucial ingredients. First, the prior odds quantifies the rel-
ative plausibility of M

1

over M
0

before any datum is observed. Most researchers
enter experiments with prior knowledge, prior experiences, and prior expecta-
tions, and these can in principle be used to determine the prior odds. Je↵reys
preferred the assumption that both models are equally likely a priori, such that
P (M

0

) = P (M
1

) = 1/2. This is consistent with the Wrinch-Je↵reys simplicity
postulate in the sense that prior mass 1/2 is assigned to a parsimonious model
(e.g., M

0

: µ = 0, the general law), and the remaining 1/2 is spread out over a
larger model M

1

where µ is unrestricted. In general then, the prior odds quantify
a researcher’s initial skepticism about the hypotheses under test. The second in-
gredient is the posterior odds, which quantifies the relative plausibility of M

0

and
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M
1

after having observed data d. The third ingredient is the Bayes factor (Jef-
freys, 1935): the extent to which the observed data d update the prior odds to the
posterior odds. For instance, when BF

10

(d) = 9, the observed data d are 9 times
more likely to have occurred under M

1

than under M
0

; when BF
10

(d) = 0.2, the
observed data d are 5 times more likely to have occurred under M

0

than under
M

1

. The Bayes factor, thus, quantifies the relative probability of the observed
data under each of the two competing hypotheses.

Typically, each model M
i

has unknown parameters ✓
i

that, in accordance to
Je↵reys’s second conviction, are considered as random with a density given by
⇡
i

(✓
i

). By the law of total probability the “likelihood of the data being generated
from model M

i

” is then calculated by integrating out the unknown parameters
within that model, that is, p(d |M

i

) =
R

f(d | ✓
i

,M
i

)⇡
i

(✓
i

)d✓
i

, where f(d | ✓
i

,M
i

)
is the likelihood, that is, the function that relates the observed data to the unknown
parameters ✓

i

within model M
i

(e.g., Ly et al., 2017c; Myung, 2003). Hence, when
we do not know which of two models (M

0

,M
1

) generated the observed data and
both models contain unknown parameters, we have to specify two prior densities
(⇡

0

,⇡
1

) from which we can construct a Bayes factor.

2.2.3.4 ad. Conviction i: Inference is inductive

The specification of the two prior distributions ⇡
0

and ⇡
1

is guided by two desider-
ata: predictive matching and information consistency. Predictive matching implies
that the Bayes factor equals 1 when the data are completely uninformative; infor-
mation consistency implies that the Bayes factor equals 0 or 1 when the data are
overwhelmingly informative. These desiderata ensure that the correct inference is
reached in extreme cases, and in doing so they provide useful restrictions for the
specification of the prior distributions.

To achieve the desired result that the Bayes factor equals BF
10

(d) = 1 for
completely uninformative data, the priors ⇡

0

and ⇡
1

need to be chosen such that
the marginal likelihoods of M

0

and M
1

are predictively matched to each other,
that is,
Z

⇥0

f(d | ✓
0

,M
0

)⇡
0

(✓
0

)d✓
0

= p(d |M
0

) = p(d |M
1

) =

Z

⇥1

f(d | ✓
1

,M
1

)⇡
1

(✓
1

)d✓
1

(2.2.4)

for every completely uninformative data set d.
On the other hand, when data d are overwhelmingly informative in favour

of the alternative model the Bayes factor should yield BF
10

(d) = 1 or, equiva-
lently, BF

01

(d) = 1/BF
10

(d) = 0, as this then yields P (M
1

| d) = 1 for any prior
model probability P (M

1

) > 0. A Bayes factor with this property is known to be
information consistent.

2.3 Je↵reys’s procedure for constructing a default Bayes
factor

We now elaborate on Je↵reys’s general procedure in constructing default Bayes
factors –the specification of the two priors ⇡

0

and ⇡
1

– such that the procedure
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fulfils the desiderata discussed above.

2.3.1 Step 1. Nest ⇡0 within ⇡1

In null hypothesis tests the model M
1

can be considered an extension of M
0

by
inclusion of a new parameter, that is, ✓

1

= (✓
0

, ⇣) where ✓
0

denotes the common
parameters and ⇣ the test-relevant parameter. Equivalently, M

0

is said to be
nested within M

1

due to the connection f(d | ✓
0

,M
0

) = f(d | ✓
0

, ⇣ = 0,M
1

).
Je↵reys exploited the connection between these two likelihood functions to induce
a relationship between ⇡

1

and ⇡
0

. In general one has ⇡
1

(✓
0

, ⇣) = ⇡
1

(⇣ | ✓
0

)⇡
1

(✓
0

),
but due to the nesting Je↵reys treats the common parameters within M

1

as in
M

0

, that is, ⇡
1

(✓
0

) = ⇡
0

(✓
0

). Furthermore, when ⇣ can be sensibly related to ✓
0

,
Je↵reys redefines the test-relevant parameter as �, and decomposes the prior as
⇡
1

(✓
0

, ⇣) = ⇡
1

(�)⇡
0

(✓
0

). For instance, in the case of the t-test Je↵reys focuses on
e↵ect size � = µ

�

.
This implies that once we have chosen ⇡

0

, we have then completely specified the
marginal likelihood p(d |M

0

) and can, therefore, readily calculate the denominator
of the Bayes factor BF

10

(d) given data d. Furthermore, due to the nesting of ⇡
0

within ⇡
1

we can also calculate a large part of the marginal likelihood of M
1

as

p(d |M
1

) =

Z

�

Z

⇥

f(d | ✓
0

, �,M
1

)⇡
0

(✓
0

)d✓
0

| {z }

h(d | �)

⇡
1

(�)d�, (2.3.1)

where h(d | �) is the test-relevant likelihood, a function that only depends on the
data and the test-relevant parameter � as the common parameters ✓

0

are integrated
out. The following two steps are concerned with choosing ⇡

1

(�) such that the
resulting Bayes factor is well-calibrated to extreme data.

2.3.2 Step 2. Predictive matching

Typically, a certain minimum number of samples n
min

is required before modelM
1

can be di↵erentiated from M
0

. All possible data sets with sample sizes less than
n
min

are considered uninformative. For example, at least n
min

= 2 observations are
required to distinguish M

0

: µ = 0 from M
1

in a t-test. Specifically, confronted
with a single Gaussian observation unequal to zero, for instance, x

1

= 5, lack of
knowledge about � within M

0

means that we cannot exclude M
0

as a reasonable
explanation for the data.

Indeed, a member of M
0

, a zero-mean normal distribution with a standard
deviation of seven produces an observation less than five units away from zero
with 53% chance. Similarly, lack of knowledge about � also means that M

1

cannot be excluded as a reasonable explanation of the data. To convey that –for
the purpose of discriminating M

0

from M
1

– nothing is learned from any data set
with a sample smaller than n

min

we choose ⇡
1

(�) such that

p(d |M
0

) = p(d |M
1

) =

Z

�

h(d | �)⇡
1

(�)d� (2.3.2)
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for every data set d with a sample size less than n
min

. In sum, ⇡
1

(�) is chosen
such that when the data are completely uninformative we get BF

10

(d) = 1.

2.3.3 Step 3. Information consistency

Even a limited number of observations may provide overwhelming support for M
1

.
In the case of the t-test, for instance, the support that an observed non-zero mean
provides for M

1

should increase without bound as the sample variance s2 ! 0, for
any sample size greater or equal to n

min

. Consequently, for data d with a sample
size greater or equal to n

min

that point undoubtedly to M
1

Je↵reys chose ⇡
1

(�)
such that p(d |M

1

) diverges to infinity. That is, in order to achieve information
consistency p(d |M

0

) needs to be bounded and ⇡
1

(�) needs to be chosen such that
p(d |M

1

) =
R

�

h(d | �)⇡
1

(�)d� diverges to infinity for overwhelmingly informative
data of any size n greater or equal to n

min

.

2.3.4 Summary

Je↵reys’s procedure to construct a Bayes factor nests ⇡
0

within ⇡
1

, and therefore
the choice of ⇡

0

is the starting point of the method. The specification of ⇡
0

yields p(d |M
0

). Next, the test-relevant prior ⇡
1

is chosen such that p(d |M
1

)
is well-calibrated to extreme data that are either completely uninformative or
overwhelmingly informative. Together with ⇡

0

, this calibrated test-relevant prior
forms the basis for Je↵reys’s construction of a Bayes factor.

As a default choice for ⇡
0

, Je↵reys used his popular “Je↵reys’s prior” on the
common parameters ✓

0

(Je↵reys, 1946). Derived from the likelihood function
f(d | ✓

0

,M
0

), this default prior is parameterisation invariant, meaning that the
same posterior is obtained regardless of how the parameters are represented (e.g.,
Ly et al., 2017c). Je↵reys’s parameterisation-invariant priors are typically im-
proper, that is, non-normalisable, even though they do lead to proper posteriors
for the designs discussed below.

The specification of the test-relevant prior requires special care, as priors that
are too wide inevitably reduce the weighted likelihood, resulting in a preference for
H

0

regardless of the observed data (Je↵reys-Lindley-Bartlett paradox; Bartlett,
1957; Je↵reys, 1961; Lindley, 1957; Marin and Robert, 2010). Consequently, Jef-
freys’s parameterisation-invariant prior cannot be used for the test-relevant pa-
rameter.

Note that Je↵reys’s methodical approach in choosing the two priors ⇡
0

and
⇡
1

is fully based on the likelihood functions of the two models that are being
compared; the priors do not represent substantive knowledge of the parameters
within the model and the resulting procedure can therefore be presented as a
reference analysis that may be fine-tuned in the presence of additional information.
In the following two sections we illustrate Je↵reys’s procedure by discussing the
development of the default Bayes factors for two scenarios that are particularly
relevant for experimental psychology: testing the nullity of a normal mean and
testing the nullity of a correlation coe�cient. Appendix 2.A provides a list of
additional Bayes factors that are presented in ToP.
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2.4 Je↵reys’s Bayes factor for the test of the nullity of a
normal mean: The Bayesian t-test

To develop the Bayesian counterpart of the classical t-test we first characterise
the data and discuss how they relate to the unknown parameters within each
model in terms of the likelihood functions. By studying the likelihood functions
we can justify the nesting ⇡

0

within ⇡
1

, and identify data that are completely
uninformative, as well as data that are overwhelmingly informative. The test-
relevant prior is then selected based on the desiderata discussed above. We then
apply the resulting default Bayes factor to an example data set on cheating and
creativity. In addition, we develop the one-sided extension of Je↵reys’s t-test, after
which we conclude with a brief discussion.

2.4.1 Normal data

For the case at hand, experimental outcomes are assumed to follow a normal distri-
bution characterised by the unknown population mean µ and standard deviation
�. Similarly, the observed data d from a normal distribution can be summarised
by two numbers: the observed sample mean x̄ and the average sums of squares
s2
n

= 1

n

P

n

i=1

(x
i

� x̄)2; hence we write d = (x̄, s2
n

). The main di↵erence between
the null model M

0

: µ = 0 and its relaxation M
1

is reflected in the population
e↵ect size, which is defined as � = µ

�

, as � provides a scale to the problem. This
population e↵ect size cannot be observed directly, unlike its sampled scaled ver-

sion the t-statistic, i.e., t =
p
nx̄

s

⌫

, where s
⌫

refers to the sample standard deviation
based on ⌫ = n � 1 degrees of freedom. Extreme data can be characterised by
|t|! 1 or equivalently by s2

n

! 0 and it is used in the calibration step of the
Bayes factor to derive the test-relevant prior. To improve readability we remove
the subscript n when we refer to the average sum of squares s2 = s2

n

.

2.4.2 Step 1. Nesting of ⇡0 within ⇡1

2.4.2.1 Comparing the likelihood functions

A model defines a likelihood that structurally describes how the observed data
are related to the unknown parameters. The point null hypothesis M

0

posits
that µ = 0, whereas the alternative hypothesis M

1

relaxes the restriction on µ.
Conditioned on the observations d = (x̄, s2), the likelihood functions of M

0

and
M

1

are given by

f(d |�,M
0

) = (2⇡�2)�
n

2 exp
�

� n

2�

2

⇥

x̄2 + s2
⇤�

, (2.4.1)

f(d |µ,�,M
1

) = (2⇡�2)�
n

2 exp
�

� n

2�

2

⇥

(x̄� µ)2 + s2
⇤�

, (2.4.2)

respectively. Note that f(d |�,M
0

) is a function of � alone, whereas f(d |µ,�,M
1

)
depends on two parameters: � and µ. As � is a scaling parameter in both models,
we can set ⇡

1

(µ,�) = ⇡
1

(µ |�)⇡
0

(�). Je↵reys removed the scale from the problem
by considering � = µ

�

as the test-relevant parameter and with ⇡
1

(�,�) = ⇡
1

(�)⇡
0

(�)
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we get the following marginal likelihood

p(d |M
1

) = (2⇡)�
n

2

Z 1

0

��n

Z 1

�1
exp

⇣

� n

2

h

( x̄
�

� �)2 + ( s

�

)2
i ⌘

⇡
1

(�) d� ⇡
0

(�)d�,

(2.4.3)

for the encompassing model M
1

.

2.4.2.2 The denominator of BF
10

(d)

Je↵reys’s default choice leads to ⇡
0

(�) / 1/�, the parameterisation-invariant prior
that Je↵reys’s would use to arrive at a posterior for � within either model. This
prior specification leads to the following marginal likelihood of M

0

p(d |M
0

) =

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

1

2|x̄| n = 1, (2.4.4)

�(n
2

)

2(n⇡x̄2)
n

2

n > 1 and s2 = 0, (2.4.5)

�
�

n

2

�

2 (⇡ns2)
n

2

⇣

1 + t

2

⌫

⌘� ⌫+1

2

n > 1 and s2 > 0, (2.4.6)

where t is the observed t-value and ⌫ the degrees of freedom defined as before.
Hence, Eqns. (2.4.4, 2.4.5, 2.4.6) define the denominator of the Bayes factor
BF

10

(d); Eq. (2.4.4) will be used for calibrating the Bayes factor BF
10

(d) to com-
pletely uninformative data, whereas Eq. (2.4.5) will be used for the calibration
with respect to overwhelmingly informative data. Some statisticians only report

the right term
⇣

1 + t

2

⌫

⌘�n

2

of Eq. (2.4.6), as the first factor also appears in the

marginal likelihood of M
1

and, thus, cancels out in the Bayes factor.

2.4.3 Step 2. Predictive matching: Symmetric ⇡1(�)

We now discuss how the test-relevant prior ⇡
1

(�) can be chosen such that the re-
sulting Bayes factor is well-calibrated. As elaborated above, we consider data sets
with only one sample as completely uninformative in discriminating M

0

from M
1

.
Je↵reys (1961, p. 269) studied Eq. (2.4.3) with n = 1, x̄ > 0, and, consequently,
s2 = 0, and concluded that p(d |M

1

) is matched to Eq. (2.4.4) whenever ⇡
1

(�) is
symmetric around zero.

2.4.4 Step 3. Information consistency: Heavy-tailed ⇡1(�)

On the other hand, observed data x̄ > 0, s2 = 0 with n > 1 can be considered
overwhelmingly informative as the t-value is then infinite. To obtain maximum
evidence in favour of the alternative we require that BF

10

(d) = 1. This oc-
curs whenever the marginal likelihood of M

1

is infinite and p(d |M
0

) finite, see
Eq. (2.4.5). Je↵reys (1961, pp. 269–270) showed that this is the case whenever
the test-relevant prior ⇡

1

(�) is heavy-tailed.
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2.4.5 The resulting Bayes factor

Hence, a Bayes factor that meets Je↵reys’s desiderata can be obtained by assigning
⇡
0

(�) / 1/� and ⇡
1

(�,�) = ⇡
1

(�)⇡
0

(�), where ⇡
1

(�) is symmetric around zero and
heavy-tailed.

2.4.5.1 Je↵reys’s default choice: The standard Cauchy distribution

The Cauchy distribution with scale � is the most well-known distribution which
is both symmetric around zero and heavy-tailed

⇡
1

(� ; �) =
1

⇡�

✓

1 +
⇣

�

�

⌘

2

◆ . (2.4.7)

As a default choice for ⇡
1

(�), Je↵reys suggested to use the simplest version, the
standard Cauchy distribution with � = 1.

2.4.5.2 Je↵reys’s Bayesian t-test

Je↵reys’s Bayes factor now follows from the integral in Eq. (2.4.3) with respect
to Cauchy distributions ⇡

1

(�) divided by Eq. (2.4.6), whenever n > 1 and s2 > 0.
Je↵reys knew that this integral is hard to compute and went to great lengths
to compute an approximation that makes his Bayesian t-test usable in practice.
Fortunately, we can now take advantage of computer software that can numerically
solve the aforementioned integral and we therefore omit Je↵reys’s approximation
from further discussion. By a decomposition of a Cauchy distribution we obtain
a Bayes factor of the following form:

BF
10 ; �

(n, t) =
�
R1
0

(1 + ng)�
1

2

⇣

1 + t

2

⌫(1+ng)

⌘� ⌫+1

2

(2⇡)�
1

2 g�
3

2 e
��

2

2g dg

�

1 + t

2

⌫

�� ⌫+1

2

, (2.4.8)

where g is an auxiliary variable that is integrated out numerically. Je↵reys’s
choice is obtained when � = 1. The Bayes factor BF

10 ; �=1

(n, t) now awaits a
user’s observed t-value and the associated n number of observations.

2.4.6 Example: The Bayesian between-subject t-test

To illustrate the default Bayesian t-test we extend Eq. (2.4.8) to a between-subjects
design and apply the test to a psychological data set. The development above is
easily generalised to a between-subject design in which observations are assumed
to be drawn from two separate normal populations. To do so, we replace: (i) the
value of t by the observed two-sample t value, (ii) the e↵ective sample size by
n = n1n2

n1+n2
, and (iii) the degrees of freedom with ⌫ = n

1

+ n
2

� 2 (Rouder et al.,
2009).
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Example 2.4.1 (Does cheating enhance creativity?). Gino and Wiltermuth (2014,
Experiment 2) reported that the act of cheating enhances creativity. This conclu-
sion was based on five experiments. Here we analyse the results from Experiment
2 in which, having been assigned either to a control condition or to a condition
in which they were likely to cheat, participants were rewarded for correctly solving
each of 20 maths and logic multiple-choice problems. Next, participants’ creativity
level was measured by having them complete 12 problems from the Remote Asso-
ciation Task (RAT; Mednick, 1962).

The control group featured n
1

= 48 participants who scored an average of x̄
1

=
4.65 RAT items correctly with a sample standard deviation of s

n1�1

= 2.72. The
cheating group featured n

2

= 51 participants who scored x̄
2

= 6.20 RAT items
correctly with s

n2�1

= 2.98. These findings yield t(97) = 2.73 with p = .008.
Je↵reys’s default Bayes factor yields BF

10

(d) ⇡ 4.6, indicating that the data are
4.6 times more likely under M

1

than under M
0

. With equal prior odds, the
posterior probability for M

0

remains an arguably non-negligible 17%.
For nested models, the Bayes factor can also be obtained using the Savage-

Dickey density ratio test (e.g., Dickey and Lientz, 1970; Wagenmakers et al.,
2010; Marin and Robert, 2010). The Savage-Dickey test is based on the identify

BF
10

(d) =
⇡
1

(� = 0)

⇡
1

(� = 0 | d) . (2.4.9)

One of the additional advantages of the Savage-Dickey test is that it allows the
result of the test to be displayed visually, as the height of the prior versus the
posterior at the point of test (i.e., � = 0). Fig. 2.1 presents the results from
Experiment 2 of Gino and Wiltermuth (2014). ⌃

In this example, both the Bayesian and Fisherian analysis gave the same qual-
itative result. Nevertheless, the Bayes factor is more conservative, and some re-
searchers may be surprised that, for the same data with p = .008 we get a posterior
model probability of P (M

0

| d) = .17, if the two hypotheses were equal probable
a priori. Indeed, for many cases the Bayesian and Fisherian analyses disagree
qualitatively as well as quantitatively (e.g., Wetzels et al., 2011).

2.4.7 The one-sided extension of Je↵reys’s Bayes factor

Some reflection suggests that the authors’ hypothesis from Example 2.4.1 is more
specific – the authors argued that cheating leads to more creativity, not less. To
account for the directionality of the hypothesis we need a one-sided adaptation
of Je↵reys’s Bayes factor BF

10 ; �=1

(n, t). The comparison that is made is then
between the model of no e↵ect M

0

and one denoted by M
+

in which the e↵ect
size � is assumed to be positive. We factorise BF

+0

(d) as

BF
+0

(d) =
p(d |M

+

)

p(d |M
1

)
| {z }

BF+1(d)

p(d |M
1

)

p(d |M
0

)
| {z }

BF10(d)

, (2.4.10)

where BF
+1

(d) is the Bayes factor that compares the unconstrained model M
1

to the positively restricted model M
+

(Morey and Wagenmakers, 2014; Mulder
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Figure 2.1: Posterior and prior distributions of the e↵ect size for a two-sided
default Bayes factor analysis of Experiment 2 of Gino and Wiltermuth (2014).
The Je↵reys default Bayes factor of BF

10 ; �=1

⇡ 4.60 equals the height ratio of
the prior distribution ⇡

1

(�) divided by the posterior distribution ⇡
1

(� | d) at � = 0.

et al., 2010; Pericchi et al., 2008). The objective comparison between M
+

and
M

1

is then to keep all aspects the same ⇡
+

(�) = ⇡
1

(�) = ⇡
0

(�), except for the
distinguishing factor of � being restricted to positive values within M

+

. For the
test-relevant prior distribution we restrict ⇡

1

(�) to positive values of �, which by
symmetry of the Cauchy distribution means that ⇡

+

(�) accounts doubly for the
likelihood when � is positive and nullifies it when � is negative (Klugkist et al.,
2005).

Example 2.4.2 (One-sided test for the Gino and Wiltermuth data). For the
data from Gino and Wiltermuth (2014, Experiment 2) the one-sided adaptation of
Je↵reys’s Bayes factor Eq. (2.4.8) yields BF

+0

(d) = 9.18. Because almost all of
the posterior mass is consistent with the authors’ hypothesis, the one-sided Bayes
factor is almost twice the two-sided Bayes factor. The result is visualised through
the Savage-Dickey ratio in Fig. 2.2. ⌃

2.4.8 Discussion on the t-test

In this section we showcased Je↵reys’s procedure in selecting the instrumental
priors ⇡

0

,⇡
1

that yield a Bayes factor for grading the support that the data provide
for M

0

versus M
1

. The construction of this Bayes factor began by assigning
Je↵reys’s parameterisation-invariant prior to the common parameters, that is,
⇡
0

(�) / 1/�. This is the same prior Je↵reys would use for estimating � in either
of the two models, when no doubt is present on the validity of the model itself. This
prior on the common parameters then yields the denominator of the Bayes factor
Eqns. (2.4.4, 2.4.5, 2.4.6). Je↵reys noted that when the test-relevant prior ⇡

1

(�)
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Figure 2.2: Posterior and prior distributions of e↵ect size for a one-sided default
Bayes factor analysis of Experiment 2 of Gino andWiltermuth (2014). The Je↵reys
default Bayes factor of BF

+0

= 9.18 equals the height ratio of the prior distribution
⇡
1

(�) over the posterior distribution ⇡
1

(� | d) at � = 0. The prior distribution ⇡
+

(�)
is zero for negative values of �. Furthermore, note that the prior distribution for
� � 0 is twice as high compared to ⇡

1

(�) in Fig. 2.1.

is symmetric and heavy tailed, the resulting Bayes factor is guaranteed to yield
the correct conclusion for completely uninformative data and for overwhelmingly
informative data. Je↵reys (1961, pp. 272–273) noted that the standard Cauchy
prior for � yields a Bayes factor Eq. (2.4.8) (with � = 1) that aligns with this
calibration.

It took several decades before Je↵reys’s Bayes factor for the t-test was adopted
by Zellner and Siow (1980), who generalised it to the linear regression framework
based on a multivariate Cauchy distribution. One practical drawback of their
proposal was the fact that the numerical integration required to calculate the
Bayes factor becomes computationally demanding as the number of covariates
grows.

Liang et al. (2008) proposed a computationally e�cient alternative to the Zell-
ner and Siow (1980) setup by first decomposing the multivariate Cauchy distribu-
tion into a mixture of gamma and normal distributions followed by computational
simplifications introduced by Zellner (1986). As a result, the Bayes factor can be
obtained from only a single numerical integral, regardless of the number of covari-
ates. The form of the numerator in Eq. (2.4.8) is in fact inspired by Liang et al.
(2008) and introduced to psychology by Rouder et al. (2009) and Wetzels et al.
(2009). The combination ⇡

0

(�) / ��1 and � ⇠ C(0, 1) was dubbed the JZS-prior
in honour of Je↵reys, Zellner, and Siow; this is understandable in the framework
of linear regression, although it should be noted that all ideas for the t-test were
already present in the second edition of ToP (Je↵reys, 1948, pp. 242–248).
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2.5. Je↵reys’s Bayes factor for the test of the nullity of a correlation

2.4.8.1 Model selection consistency

In addition to predictive matching and information consistency, Liang et al. (2008)
showed that Zellner and Siow’s 1980 generalisation of Je↵reys’s work is also model
selection consistent, which implies that as the sample size n increases indefinitely,
the support that the data d provide for the correct data-generating model (i.e., M

0

or M
1

) grows without bound. Hence, Je↵reys’s default Bayes factor Eq. (2.4.8)
leads to the correct decision whenever the sample size is su�ciently large. Je↵reys’s
procedure of assigning default priors for Bayesian hypothesis testing was recently
generalised by Bayarri et al. (2012). We now turn to Je↵reys’s development of
another default Bayes factor: the test for the presence of a correlation.

2.5 Je↵reys’s Bayes factor for the test of the nullity of a
correlation

To develop the Bayesian correlation test we first characterise the data and dis-
cuss how they relate to the unknown parameters within each model in terms of
the likelihood functions. By studying the likelihood functions we can justify the
nesting of ⇡

0

within ⇡
1

and identify data that are completely uninformative and
data that are overwhelmingly informative. As was done for the Bayesian t-test,
the test-relevant prior is selected based on a calibration argument. The deriva-
tions and calibrations given here cannot be found in Je↵reys (1961), as Je↵reys
appears to have derived the priors intuitively. Hence, we divert from the narra-
tive of Je↵reys (1961, Paragraph 5.5) and instead: (a) explain Je↵reys’s reasoning
with a structure analogous to that of the previous section; and (b) give the exact
results instead, as Je↵reys used an approximation to simplify the calculations. In
e↵ect, we show that Je↵reys’s intuitive choice is very close to our exact result.
After presenting the correlation Bayes factor we relate it to Je↵reys’s choice and
apply the resulting default Bayes factor to an example data set that is concerned
with presidential height and the popular vote. In addition, we develop the one-
sided extension of Je↵reys’s correlation test, after which we conclude with a brief
discussion.

2.5.1 Bivariate normal data

For the case at hand, experimental outcome pairs (X,Y ) are assumed to follow
a bivariate normal distribution characterised by the unknown population means
µ
x

, µ
y

, standard deviations �
x

,�
y

of X and Y respectively. Within M
1

the ad-
ditional parameter ⇢ characterises the linear association between X and Y . To
test the nullity of the population correlation ⇢ it is helpful to summarise the data
for X and Y separately in terms of their respective sample means and average
sums of squares: x̄ = 1

n

P

n

i=1

x
i

, s2
x

= 1

n

P

n

i=1

(x
i

� x̄)2, and ȳ = 1

n

P

n

i=1

y
i

,
s2
y

= 1

n

P

n

i=1

(y
i

� ȳ)2, respectively. The sample correlation coe�cient r then
defines an observable measure of the linear relationship between X and Y

r =

P

n

i=1

(x
i

� x̄)(y
i

� ȳ)
p

P

n

i=1

(x
i

� x̄)2
P

n

i=1

(y
i

� ȳ)2
=

1

n

n

X

i=1

⇣x
i

� x̄

s
x

⌘⇣y
i

� ȳ

s
y

⌘

(2.5.1)
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This sample correlation coe�cient r is an imperfect reflection of the unobservable
population correlation coe�cient ⇢. In sum, the data can be summarised by the
five quantities d = (x̄, s2

x

, ȳ, s2
y

, r).
The main di↵erence between the null model M

0

and M
1

is reflected in the
population correlation coe�cient ⇢, which cannot be observed directly, unlike its
sampled version known as Pearson’s r, Eq. (2.5.1). Extreme data can be charac-
terised by |r|= 1 and this is used in the calibration step of the Bayes factor to
derive the form of the test-relevant prior.

2.5.2 Step 1. Nesting of ⇡0 within ⇡1

2.5.2.1 Comparing the likelihood functions

The point null hypothesis M
0

assumes that the data follow a bivariate normal
distribution with ⇢ known and fixed at zero. Hence, M

0

depends on four param-
eters which we abbreviate as ✓

0

= (µ
x

, µ
y

,�
x

,�
y

), while the alternative model
M

1

can be considered an extension of M
0

with an additional parameter ⇢, i.e.,
✓
1

= (✓
0

, ⇢). These two bivariate normal models relate the observed data to the
parameters using the following two likelihood functions

f(d | ✓
0

,M
0

) = (2⇡�
x

�
y

)�n exp
⇣

� n

2

h⇣ x̄� µ
x

�
x

⌘

2

+
⇣ ȳ � µ

y

�
y

⌘

2

i⌘

, (2.5.2)
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2

h⇣ s
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x
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2
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,

f(d | ✓
1

,M
1

) = (2⇡�
x

�
y

p

1� ⇢2)�n (2.5.3)

⇥ exp
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� n

2(1� ⇢2)
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x
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+
⇣ s
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�
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⌘

2
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,

respectively. Note that f(d | ✓
0

,M
0

) = f(d | ✓
0

, ⇢ = 0,M
1

) and because the pop-
ulation correlation ⇢ is defined as

⇢ =
Cov(X,Y )

p

Var(X)
p

Var(Y )
=

E(XY )� µ
x

µ
y

�
x

�
y

, (2.5.4)

we know that ⇢ remains the same under data transformations of the form X̃ =
aX � b, Ỹ = cY � d. In particular, we can take b = µ

x

, d = µ
y

, a = 1/�
x

, c = 1/�
y

and conclude that ⇢ does not depend on these common parameters ✓
0

. Hence, we
nest ⇡

0

within ⇡
1

orthogonally, that is, ⇡
1

(✓
0

, ⇢) = ⇡
1

(⇢)⇡
0

(✓
0

).

2.5.2.2 The denominator of BF
10

(d)

Je↵reys’s default choice leads to assigning ⇡
0

(✓
0

) the joint prior ⇡
0

(µ
x

, µ
y

,�
x

,�
y

) =
1 · 1 · 1

�

x

1

�

y

; this is the parameterisation-invariant prior that Je↵reys would use to

update to the posterior for ✓
0

within either model. When the averaged sum of
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squares are both non-zero, this yields the following marginal likelihood of M
0

p(d |M
0

) = 2�2n�n⇡1�n(s
x

s
y

)1�n

h

�
�

n�1

2

�

i

2

. (2.5.5)

Eq. (2.5.5) defines the denominator of the correlation Bayes factor BF
10

(d). Ob-
serve that this marginal likelihood does not depend on the sample correlation
coe�cient r.

2.5.3 Step 2. Predictive matching: Symmetric ⇡1(⇢)

2.5.3.1 Deriving the test-relevant likelihood function

We now discuss how the test-relevant prior ⇡
1

(⇢) can be defined such that the
resulting Bayes factor is well-calibrated. The conclusion is as before: we require
⇡
1

(⇢) to be symmetric around zero. We discuss the result more extensively as
it cannot be found in Je↵reys (1961). Furthermore, the test-relevant likelihood
function reported by Je↵reys (1961, p. 291, Eq. 8) is in fact an approximation of
the result given below.

Before we can discuss the calibration we first derive the test-relevant likelihood
function by integrating out the common parameters ✓

0

from Eq. (2.5.3) with re-
spect to the parameterisation-invariant priors ⇡

0

(✓
0

) as outlined by Eq. (2.3.1).
This leads to the following simplification

p(d |M
1

) = p(d |M
0

)

Z

1

�1

h(n, r | ⇢)⇡
1

(⇢)d⇢, (2.5.6)

where h is the test-relevant likelihood function that depends on n, r, ⇢ alone and
is given by Eqns. (2.5.8, 2.5.9) below. The Bayes factor, therefore, reduces to

BF
10

(d) =
p(d |M

1

)

p(d |M
0

)
=

p(d |M
0

)
R

1

�1

h(n, r | ⇢)⇡
1

(⇢)d⇢

p(d |M
0

)
=

Z

1

�1

h(n, r | ⇢)⇡
1

(⇢)d⇢.

(2.5.7)

Note that whereas p(d |M
0

) does not depend on ⇢ or the statistic r, i.e., Eq. (2.5.5),
the function h does not depend on the statistics x̄, s2

x

, ȳ, s2
y

that are associated with
the common parameters. Thus, the evidence for M

1

over M
0

resides within n
and r alone.

The test-relevant likelihood function h(n, r | ⇢) possess more regularities. In
particular, it can be decomposed into an even and an odd function, that is, h =
A+B, with A defined as

A(n, r | ⇢) = (1� ⇢2)
n�1

2

2

F
1

�

n�1

2

, n�1

2

; 1

2

; (r⇢)2
�

, (2.5.8)

where
2

F
1

is Gauss’ hypergeometric function (see Appendix 2.B for details). Ob-
serve that A is a symmetric function of ⇢ when n and r are given. The second
function B is relevant for the one-sided test and is given by

B(n, r | ⇢) =2r⇢(1� ⇢2)
n�1

2

"

�
�

n

2

�

�
�

n�1

2

�

#

2

2

F
1

�

n

2

, n

2

; 3

2

; (r⇢)2
�

, (2.5.9)
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Figure 2.3: A(n, r | ⇢) is an even function of ⇢, and B(n, r | ⇢) is an odd function
of ⇢. Together, A and B determine the function h from Eq. (2.5.7): h(n, r | ⇢) =
A(n, r | ⇢) + B(n, r | ⇢). For this illustration, we used n = 46 and r = 0.39 based
on the example data discussed below.

which is an odd function of ⇢ when n and r are given. Thus, the test-relevant
likelihood function h that mediates inference about the presence of ⇢ from n and
r is given by h(n, r | ⇢) = A(n, r | ⇢)+B(n, r | ⇢). Examples of the functions A and
B are shown in Fig. 2.3.

2.5.3.2 Predictive matching and the minimal sample size of nmin = 3

Interestingly, the predictive matching principle implies the use of a symmetric test-
relevant prior as in the previous case. Note that we cannot infer the correlation of
a bivariate normal distribution whenever we have only a single data pair (x, y); r
is undefined when n = 1. Furthermore, when n = 2 we automatically get r = 1 or
r = �1 regardless of the actually observations and how they were generated. As
such, nothing is learned up to n

min

= 3 when testing the nullity of ⇢. Hence, we
have to choose ⇡

1

(⇢) such that the resulting Bayes factor Eq. (2.5.7) equals one
for n = 1 and n = 2 regardless of the actually observed r.

Using n = 1 in Eq. (2.5.8) and Eq. (2.5.9) we see that the reduced likelihood
is the constant function, that is,

h(1, r | ⇢) = A(1, r | ⇢) +B(1, r | ⇢) = 1 (2.5.10)

for every ⇢ and r. From a consideration of Eq. (2.5.7) it follows that for a Bayes
factor of one with n = 1, we require ⇡

1

(⇢) to integrate to one (i.e., BF
10

(d) =
R

1

�1

⇡
1

(⇢)d⇢ = 1), underscoring Je↵reys’s claim that the test-relevant priors should

be proper.1 Similarly, for n = 2 we automatically obtain |r|= 1 and plugging this

1Je↵reys rejected the parameterisation-invariant prior ⇢ / (1 � ⇢2)�1 because it leads to
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into Eq. (2.5.8) yields A(2, |r|= 1 | ⇢) = 1. Thus, with ⇡
1

(⇢) a proper prior this

yields a Bayes factor of BF
10

(d) = 1 +
R

1

�1

B(2, |r|= 1 | ⇢)⇡
1

(⇢)d⇢. To ensure that
the Bayes factor equals one for data with a sample size of n = 2 we have to
nullify the contribution of the function B(2, |r|= 1 | ⇢). This occurs when ⇡

1

(⇢) is
symmetric around zero, since B(2, r | ⇢) is an odd function of ⇢, see Fig. 2.3.

2.5.4 Step 3. Information consistency

On the other hand, a sample correlation r = 1 or r = �1 with n � n
min

= 3 can
be considered overwhelmingly informative data in favour of the alternative model
M

1

. In our quest to find the right test-relevant prior that yields a Bayes factor
that is information consistent, we consider the so-called symmetric stretched beta
distributions given by

⇡
1

(⇢ ; ) =
2
�2



B( 1


, 1



)
(1� ⇢2)

1�

 , (2.5.11)

where B(1/, 1/) is a beta function, see Appendix 2.C for details. Each  > 0
yields a candidate test-relevant prior. Je↵reys’s intuitive choice is represented by
Eq. (2.5.11) with  = 1, as this choice corresponds to the uniform distribution
of ⇢ on (�1, 1). Furthermore,  can be thought of as a scale parameter of the
prior as in Eq. (2.4.7). We claim that a Bayes factor based on a test-relevant prior
Eq. (2.5.11) with  � 2 is information consistent.

2.5.5 The resulting Bayes factor

To prove the information consistency claim, ⇢ is integrated out of the test-relevant
likelihood with h = A + B as discussed above, Eq. (2.5.7). This results in the
following closed form Bayes factor:

BF
10 ;

(n, r) =

Z

1

�1

h(n, r | ⇢)⇡
1

(⇢ ; )d⇢

=

Z

1

�1

A(n, r | ⇢)⇡(⇢ ; )d⇢+

0

z }| {

Z

1

�1

B(n, r | ⇢)⇡(⇢ ; )d⇢

=
2
�2



p
⇡

B( 1


, 1



)

�
⇣

2+(n�1)

2

⌘

�
�

2+n

2

�

2

F
1

�

n�1

2

, n�1

2

; 2+n

2

; r2
�

, (2.5.12)

where the contribution of the B-function is nullified due to symmetry of the prior.
We call Eq. (2.5.12) Je↵reys’s exact correlation test, as we believe that Je↵reys
would have derived this Bayes factor BF

10 ;

(n, r), if he had deemed it necessary
to calculate it exactly.

unwelcome results when testing the null hypothesis ⇢ = 1. However, Robert et al. (2009) noted
that such a test is rather uncommon as interest typically centres on the point null hypothesis
M

0

: ⇢ = 0.
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Table 2.1 lists the Bayes factors for a selection of values for  and n with r = 1
fixed; the results confirm that the Bayes factor is indeed information consistent
when  � 2. Note that Je↵reys’s choice of  = 1 does not lead to a Bayes
factor which provides extreme support for M

1

when confronted with data that
are overwhelmingly informative (i.e., r = 1 and n

min

= 3). However, this Bayes
factor does diverge when n � 4. Thus, Je↵reys’s intuitive choice for  misses the
information consistency criterion by one data pair. The resulting Bayes factor
BF

10 ;

(n, r) now awaits a user’s observed r-value and the associated n number
of observations. In what follows, we honour Je↵reys’s intuition and showcase the
correlation Bayes factor using Je↵reys’s choice  = 1.

Table 2.1: The Bayes factor BF
10 ;=2

is information consistent as it diverts to
infinity when r = 1 and n � 3, while Je↵reys’s intuitive choice BF

10 ;=1

does not
do so until n � 4. Hence, Je↵reys intuitive choice  = 1 misses the information
consistency criterion by one observation. Furthermore, note the role of ; the
smaller it is, the stronger the associated Bayes factor violatew the criterion of
information consistency.

n BF
10 ;=5

BF
10 ;=2

BF
10 ;=1

BF
10 ;=1/3

BF
10 ;=1/10

1 1 1 1 1 1
2 1 1 1 1 1
3 1 1 2 1.2 1.05
4 1 1 1 1.75 1.17
5 1 1 1 3.20 1.36

2.5.6 Example: The Bayesian correlation test

We now apply Je↵reys’s default Bayesian correlation test to a data set analysed
earlier by Stulp et al. (2013).

Example 2.5.1 (Do taller electoral candidates attract more votes?). Stulp et al.
(2013) studied whether there exists a relation between the height of electoral can-
didates and their popularity among voters. Based on the data from n = 46 US
presidential elections, Stulp et al. (2013) reported a positive linear correlation of
r = .39 between X, the relative height of US presidents compared to their oppo-
nents, and Y , the proportion of the popular vote. A frequentist analysis yielded
p = .007. Fig. 2.4 displays the data. Based in part on these results, Stulp et al.
(2013, p. 159) concluded that “height is indeed an important factor in the US
presidential elections”, and “The advantage of taller candidates is potentially ex-
plained by perceptions associated with height: taller presidents are rated by experts
as ‘greater’, and having more leadership and communication skills. We conclude
that height is an important characteristic in choosing and evaluating political lead-
ers.”

For the Stulp et al. (2013) election data Je↵reys’s exact correlation Bayes
factor Eq. (2.5.12) yields BF

10 ;=1

= 6.33, indicating that the observed data are
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Figure 2.4: The data from n = 46 US presidential elections, showing the pro-
portion of the popular vote for the president versus his relative height advantage
against the closest competitor. The sample correlation equals r = .39, and, as-
suming an unrealistic sampling plan, the p-value equals .007. Je↵reys’s default
two-sided Bayes factor equals BF

10

(n = 46, r = .39) = 6.33, and the correspond-
ing one-sided Bayes factor equals BF

+0

(n = 46, r = .39) = 11.87. See text for
details.
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Figure 2.5: Posterior and prior distributions of the population correlation coef-
ficient ⇢ for a two-sided default Bayes factor analysis of the height-popularity
relation in US presidents Stulp et al. (2013). The Je↵reys default Bayes factor of
BF

10 ;=1

= 6.33 equals the height ratio of the prior distribution ⇡
1

(⇢) over the
posterior distribution ⇡

1

(⇢ | d) at ⇢ = 0.
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6.33 times more likely under M
1

than under M
0

. This result is visualised in
Fig. 2.5 using the Savage-Dickey density ratio test. With equal prior odds, the
posterior probability for M

0

remains an arguably non-negligible 14%. ⌃

2.5.7 The one-sided extension of Je↵reys’s exact correlation
Bayes factor

Whereas the function A fully determines the two-sided Bayes factor BF
10 ;

(n, r),
the function B takes on a prominent role when we compare the null hypothesis
M

0

against the one-sided alternative M
+

with ⇢ > 0.
To extend Je↵reys’s exact correlation Bayes factor to a one-sided version, we

retain the prior on the common parameters ✓
0

. For the test-relevant prior ⇡
+

(⇢ ; )
we restrict ⇢ to non-negative values, which due to symmetry of ⇡

1

(⇢ ; ) is specified
as

⇡
+

(⇢ ; ) =

(

2⇡
1

(⇢ ; ) for 0  ⇢  1,

0 otherwise.
(2.5.13)

Recall that A is an even function of ⇢; combined with the doubling of the prior
for ⇢ this leads to a one-sided Bayes factor that can be decomposed as

BF
+0 ;

(n, r) = BF
10 ;

(n, r)
| {z }

R 1
0 A(n,r | ⇢)⇡+(⇢ ;)d⇢

+ C
+0 ;

(n, r)
| {z }

R 1
0 B(n,r | ⇢)⇡+(⇢ ;)d⇢

. (2.5.14)

The function C
+0 ;

(n, r) can be written as

C
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(n, r) =
2
3�2
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(2.5.15)

where
3

F
2

is a generalised hypergeometric function (Gradshteyn and Ryzhik, 2007,
their Section 9.14) with three upper and two lower parameters.

The function C
+0 ;

(n, r) is positive whenever r is positive, since B as a func-
tion of ⇢ is then positive on the interval (0, 1); consequently, for positive values
of r the restricted, one-sided alternative hypothesis M

+

is supported more than
the unrestricted, two-sided hypothesis M

1

, that is, BF
+0 ;

(n, r) > BF
10 ;

(n, r).
On the other hand, C

+0 ;

(n, r) is negative whenever r is negative; for such cases,
BF

+0 ;

(n, r) < BF
10 ;

(n, r).

Example 2.5.2 (One-sided correlation test for the US president data). As shown
in Fig. 2.6, for the Stulp et al. (2013) data the one-sided Je↵reys’s exact correlation
Bayes factor Eq. (2.5.14) yields BF

+0 ;=1

= 11.87, indicating that the observed
data are 11.87 times more likely under M

+

than under M
0

. Because almost
all posterior mass obeys the order-restriction, BF

+0

⇡ 2 ⇥ BF
10

– its theoretical
maximum. ⌃
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Figure 2.6: Posterior and prior distributions of the population correlation co-
e�cient ⇢ for a one-sided default Bayes factor analysis of the height-popularity
relation in US presidents Stulp et al. (2013). The Je↵reys default Bayes factor of
BF

+0 ;=1

= 11.87 equals the height ratio of the prior ⇡
+

(⇢) over the posterior
⇡
+

(⇢ | d) at ⇢ = 0. The prior ⇡
+

(⇢) is zero for negative values of ⇢. Furthermore,
note that the prior distribution ⇡

+

(⇢) is twice as high for ⇢ � 0 compared to ⇡
1

(⇢)
in Fig. 2.5.

Using the same arguments as above, we can define the Bayes factor for a test
betweenM� andM

0

, which is in fact given by BF�0 ;

(n, r) = BF
+0 ;

(n,�r) due
to the fact that B is an odd function of ⇢. In e↵ect, this implies that BF

+0 ;

(n, r)+
BF�0 ;

(n, r) = 2⇥BF
10 ;

(n, r), where the factor of two follows from symmetry of
⇡
1

(⇢ ; ) in the definition of ⇡
+

(⇢ ; ). Additional information on the coherence of
the Bayes factor for order restrictions can be found in Mulder (2014) and Mulder
(2016).

2.5.8 Discussion on the correlation test

As mentioned earlier, the previous analysis cannot be found in Je↵reys (1961) as
Je↵reys did not derive the functions A and B explicitly. In particular, Je↵reys
(1961, Eqns. (8, 9), p. 291) suggested that the integral of the likelihood Eq. (2.5.3)
with respect to the parameterisation-invariant parameters ⇡

0

(✓
0

) yields

hJ(n, r | ⇢) = (1� ⇢2)
n�1

2

(1� r⇢)
2n�3

2

, (2.5.16)

which in fact approximates the true test-relevant likelihood function h = A + B
very well for modest values of |r| (cf. Je↵reys, 1961, p. 175) — this is illustrated
in Fig. 2.7 which plots the error h � hJ . Specifically, the left panel of Fig. 2.7
shows that when r = .39, as in the example on the height of US presidents, there
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Figure 2.7: Error of approximation between the exact function h and Je↵reys’s
approximation hJ . The left panel shows that for a modest sample correlation (i.e.,
r = .39, as in the example on the height of US presidents) Je↵reys’s approximation
is quite accurate; moreover, the error decreases as n grows, and the curve of n = 10
overlaps with that of n = 20. However, the right panel shows that for a sample
correlation of r = .70 the error increases with n, but only for some values of ⇢.
Furthermore, note that Je↵reys’s approximation hJ does not yield hJ(n = 1, r) = 1
for every possible r.

is virtually no error when n = 10. The right panel of Fig. 2.7, however, shows that
when r = .70, the error increases with n, but only for values of ⇢ from about .30 to
about .95. From Je↵reys’s approximation hJ one can define Je↵reys’s integrated
Bayes factor (Boekel et al., 2015; Keuken et al., 2017; Wagenmakers et al., 2016c):

BFJ,I
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. (2.5.17)

Je↵reys (1961, p. 175) noticed the resulting hypergeometric function, but as these
functions were hard to compute, Je↵reys went on to derive a practical approx-
imation for the users of his Bayes factor. The final Bayes factor that Je↵reys
recommended for the comparison M

1

versus M
0

is therefore an approximation of
an approximation and given as

BFJ

10

(n, r) =

r

⇡

2n� 3
(1� r2)

4�n

2 . (2.5.18)

For the US presidents data from Example 2.5.1 all three Bayes factors yield virtu-
ally the same evidence (i.e, BF

10 ;=1

(n = 46, r = .39) = 6.331, BFJ,I

10

(n = 46, r =
.39) = 6.329, and BFJ

10

(n = 46, r = .39) = 6.379). Table 2.2 shows that the
three Bayes factors generally produce similar outcomes, even for large values of
r (cf. Robert et al., 2009). Je↵reys’s approximate Bayes factor turns out to be
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remarkably accurate, especially because there is rarely the need to determine the
Bayes factor exactly. Je↵reys (1961, p. 432) remarks:

In most of our problems we have asymptotic approximations to
K [i.e., BF

01

] when the number of observations is large. We do not
need K with much accuracy. Its importance is that if K > 1 the null
hypothesis is supported by the evidence; if K is much less than 1 the
null hypothesis may be rejected. But K is not a physical magnitude.
Its function is to grade the decisiveness of the evidence. It makes little
di↵erence to the null hypothesis whether the odds are 10 to 1 or 100 to
1 against it, and in practice no di↵erence at all whether they are 104 or
1010 to 1 against it. In any case whatever alternative is most strongly
supported will be set up as the hypothesis for use until further notice.

Table 2.2: A comparison of Je↵reys’s exact Bayes factor (i.e., BF
10 ;=1

) to Jef-

freys’s approximate integrated Bayes factor (i.e., BFJ,I

10

) and to Je↵reys approx-
imation of the approximate integrated Bayes factor (i.e., BFJ

10

) reveals the high
accuracy of the approximations, even for large values of r.

n BF
10 ;=1

(n, .7) BFJ,I

10

(n, .7) BFJ

10

(n, .7)
5 1.1 1.1 0.9
10 3.6 3.6 3.2
20 67.5 67.2 63.7

n BF
10 ;=1

(n, .9) BFJ, I

10

(n, .9) BFJ

10

(n, .9)
5 2.8 2.8 1.5
10 84.6 83.7 62.7
20 197,753.0 196,698.0 171,571.5

Hence, the main advantage of having obtained the exact Bayes factor based on
the true test-relevant likelihood function h may be that it justifies Je↵reys’s ap-
proximation BFJ

10

(n, r). The true function h also provides insight in the one-sided
version of Je↵reys’s test, and it provides a clearer narrative regarding Je↵reys’s
motivation in model selection and hypothesis testing in general. Moreover, it
allows us to show that Je↵reys’s exact Bayes factor is model selection consistent.

2.5.8.1 Model selection consistency

To show that Je↵reys’s correlation Bayes factor is model selection consistent, we
use the sampling distribution of the maximum likelihood estimate (MLE). As r
is the MLE we know that it is asymptotically normal with mean ⇢ and variance

1

n(1�⇢

2
)

2 , where ⇢ is the true value. In particular, when the data are generated

under M
0

, thus, ⇢ = 0, we know that r ⇠ N
�

0, 1

n

�

when n is large. In order
to show that the support for a true M

0

grows without bound as the number of
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data points n increases, the Bayes factor BF
10 ;

(n, r) needs to approach zero as
n increases.

We exploit the smoothness of BF
10 ;

(n, r) by Taylor expanding it up to third
order in r. By noting that the leading term of the Taylor expansion BF

10 ;

(n, 0)

has a factor �
⇣

(n�1)+2

2

⌘

/�
�

n+2

2

�

we conclude that it converges to zero as n

grows. The proof that the Bayes factor BF
10 ;

is also model selection consis-
tent under M

1

follows a similar approach by a Taylor approximation of second
order and consequently concluding that BF

10 ;

(n, r) diverges to 1 as n grows
indefinitely.

2.6 Conclusion

We hope to have demonstrated that the Bayes factors proposed by Harold Je↵reys
have a solid theoretical basis, and, moreover, that they can be used in empirical
practice to answer one particularly pressing question: What is the degree to which
the data support either the null hypothesis M

0

or the alternative hypothesis M
1

?
As stated by Je↵reys (1961, p. 302):

“In induction there is no harm in being occasionally wrong; it is
inevitable that we shall be. But there is harm in stating results in such
a form that they do not represent the evidence available at the time
when they are stated, or make it impossible for future workers to make
the best use of that evidence.”

It is not clear to us what inferential procedures other than the Bayes factor
are able to represent evidence for M

0

versus M
1

. After all, the Bayes factor
follows directly from probability theory, and this ensures that is obeys fundamental
principles of coherence and common sense (e.g., Wagenmakers et al., 2014).

It needs to be acknowledged that the Bayes factor has been subjected to nu-
merous critiques. Here we discuss two. First, one may object that the test-relevant
prior distribution for the parameter of interest has an overly large influence on the
Bayes factor (Liu and Aitkin, 2008). In particular, uninformative, overly wide
priors result in an undue preference for M

0

, a fact that Je↵reys recognised at an
early stage. The most principled response to this critique is that the selection of
appropriate priors is an inherent part of model specification. Indeed, the prior
o↵ers an opportunity for the implementation of a substantively di↵erent model
(Vanpaemel, 2010).

In this chapter, we showcased this ability when we adjusted the prior to im-
plement a directional, one-sided alternative hypothesis. In general, the fact that
di↵erent priors result in di↵erent Bayes factors should not come as a surprise. As
stated by Je↵reys (1961, p. x):

“The most beneficial result that I can hope for as a consequence of
this work is that more attention will be paid to the precise statement
of the alternatives involved in the questions asked. It is sometimes
considered a paradox that the answer depends not only on the obser-
vations but on the question; it should be a platitude.”
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2.6. Conclusion

The second critique is that in practice, all models are wrong. At first glance
this appears not to be a problem, as the Bayes factor quantifies the support for
M

0

versus M
1

, regardless of whether these models are correct. However, it is
important to realise that the Bayes factor is a relative measure of support. The
fact that BF

10

= 100, 000 indicates that M
1

receives much more support from the
data than does M

0

, but this does not mean that M
1

is any good in an absolute
sense (e.g., Andraszewicz et al., 2015; Anscombe, 1973). In addition, it has recently
been suggested that when both models are misspecified, the Bayes factor may
perform poorly in the sense that it is too slow to select the best model (van Erven
et al., 2012). However, the Bayes factor does have a predictive interpretation that
does not depend on one of the models being true (Wagenmakers et al., 2006);
similarly, the model preferred by the Bayes factor will be closest (with respect to
the Kullback-Leibler divergence) to the true data-generating model (Berger, 1985;
Je↵reys, 1980). More work on this topic is desired and expected.

In mathematical psychology, the Bayes factor is a relatively popular method
of model selection, as it automatically balances the tension between parsimony
and goodness-of-fit, thereby safeguarding the researcher against overfitting the
data and preferring models that are good at describing the obtained data, but
poor at generalising and prediction (Myung et al., 2000c; Myung and Pitt, 1997;
Wagenmakers and Waldorp, 2006b). Nevertheless, with the recent exception of
the Bayes factor t-test, the Bayes factors proposed by Je↵reys (1961) have not
received much attention, neither by statisticians nor mathematical psychologists.
One of the reasons for this unfortunate fact is that Je↵reys notation is more
accustomed to philosophers of logic (Geisser, 1980). In order to make Je↵reys’s
work somewhat more accessible, Appendix 2.D provides a table with a modern-
day translation of Je↵reys’s notation. In addition, any scholar new to the work of
Je↵reys is recommended to first read the extended modern summary by Robert
et al. (2009).

We would like to stress that a Je↵reys Bayes factor is not a mere ratio of likeli-
hood functions averaged with respect to a subjective elicited prior ⇡

i

(✓
i

) obtained
from a within-model perspective. Je↵reys’s development of the Bayes factor resem-
bles an experimental design for which one studies where the likelihood functions
overlap, how they di↵er, and in what way the di↵erence can be apparent from
the data. These consideration then yield priors from which a Bayes factor needs
to be computed. The computations are typically hard to perform and might not
yield closed form results. These computational issues were a major obstacle for
the Bayesian community, however, Je↵reys understood that closed form solutions
are not always necessary for good inference; moreover, he was able to derive ap-
proximate Bayes factors, allowing his exposition of Bayesian inductive reasoning
to transcend from a philosophical debate into practical tools for scientific scrutiny.

Modern-day statisticians and mathematical psychologists may lack Je↵reys’s
talent to develop default Bayes factors, but we are fortunate enough to live in a
time in which computer-driven sampling methods known as Markov chain Monte
Carlo (MCMC: e.g., Gamerman and Lopes, 2006; Gilks et al., 1996) are widely
available. This removes the computational obstacles one needs to resolve after the
priors are specified. These tools makes Je↵reys’s method of testing more attainable
than ever before.
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2. Harold Jeffreys’s Default Bayes Factor Hypothesis Tests:
Explanation, Extension, and Application in Psychology

2.A The default Bayes factor hypothesis tests proposed by
Je↵reys in ToP

Table 2.3: Default Bayes factor hypothesis tests proposed by Je↵reys (1961) in
Chapter V of “Theory of Probability” (third edition).

Tests Pages
Binomial rate 256 – 257
Simple contingency 259 – 265
Consistency of two Poisson parameters 267 – 268
Whether the true value in the normal law is zero, � unknown 268 – 274
Whether a true value is zero, � known 274
Whether two true values are equal, standard errors known 278 – 280
Whether two location parameters are the same, standard errors not supposed equal 280 – 281
Whether a standard error has a suggested value �

0

281 – 283
Agreement of two estimated standard errors 283 – 285
Both the standard error and the location parameter 285 – 289
Comparison of a correlation coe�cient with a suggested value 289 – 292
Comparison of correlations 293 – 295
The intraclass correlation coe�cient 295 – 300
The normal law of error 314 –319
Independence in rare events 319 – 322

2.B The hypergeometric function

The hypergeometric function (Oberhettinger, 1972, Section 15) with two upper
parameters and one lower parameter generalises the exponential function as follows
(Gradshteyn and Ryzhik, 2007, p 9.114):

2

F
1

(a, b ; c ; z) = 1 +
a · b
c · 1z +

a(a+ 1)b(b+ 1)

c(c+ 1) · 1 · 2 z2 (2.B.1)

+
a(a+ 1)(a+ 2)b(b+ 1)(b+ 2)

c(c+ 1)(c+ 2) · 1 · 2 · 3 z3 + . . . (2.B.2)

2.C The stretched beta density

By the change of variable formula, we obtain the stretched beta density of ⇢ on
(�1, 1) with parameters ↵,� > 0

1

2B(↵,�)

✓

⇢+ 1

2

◆

↵�1

✓

1� ⇢

2

◆

��1

, (2.C.1)

where B(↵,�) = �(↵)�(�)

�(↵+�)

is the beta function that generalises
�

n

k

�

to real numbers.

By setting � = ↵ this yields the symmetric beta density of ⇢ on (�1, 1) with
parameters ↵ > 0
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2.D. Translation of Je↵reys’s notation in ToP

2�2↵+1

B(↵,↵) (1� ⇢2)↵�1. (2.C.2)

The reparametrisation we used in text is given by simply substituting ↵ = 1/
allowing us to interpret  as a scale parameter.

2.D Translation of Je↵reys’s notation in ToP

Table 2.4: Translation of the notation introduced by (Je↵reys, 1961, pp. 245–267).
The treatment of ↵ and � as new or old parameters di↵ers from context to context
in (Je↵reys, 1961).

Je↵reys’s notation Modern notation Interpretation
q M

0

Null hypothesis or null model
q0 M

1

Alternative hypothesis or alternative model
H Background information (mnemonic: “history”)
P (q |H) P (M

0

) Prior probability of the null modelR
f(↵)d↵

R
⇡(✓)d✓ Prior density on the parameter ✓

P (q0d↵ |H) P (M
1

, ✓) Probability of the alternative model and its parameter
P (q | aH) ⇡

0

(✓
0

|x) Posterior density on the parameter within M
0

P (q0d↵ | aH) ⇡
1

(✓
1

|x) Posterior density on the parameter within M
1

K BF
01

(d) The Bayes factor in favour of the null over the alternative

↵0,� ✓
0

= ↵, ✓
1

=
�
↵

0

�

�
“Alternative” parameter ✓

1

=
�function of the old parameter

new parameter
�

f(�,↵0) ⇡
1

(⇣ | ✓
0

) Prior of the new given the old prior within M
1

g
↵↵

d↵’2 + g
�,�

d�2 I(~✓) Fisher information matrix
P (q, db |H) = f(b)db ⇡

0

(✓
0

) Prior density of the common parameters within M
0

P (q0dbd↵ |H) = f(b)dbd↵ ⇡
1

(✓
1

) Prior density of the parameters within M
1

P (✓ | q, b,H) f(d | ✓
0

,M
0

) The likelihood under M
0

P (✓ | q0, b,↵, H) f(d | ✓
0

, ⇣,M
1

) Likelihood under M
1

P (q db | ✓H) ⇡
0

(✓
0

| d) Posterior of the parameters within M
0

P (q0 db d↵ | ✓H) ⇡
1

(✓
1

| d) Posterior of the parameters within M
1
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Chapter 3

An Evaluation of Alternative
Methods for Testing Hypotheses,
from the Perspective of Harold

Je↵reys

Abstract

Our original article provided a relatively detailed summary of Harold
Je↵reys’s philosophy on statistical hypothesis testing. In response, Robert
(2016) maintains that Bayes factors have a number of serious shortcomings.
These shortcomings, Robert argues, may be addressed by an alternative
approach that conceptualises model selection as parameter estimation in a
mixture model. In a second comment, Chandramouli and Shi↵rin (2016)
seek to extend Je↵reys’s framework by also taking into consideration prob-
ability mass functions that do not belong to the models under test. In this
rejoinder we argue that Robert’s (2016) alternative view on testing has more
in common with Je↵reys’s Bayes factor than he suggests, as they share the
same “shortcomings”. On the other hand, we show that the proposition of
Chandramouli and Shi↵rin (2016) to extend the Bayes factor is in fact fur-
ther removed from Je↵reys’s view on testing than the authors suggest. By
elaborating on these points, we hope to clarify our case for Je↵reys’s Bayes
factors.

Keywords: Bayes factors, induction, model selection, replication, statisti-
cal evidence.

This chapter is published as: Ly, A., Verhagen, A. J., & Wagenmakers, E.–J. (2016b).
An evaluation of alternative methods for testing hypotheses, from the perspective of Harold
Je↵reys. Journal of Mathematical Psychology, 72, 43–55. doi: http://dx.doi.org/10.1016/

j.jmp.2016.01.003
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3. An Evaluation of Alternative Methods for Testing Hypotheses,
from the Perspective of Harold Jeffreys

3.1 Introduction

In our original article (Ly et al., 2016a) we outlined how Harold Je↵reys con-
structed his hypothesis tests. Je↵reys’s tests contrast a precise, point-null hy-
pothesis M

0

versus a more general alternative hypothesis M
1

. Here the point-
null hypothesis represents a general law, an invariance, or a categorical causal
claim (e.g., “apple trees always bear apples”; “people cannot look into the fu-
ture”; “Alzheimer’s disease is caused by a fungal infection of the central nervous
system”), whereas the alternative hypothesis relaxes that law. Je↵reys’s tests
require a thoughtful specification of the prior distribution for the parameter of
interest, and much of Je↵reys’s work was concerned with providing good default
specifications – “good” in the sense that they adhere to general common-sense
desiderata (e.g., Bayarri et al., 2012). We are pleased that our summary attracted
two comments by renowned researchers; below we respond to their ideas in a way
that we hope is consistent with the overall philosophy of Harold Je↵reys himself.

3.2 Rejoinder to Robert

In general, Robert’s (2016) comments highlight the inevitable subtleties in con-
structing a Bayes factor. His alternative mixture model procedure is practical
and may be immensely valuable for specific situations (i.e., hierarchical models)
that are common in psychological research. Nevertheless, we believe Robert’s
suggestion about the demise of the Bayes factor to be an overstatement.

3.2.1 Robert’s critique on the Bayes factor

Our understanding of Je↵reys’s method is partly based on the work by Robert and
colleagues (2009), and it should, therefore, not come as a surprise that Robert’s
view and ours overlap to a considerable degree. Robert’s arguments for dismissing
the Bayes factor can be grouped in terms of (1) its usage in making decisions, and
(2) the care that needs to be taken in choosing the priors.

3.2.1.1 First critique: The distinction between inference and decision
making

We share Robert’s discontent with the statistical practice that emphasises all-or-
none decisions at some arbitrary threshold, and we agree that scientific learning
should instead be guided by a continuous measure of evidence. In the process of
eviscerating p-value null hypothesis tests, Rozeboom (1960, pp. 422-423) already
expressed a similar sentiment:

“The null-hypothesis significance test treats ‘acceptance’ or ‘rejection’
of a hypothesis as though these were decisions one makes. But a hy-
pothesis is not something, like a piece of pie o↵ered for dessert, which
can be accepted or rejected by a voluntary physical action. Accep-
tance or rejection of a hypothesis is a cognitive process, a degree of
believing or disbelieving which, if rational, is not a matter of choice
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3.2. Rejoinder to Robert

but determined solely by how likely it is, given the evidence, that the
hypothesis is true.”

Our favourite continuous measure of evidence is of course a Bayes factor con-
structed from a pair of priors selected according to Je↵reys’s desiderata, which we
simply refer to as a Je↵reys’s Bayes factor. It is important to note that this mea-
sure provides only the first of three Bayesian ingredients needed for decision mak-
ing. The other two ingredients are the prior model probabilities (which, combined
with the Bayes factor, yield posterior model probabilities) and the specification
of a loss function (or equivalently, a utility function; Berger, 1985, Lindley, 1977,
and Robert, 2007).

For instance, consider a Bayes factor of BF
10

(d) = 4.6 for the observed data
d. This Bayes factor can be converted into a posterior model probability of
P (M

0

| d) = 0.17 when we set P (M
0

) = P (M
1

) = 1/2 (Ly et al., 2016a). One
possible subsequent decision rule is then to accept P (M

1

| d) because it has the
highest posterior model probability. We did not intend to suggest such a pro-
cedure, as the decision is clearly sensitive to the prior model probabilities. Fur-
thermore, we do not recommend uniform prior model probabilities regardless of
scientific context. In fact, when decision making is desired, the assignment of
prior model probabilities is left to the substantive researcher. Such flexibility in
assignment introduces subjectivity, and this may be seen either as a disadvantage
or as an advantage. At any rate, prior model probabilities can be used to formalise
the adage that “extraordinary claims require extraordinary evidence” (e.g., Wa-
genmakers et al., 2011). Moreover, the prior model probabilities can be used to
address the problem of multiplicity (e.g., Je↵reys, 1961; Scott and Berger, 2010;
Stephens and Balding, 2009). A similar argument applies to utility functions:
these may be subjective and hard to elicit, but such di�culties do not sanction
the practice of ignoring utility functions altogether, at least not when the purpose
is to make decisions.

Thus, Robert worries that computation of Bayes factors may tempt users to
make all-or-none decisions while disregarding prior model probabilities or loss
functions. We agree with Robert that there is a considerable di↵erence between
inference and decision making, and that scientific learning should be guided by a
continuous measure of evidence that incorporates what we have learned from the
observed data. The Bayes factor is such a measure.

3.2.1.2 Second critique: The Je↵reys-Lindley-Bartlett paradox

We suspect that the Je↵reys-Lindley-Bartlett (henceforth JLB) paradox is central
to Robert’s (1993; 2014) dismissal of the Bayes factor and it is the main motivation
for the development of the mixture model alternative. We take a closer look at the
JLB paradox and discuss two consequences foreseen by Je↵reys, who was keenly
aware of the “paradox” from the very beginning (Etz and Wagenmakers, 2017).

First, the JLB paradox implies that we cannot use improper priors to construct
a Bayes factor. For instance, to estimate µ within the normal model M

1

: X ⇠
N (µ, 1), we typically employ Je↵reys’s (1946) prior µ / 1. The reason to do so
stems from the fact that Je↵reys’s prior is parameterisation-invariant, leading to
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3. An Evaluation of Alternative Methods for Testing Hypotheses,
from the Perspective of Harold Jeffreys

a posterior that is independent on how researchers parameterise the problem (Ly
et al., 2017c). The JLB paradox implies that we cannot use this same (estimation)
prior on the test-relevant parameter for a Bayesian test. More specifically, when
we pit the aforementioned model M

1

against the null model M
0

: X ⇠ N (0, 1)
the improper prior ⇡

1

(µ) / 1 then becomes useless. To see this we consider the
Je↵reys’s prior as the limit of proper priors µ ⇠ N (0, g) with g tending to infinity.
The Bayes factor for the observed data d = (n, x̄) is then given by

lim
g!1

B̃F
10 ; g

(d) = lim
g!1

R

exp [� n

2

(x̄� µ)2] exp [� 1

2g

µ2]dµ
p
2⇡g exp[�n

2

x̄2]
, (3.2.1)

= lim
g!1

1p
1 + ng

exp



g(nx̄)2

2(1 + ng)

�

= 0, (3.2.2)

regardless of the fixed sample size n and the observed sample mean x̄. As such,
the Bayes factor constructed from the improper Je↵reys’s prior will always favour
the null model and this also holds for other improper priors. Moreover, Eq. (3.2.2)
shows that for fixed data d = (n, x̄) and a Bayes factor constructed from a normal
prior with hyperparameter g we can obtain a Bayes factor in favour of the null
hypothesis of arbitrary size (i.e., B̃F

10 ; g

(d) < 1) simply by taking g large enough.
Hence, the JLB paradox e↵ectively implies that a testing problem should be

treated di↵erently from one that is concerned with estimation. As such, when
⇡
1

is interpreted as prior belief about the parameters ✓
1

, in the example above
✓
1

= µ, one’s belief about the parameter then changes depending on whether one
is concerned with testing or estimation. More generally, this di↵erence is due to
the fact that estimation is typically a within-model a↵air. Recall that a model M

i

specifies a relationship f
i

(d | ✓
i

) that defines which parameters ✓
i

are relevant in
the data generating process of the data d. Hence, the function f

i

gives the (only)
context in which the parameters ✓

i

can be perceived.
In essence, the function f

i

justifies that it is meaningful to calculate a posterior
distribution for the parameter. To underline this point we add subscripts to the
parameters indicating model membership in the next example, by taking ✓

0

= �
0

and ✓
1

= (µ
1

,�
1

) for f
0

and f
1

both normals. For example, when we assume that
M

0

: X ⇠ N (0,�2

0

) only a posterior for the standard deviation �
0

is worthwhile to
be pursued, as the posterior for the population mean remains zero, regardless of the
data. WithinM

0

, the Je↵reys’s prior for �
0

is given by ⇡
0

(�
0

) / ��1

0

, which can be
updated to a posterior ⇡

0

(�
0

| d). On the other hand, under M
1

: X ⇠ N (µ
1

,�2

1

)
we are dealing with two parameters of interest. Within M

1

, the Je↵reys’s prior for
µ
1

is ⇡(µ
1

) / 1, for �
1

is ⇡
1

(�
1

) / 1/�
1

and we take ⇡
1

(µ
1

,�
1

) = ⇡
1

(µ
1

)⇡
1

(�
1

).
These priors can be updated to posteriors ⇡

1

(µ
1

| d) and ⇡
1

(�
1

| d). Even though
the two priors ⇡

0

(�
0

) and ⇡
1

(�
1

) have the same form, they do not lead to the
same posterior. In fact, due to the presence of µ

1

as a parameter, the posterior
mean of ⇡

1

(�
1

| d) within M
1

will be smaller or equal to the posterior mean of
⇡
0

(�
0

| d) within M
0

. Thus, when we are interested in the standard error �
i

, it
matters whether we believe that M

0

holds true or whether the population mean
µ
1

plays a role in the data generating process as specified by f
1

. The Bayes
factor helps us distinguish which of the two models is better suited to the data
and which posterior for �

i

we should report. Hence, testing is a between-model
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3.2. Rejoinder to Robert

matter. Je↵reys himself was very clear about the distinction between estimation
and testing:

“We are now concerned with the more di�cult question: in what cir-
cumstances do observations support a change of the form of the law
itself? This question is really logically prior to the estimation of the
parameters, since the estimation problem presupposes that the param-
eters are relevant.” (Je↵reys, 1961, p. 245)

Hence, testing implies that we are uncertain about which of the two functional rela-
tionships defined by the models M

0

and M
1

is adequate for the data under study.
This uncertainty is expressed through the prior statement P (M

0

), P (M
1

) > 0
and when M

0

and M
1

are the only models under consideration we require that
P (M

0

) + P (M
1

) = 1. The priors ⇡
1

,⇡
0

in a Bayes factor are, thus, chosen to
guide scientific learning, that is, how one transitions from prior model odds to
posterior model odds and are not designed to yield posteriors that are necessarily
good for estimation. To simplify notation, we drop the subscripts indicating model
membership when the context is clear.

Second, the separation of estimation and testing and the resulting separation
of models led us to instantiate the hypotheses H

i

with their respective models M
i

as discussed in Ly et al. (2016a). In e↵ect, we have di↵erent contexts in which
the respective parameters exist and, therefore, a philosophical conundrum in what
is meant by common parameters. The di↵erence between the posteriors ⇡

0

(� | d)
and ⇡

1

(� | d) discussed above showed that one should not be fooled by the fact
that the Greek letters are identical. We therefore agree with Robert’s warning
concerning the treatment of common parameters.

For the t-test the commonality between the two �s within M
0

and M
1

is given
by their meaning as a scaling parameter within either model. Furthermore, the
nesting of ⇡

0

(�) as ⇡
1

(µ,�) = ⇡
1

(�)⇡
0

(�) can be considered a practical choice.
In e↵ect, the Bayes factor BF

10

(d) is then given by the ratio of the following two
marginal likelihoods

p(d |M
1

) = (2⇡)�
n

2

Z 1

0

��n

Z 1

�1
exp

⇣

� n

2

h

( x̄
�

� �)2 + ( s

�

)2
i ⌘

⇡
1

(�) d� ⇡
0

(�)d�,

p(d |M
0

) = (2⇡)�
n

2

Z 1

0

��n exp
�

� n

2�

2

⇥

x̄2 + s2
⇤�

⇡
0

(�)d�, (3.2.3)

where d = (n, x̄, s2).
With the nesting of ⇡

0

within ⇡
1

we made the following recommendation ex-
plicit: “It is to be understood that in pairs of equations of this type [such as
Eq. (3.2.3)] the sign of proportionality indicates the same constant factor, which
can be adjusted to make the total probability 1.” (Je↵reys, 1961, p. 247) More
precisely, an improper prior ⇡

0

(�) / ��1 has a suppressed normalisation constant
⇡
0

(�) = c
0

��1 and we not only take ⇡
1

(�) = c
1

��1 of the same form, but also
choose to set c

1

= c
0

, which allows us to use improper priors on the nuisance
parameters (see Berger et al., 1998 for a theoretical justification). More examples
of this type of nesting can be found in Dawid and Lauritzen (2001), Consonni and
Veronese (2008), and references therein.
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3. An Evaluation of Alternative Methods for Testing Hypotheses,
from the Perspective of Harold Jeffreys

3.2.2 Je↵reys’s common-sense desiderata

“Rejection of a null hypothesis is best when it is interocular”. Edwards
et al. (1963, p. 240)

In conclusion, the JLB paradox prohibits the usage of improper priors for
testing, separates the estimation practice from a testing concern, and challenges
the idea of common parameters. As noted above, we first require a justification
before we can use the same prior on the nuisance parameters. After doing so,
we then create an exception on the ban of improper priors allowing us to assign
improper priors to the nuisance parameters, say, ✓

0

= �. Furthermore, let �
denote the test-relevant parameter with, say, ✓

1

= (✓
0

, �). Hence, after specifying
Je↵reys’s parameterisation-invariant priors on the nuisance parameters ✓

0

, which
we would use for estimation within each model, we only require to set the prior
⇡
1

(�) in order to define the Bayes factor BF
10

(d). We suspect that Je↵reys’s
underlying reasons for the choice of ⇡

1

(�) was to have a test that passes “the
interocular traumatic test; you know what the data mean when the conclusion
hits you between the eyes.” Edwards et al. (1963, p. 217).

We believe that the information consistency criterion makes explicit which
data hit us right between the eyes. This criterion leads to a Bayes factor that is
consistent for a finite sample, a requirement that is much harder to be fulfilled than
the asymptotic consistency criterion, at least for parametric models (e.g., Bickel
and Kleijn, 2012, Yang and Le Cam, 2000). We agree with Robert that information
consistency is in some cases an approximate statement. In particular, when the
data are either distributed according toM

0

: X ⇠ N (0,�2) orM
1

: X ⇠ N (µ,�2)
then the interocular data set with n > 2, x̄ 6= 0 and, in particular, s2 = 0 occurs
with zero probability under both models, due to the assumption � > 0. However,
when M

0

and M
1

are the only two models under consideration, the observation
x̄ 6= 0 with n > 2, in addition to s2 = 0, then should lead to the logical exclusion
of M

0

, thus, BF
01

(d) = 0.
To appreciate the information consistency criterion, we revisit the Bayesian t-

test with Bayes factors B̃F
10 ; g

(d) that lacks this property by constructing it from
⇡
0

(�) / ��1 and ⇡
1

(�,�) = ⇡
1

(�)⇡
0

(�) where ⇡
1

(�) is normal around zero with
variance g, i.e.,

B̃F
10 ; g

(d) =(1 + ng)
n�1

2

 

1 + nx̄

2

ns

2

(1 + ng) + nx̄

2

ns

2

!

n

2

. (3.2.4)

As before, letting g tend to infinity, while keeping n, x̄ and s2 fixed, yields the JLB
paradox, i.e., lim

g!1 B̃F
10 ; g

(d) = 0.
To simplify the discussion we suppose that g is set to one. The resulting

Bayes factor B̃F
10 ; g=1

(d) is then asymptotically consistent. This means that if we
repeatedly sample from the null model, we let n tend to infinity and simultaneously
let nx̄2/(ns2) = t2/(n � 1) tend to zero yielding a Bayes factor of zero, where t
is the usual t-statistic t =

p
nx̄/s

n�1

. Similarly, if we repeatedly sample from the
alternative model, we let n tend to infinity and simultaneously let t2/(n�1) tend to
infinity yielding a Bayes factor of infinity. Thus, this Bayes factor B̃F

10 ; g=1

(d) is
able to detect the correct model when the number of data points tends to infinity.
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The Bayes factor B̃F
10 ; g=1

(d), however, is not information consistent. For the
t-test information consistency is concerned with having a fixed number of data
points n > 2, an observed sample mean, say, x̄ 6= 0 and s2 tending to zero. With
g, n and x̄ fixed, this Bayes factor B̃F

10 ; g=1

(d) is an decreasing function of s2 that
attains its maximum when s2 = 0. For instance, when n = 4, x̄ = 7 the maximum
is then given by lim

s

2!0

B̃F
10 ; g=1

(d) = 11.18. Note that the data set with n = 4,
x̄ = 7 and s2 ! 0 is interocular as it leads to an observed sample e↵ect size, an
realisation of the t-statistic, that tends to infinity, which should therefore lead to
infinite support for the alternative compared to the null model. The fact that the
information inconsistent Bayes factor B̃F

10 ; g=1

(d) is bounded makes it hard to be
interpret. For instance, the observations n = 4, x̄ = 7 and s2 = 1 yields a Bayes
factor of B̃F

10 ; g=1

(d) = 9.6, which does not seem a lot of evidence against the
null, but with respect to its maximum 11.81 might be considered substantial.

On the other hand, a Je↵reys’s Bayes factor is by construction information
consistent and has a supremum (i.e., maximum) at infinity, which makes it easier
to be interpret. Je↵reys referred to this and other desiderata as common-sense as
they came natural to him (Etz and Wagenmakers, 2017), but it took a long time
before his intuition was formalised by Berger and Pericchi (2001) and extended by
Bayarri et al. (2012).

Recall that information consistency in a t-test requires us to construct a Bayes
factor from a heavy-tailed prior on � and we agree with Robert that the Cauchy
prior with scale � = 1 is only one of many possible choices. This is why we
included a robustness analysis in our open-source software package JASP (https://
jasp-stats.org/). However, we believe that the merit of a Je↵reys’s Bayes factor
(with � fixed) is due to the fact that it kickstarts scientific learning.

“In any of these cases it would be perfectly possible to give a form of
[⇡

1

(�)] that would express the previous information satisfactorily, and
consideration of the general argument of [Chapter] 5.0 will show that
it would lead to common-sense results, but they would di↵er in scale.
As we are aiming chiefly at a theory that can be used in the early
stages of a subject, we shall not at present consider the last type of
case” (Je↵reys, 1961, p. 252).

Thus, Je↵reys was not opposed to incorporating previously acquired data in a
Bayesian hypothesis test, but to do so he first designed a starting Bayes factor,
for a first data set, say, d

orig

. After observing d
orig

, we can then straightforwardly
update a Je↵reys’s Bayes factor for a future, not yet observed, data set, say, d

rep

.
This informed Bayes factor BF

10

(d
rep

| d
orig

) is then constructed from the priors
⇡
1

(✓
1

| d
orig

) and ⇡
0

(✓
0

| d
orig

). This idea forms the basis of the replication Bayes
factors introduced in Verhagen and Wagenmakers (2014) and is further exploited
in Ly et al. (2017b). Hence, the man who discovered the origin of the earth, thus,
also provided us with the starting point for scientific learning.

3.2.3 Robert’s alternative approach

“Prior distributions must always be chosen with the utmost care when
dealing with mixtures and their bearings on the resulting inference
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assessed by a sensitivity study. The fact that some noninformative
priors are associated with undefined posteriors, no matter what the
sample size, is a clear indicator of the complex nature of Bayesian
inference for those models” (Marin and Robert, 2014, p. 199)

As an alternative to Bayes factors, Robert (2016) suggests to use a mixture model
approach elaborated upon in Kamary et al. (2014). The data generating process of
a mixture model can be envisioned as a stepwise procedure. First, a membership
variable z

j

is realised; in a two-component mixture, z
j

assumes either the value
zero or one. Next, given the outcome z

j

= 0 (or z
j

= 1) a data point x
j

is generated
according toM

0

: X
j

⇠ f
0

(x
j

| ✓
0

) (orM
1

: X
j

⇠ f
1

(x
j

| ✓
1

)). This means that the
complete data should consist of n-pairs (z

1

, x
1

), . . . , (z
n

, x
n

), but in reality we only
have the observations d = x

1

, . . . , x
n

. As a result of not observing the membership
variables z

j

, the observations are perceived as if each of the data points were
generated from the (arithmetic) mixture model M

a

: X
j

⇠ (1 � ↵)f
0

(x
j

| ✓
0

) +
↵f

1

(x
j

| ✓
1

), where ↵ is the mixture proportion. The artificial encompassing model
M

a

therefore contains the two competing models, M
0

and M
1

, as special cases;
when ↵ = 0 and ↵ = 1 respectively. Hence, to uncover whether the observations
are more consistent with M

0

or M
1

, Kamary et al. (2014) suggest to focus on
estimating ↵ within the encompassing model M

a

.
Inferring ↵ amounts to a missing data problem which is in principle computa-

tionally intensive as there are 2n di↵erent combinations for the membership vari-
ables z

j

s. Luckily, one can resort to a completion method pioneered by Diebolt
and Robert (1994). When this stochastic exploration method yields n

0

and n
1

numbers of observations allocated to M
0

and M
1

, respectively, the posterior for
↵ is then given by B(a + n

0

, a + n
1

), when we use a beta prior on the mixture
proportion, ↵ ⇠ B(a, a). When n

0

is large and n
1

small or zero, the posterior for
↵ then concentrates most of its mass near zero indicating more evidence for M

0

as one would expect.
Kamary et al. (2014) note that the data generative view of the mixture model

is theoretically justified, but that the resulting natural Gibbs sampler has conver-
gence problems when the hyperprior a is smaller than one. To circumvent this
problem, Kamary et al. (2014) propose to use a Metropolis-Hastings algorithm
instead, and illustrate its use by examples followed by a proof that shows that
the method is asymptotically consistent. Thus, the work by Kamary et al. (2014)
impressively introduces an alternative view on testing, an algorithmic resolution,
and a theoretical justification.

3.2.3.1 Testing versus estimation

We believe that the Kamary et al. (2014) mixture approach will be especially useful
in psychological research. In particular, consider a hierarchical model where each
participant’s performance x

j

on a psychological task is captured by a particular
model or strategy represented by f

i

. The posterior for ↵ then gives an indication
of the prevalence of the model or strategy. When the posterior for ↵ is near zero or
near one, this suggests that one model or strategy is dominant; when the posterior
for ↵ is near 1/2, this suggests that some participants are better described by one
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strategy, and some are better described by another (for similar approaches see
Friston and Penny, 2011; Lee et al., 2015).

The advantage of the mixture model approach is particularly acute when it is
reasonable to assume that not all participants will follow one or the other strategy.
In the special issue for Journal of Mathematical Psychology alone, the articles by
Kary et al. (2016) and Turner et al. (2016) demonstrate considerable heterogeneity
among participants: the behaviour of some participants is predicted much better
by one model, the behaviour of other participants is predicted much better by the
competing model, and the behaviour of a third set of participants is predicted by
the models about equally well (see also Steingroever et al., 2016b).

The standard Bayes factor tests determines whether all participants are better
predicted by model M

0

or whether all participants are better predicted by model
M

1

. Therefore, one can construct situations in which the data support model M
0

for 99 out of 100 participants, and nevertheless the Bayes factor strongly prefers
model M

1

. We believe that in these hierarchical scenarios, the mixture model
approach is a valuable technique that can o↵er additional insight.

The above considerations suggest that the mixture approach relaxes Je↵reys’s
conceptualisation of a hypothesis test. More precisely, Je↵reys viewed the null
hypothesis as a general law, which by definition implies that the membership vari-
ables z

j

are either all zeroes or all ones. Note that by embedding the models into
an artificial encompassing model, Kamary et al. (2014) transformed the testing
problem into one of estimation. Je↵reys, however, did not feel that estimation is
appropriate when the test of a general law is at hand:

“Broad used Laplace’s theory of sampling, which supposes that if we
have a population of n members, r of which may have a property ',
and we do not know r, the prior probability of any particular value of
r(0 to n) is 1/(n + 1). Broad showed that on this assessment, if we
take a sample of number m and find all of them with ', the posterior
probability that all n are '’s is (m+ 1)/(n+ 1). A general rule would
never acquire a high probability until nearly the whole of the class had
been sampled. We could never be reasonably sure that apple trees
would always bear apples (if anything). The result is preposterous,
and started the work of Wrinch and myself in 1919-1923.” (Je↵reys,
1980, p. 452)

Wrinch and Je↵reys (1919, 1921, 1923) argued that within an estimation frame-
work, a general law such as H

0

:“All swans are white” cannot gain much evidence
until almost all swans have been inspected.1 Moreover, common sense prescribes
that the plausibility of a general law increases with every observation in accor-
dance with the law, that is, s = n number of successes within n trials. Je↵reys
(1961, p. 256) operationalised the general law as a binomial model M

0

with ✓
0

fixed and its negation as the binomial model M
1

with a ✓ free to vary. With a
uniform prior on ✓ this then leads to a Bayes factor of BF

01

(d) = (n+1)!

s!f !

✓s
0

(1�✓
0

)f ,

1We now know that this particular statement H
0

does not hold true, since Australia is home
to many black swans. The statement itself however cannot be empirically discarded until the
first exception is actually observed.
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where n denotes the total number of trials, s the number of successes, and f the
numbers of failures.

When only successes are observed (i.e., observations consistent with the general
law H

0

: ✓
0

= 1), the Bayes factor simplifies to n+1; a single failure, on the other
hand, indicates infinite evidence against the general law: the observation of a
single black swan is interocular, as it conclusively falsifies the general law “all
swans are white”. Hence, Je↵reys’s Bayes factor formalises inductive reasoning
and the logic of proof by contradiction.

The discussion above indicates that the mixture model approach does not for-
malise inductive reasoning and the logic of proof by contradiction: after having
observed 10,000 white swans, the observation of a single black swan will not greatly
a↵ect the mixture proportion – the mixture proportion still reflects the fact that
there is a great preponderance of white swans. However, in Je↵reys conceptuali-
sation, the single exception utterly destroys the general law.

Another concern with the mixture model approach is that it is relatively insen-
sitive to the shape of the prior distributions. Of course, this is also its strength,
as this is needed to avoid the JLB paradox. However, models that make correct
predictions should receive more reward when these predictions are risky, and the
degree of risk is partly encoded in the shape of the prior distributions. For instance,
suppose we model a binomial parameter ✓ and assume that M

1

: ✓ ⇠ U [1/2, 1]
and M

2

: ✓ ⇠ U [0, 1]; further, suppose the observed data are highly consistent
with the simpler model M

1

. Because the predictions from M
1

are twice as risky
as those from M

2

we would want to prefer M
1

over M
2

, and in fact, the Bayes
factor in favour of M

1

against M
2

is asymptotically equal to 2 (e.g., Heck et al.,
2015; Shi↵rin et al., 2016).

3.2.4 Conclusion

Scientific learning involves more than just testing general laws and invariances.
Estimation and exploration are important and the mixture approach has a lot to
o↵er in this respect, particularly in hierarchical settings where the general law
is unlikely to hold for all participants simultaneously. Other advantages of the
mixture approach are apparent as well. For instance, Example 3.1 in Kamary
et al. (2014) compares a Poisson distribution with parameter � to a geometric
distribution with parameter p (see Robert, 2015 for R code). The comparison
begins by relating the parameterisations to each other by setting p = (1 + �)�1,
which allows the use of the improper Je↵reys’s prior (with respect to the Poisson
distribution) ⇡(�) / ��1 over the two models. Note how this procedure resembles
Je↵reys’s recommendation for common parameters even though the arguments
di↵er. Moreover, the resulting posterior ⇡(� | d) is then calculated from the mix-
ture of the likelihoods of both models. The simulations show that the mixture
approach performs well. We do not know how a Je↵reys’s Bayes factor can be
constructed to deal with a test between two models of di↵erent relational forms as
Je↵reys was only concerned with nested model comparisons (e.g., Robert, 2016).

The mixture approach is not fully automatic, however, and requires some
thoughts on how the priors should be chosen. In particular, one cannot naively
use improper priors on the test-relevant parameters, as this may yield posteriors

50



3.3. Rejoinder to Chandramouli and Shi↵rin

that are also improper (Grazian and Robert, 2015). This was acknowledged by
Robert (2016) who used an (arbitrary) standard normal prior on µ in a t-test.
Our implementation of this recommendation leads to a posterior median ranging
from 0.3 to 0.9, for the interocular data with n = 4, x̄ = 7 and s2 = 0, while
↵ should be 1.0 if it were information consistent. More recently, Kamary et al.
(2016) proposed a noninformative reparametisation for location-scale mixtures to
resolve the aforementioned arbitrariness. Hence, as with a Je↵rey’s Bayes factor,
one should choose the priors carefully when one conceptualises model selection as
parameter estimation in a mixture model.

Lastly, Robert notes that the mixture approach is superior to the Bayes factor
as it leads to a faster accumulation of ↵ to the null. The parametric convergence
rate of

p
n follows immediate from casting the testing problem as one of estimation.

Similarly, it should be noted that Johnson and Rossell (2010) also use the rate
of convergence as a motivation for their Bayes factor approach. We are unsure
whether this rate is relevant as we do not consider a testing problem as one of
estimation. In the end the Bayes factor and the mixture approach of Kamary
et al. (2014) simply answer di↵erent questions. The choice which method to use
should not be based on the rate of convergence, but on the research question the
user seeks to address.2

3.3 Rejoinder to Chandramouli and Shi↵rin

Chandramouli and Shi↵rin (2016) put forward a thought-provoking proposal which
aims to explain and extend Bayesian induction using simple matrix algebra. We
have given this novel idea considerable thought and outline some of our reserva-
tions below.3

We believe that Chandramouli and Shi↵rin (henceforth C&S) put forward a
belief propagation procedure that allows us to verify whether two given models,
say, M

1

and M
2

align with a scientist’s prior belief about the true data generating
process p⇤(X). Instead of setting the priors onto the two given models M

1

and
M

2

directly, C&S recommend to first elicit a scientist’s prior belief about the
true data generating p⇤(X) in the most general setting. This prior belief is then
subsequently translated into priors on the models. Hence, the resulting prior
model probabilities P (M

1

) and P (M
2

) are derived.
In contrast, a Je↵reys’s Bayes factor follows from a top-to-bottom procedure,

where the top level is concerned with the comparison between two models (i.e.,
model classes) for which one has to (subjectively) choose prior model probabilities
P (M

i

). Based on top level desiderata, i.e., a coherent comparison between the
two models, we then derive the pair of priors ⇡

1

and ⇡
2

on the lower level that
are concerned with the parameters (i.e., model instances) within the models M

1

and M
2

respectively. In e↵ect, the sole purpose of the pair ⇡
1

,⇡
2

is to mediate

2We thank Joris Mulder for attending us to this.
3The second and third authors are in a state of perpetual confusion regarding the details

of the Chandramouli and Shi↵rin proposal. All credit concerning this section goes to the first
author, who, as such, takes full responsibility for any errors here. For a thorough understanding
of our reply, we recommend to have the comment of Chandramouli and Shi↵rin (2016) on hand.
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scientific learning through the Bayes factor, that is, to update the prior model
odds to posterior model odds.

On the other hand, the C&S induction scheme is a bottom-up approach based
on the philosophy that the whole is the sum of its parts. At the lowest level, one
has to subjectively elicit the scientist’s prior belief about the true data generating
process. The procedure then elaborates on how this lowest level belief can be
used to derive the model instance priors ⇡

1

and ⇡
2

at the intermediate level. By
aggregating the model instance priors of ⇡

1

and ⇡
2

we then get the prior model
probabilities P (M

1

) and P (M
2

) at the top level. As such, this method is not free
from subjective input on the lowest level.

Our major concern with the C&S method is the lack of invariance, which stems
from their recommendation to operationalise their procedure with a seemingly in-
nocent looking finite-dimensional matrix withM rows andW number of columns.4

By using a finite-dimensional matrix, C&S basically made a choice in how they
tackle the statistical modelling problem. The resulting model priors P (M

i

) are
sensitive to this choice. More specifically, by initialising their procedure with a
finite-dimensional matrix, they use discretised approximations of quantities that
are essentially continuous. The approximation error due to discretisation is non-
negligible, as it permeates through all subsequent steps due to the bottom-up
nature leading to an ill-defined Bayes factor.

In brief, we believe that the C&S approach has to overcome some challenges
before their procedure can be perceived as an extension of traditional Bayes fac-
tors, let alone Je↵reys’s Bayes factors. We have three remarks: (1) The C&S
procedure is not invariant to how one discretises the statistical modelling prob-
lem; (2) the subjective assessment of the priors on the lowest level and the resulting
prior model probabilities P (M

i

) on the top level are, therefore, ill-defined, and
(3) model selection based on posterior predictive p-statistics does not lead to a
proper measure of evidence.

This paper continues as follows: We first apply the C&S induction scheme to
a concrete example. Then we show that we get di↵erent results when we choose
a di↵erent finite-dimensional matrix to operationalise the C&S induction scheme.
Lastly, we argue that the implicit discretisation necessary for the finite-dimensional
matrix is the main culprit of the resulting lack of invariance.

3.3.1 Running example

To illustrate why we believe that the C&S method is essentially a belief propaga-
tion procedure, we consider a random variable X with a finite number of outcomes
W . This W is denoted as n in Chandramouli and Shi↵rin (2016) and defines the
number of columns in their matrix representations (i.e., their Figures 1 and 2). To
simplify matters, we use an example (taken from Ly et al., 2017c) where X has
W = 3 number of outcomes.

4We divert from the C&S notation, where the matrix is M ⇥N dimensional, as the number
of columns does not correspond with the number of samples in a data set. Instead, the number
of columns refers to the number of possible outcomes a random variable can take on, we use w
and W instead.
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Example 3.3.1 (A Psychological Task with Three Outcomes). In the training
phase of a source-memory task, the participant is presented with two lists of words
on a computer screen. List L is projected on the left-hand side and list R is
projected on the right-hand side. In the test phase, the participant is then presented
with two words, side by side, that can stem from either list, thus, ll, lr, rl, rr. At
each trial, the participant is asked to categorise these pairs as either:

• x
1

meaning both words come from the left list, i.e., “ll”,

• x
2

meaning the words are mixed, i.e., “lr” or “rl”,

• x
3

meaning both words come from the right list, i.e., “rr”.

Thus, the random variable X has W = 3 outcomes. To ease the discussion, we
assume that the words presented to the participant are “rr”. ⇧

As model M
1

we take the so-called individual-word strategy. A participant
guided by this strategy will consider each word individually and compare it with
list R only. Within this model M

1

, the parameter is given by ✓
1

= #, which
we interpret as the participant’s “right-list recognition ability”. Hence, when the
participant is presented with the pair “rr” she will respond x

1

with probability
(1 � #)2, thus, two failed recollections; x

2

with probability 2#(1 � #), thus, one
failed and one successful recollection; x

3

with probability #2, thus, two successful
recollections.

More compactly, a participant guided by this strategy generates the outcomes
[x

1

, x
2

, x
3

] with the following three probabilities f
1

(X |#) = [(1 � #)2, 2#(1 �
#),#2], respectively. Note the data generative formulation. For instance, when
the participant’s true ability is #⇤ = 0.9, the three outcomes [x

1

, x
2

, x
3

] are then
generated with the three probabilities f

1

(X | 0.9) = [0.01, 0.18, 0.81] respectively.
We call the function f

i

(X | ✓
i

) with ✓
i

fixed a probability mass function (pmf)
or model instance of M

i

.5 Hence, every # in (0, 1) yields a pmf that defines W
number of probabilities. In e↵ect, the model M

1

consists of a collection of pmfs,
which C&S refer to as a model class.

As a competing model M
2

, we take the so-called only-mixed strategy. Within
this model M

2

, the parameter is given by ✓
2

= ↵, which we interpret as the par-
ticipant’s “mixed-list di↵erentiability ability”. With probability ↵ the participant
first checks whether the presented pair of words is mixed. If she perceives it as
mixed, she then produces the outcome x

2

with probability ↵. If she does not
perceive the pair of words as mixed, the participant then randomly chooses x

1

or
x
3

each with probability (1� ↵)/2.
More compactly, a participant guided by this strategy generates the outcomes

[x
1

, x
2

, x
3

] with the following three probabilities f
2

(X |↵) = [(1 � ↵)/2,↵, (1 �
↵)/2], respectively. Again we formulated the model as a data generative pro-
cess. For instance, when the participant’s true ability is ↵⇤ = 1/3, the three out-
comes [x

1

, x
2

, x
3

] are then generated with the same probability, i.e., f
2

(X | 1/3) =
5C&S call the function f

1

(X | 0.9) a data distribution predicted by the model instance # =
0.9. When we use a capital X we mean the three probabilities simultaneously. On the other hand,
a small letter x refers to the probability with which it is generated, for instance, f

1

(x
w

| 0.9) =
0.18 when w = 2.
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[1/3, 1/3, 1/3]. Note that this last pmf f
2

(X | 1/3) is not in the collection of pmfs
defined by M

1

. Similarly, the pmf f
1

(X | 0.9) is not a member of the collection of
pmfs defined by M

2

.
The two models M

1

and M
2

share only one pmf (model instance), that is,
the pmf indexed by # = 0.5 within M

1

and, coincidentally, when ↵ = 0.5 within
M

2

. We use these two models M
1

and M
2

to explain the C&S belief propagation
procedure.

3.3.2 Chandramouli and Shi↵rin’s procedure for induction

For a Bayesian analysis we need priors on the model instances, which we denote
by ⇡

i

(✓
i

) as we have done before,6 and the priors on the models P (M
i

). Instead
of doing so directly, C&S recommend to first (Step 1) elicit the scientist’s prior
belief about the true data generating process p⇤(X) in the most general setting.
Next (Step 2) this subjectively chosen prior belief about p⇤(X) is used to derive
the model instance priors ⇡

i

(✓
i

) and, subsequently, the model class priors P (M
i

).
Lastly, (Step 3) C&S recommend to use posterior p-statistics for inference.

3.3.2.1 Step 1: Eliciting the prior on candidate true data generating
pmfs

In our example, the true data generating pmf p⇤(X) defines three probabili-
ties p⇤(X) = [p⇤(x

1

), p⇤(x
2

), p⇤(x
3

)] with which it generates the three outcomes
[x

1

, x
2

, x
3

]. For instance, a first candidate true data generating pmf could be
p(X | 

1

) = [0.0, 0.0, 1.0], where  
1

is an index/label for later reference. A second
candidate true data generating pmf could be p(X | 

2

) = [0.0, 0.1, 0.9] and so forth
and so on. This method yields a candidate set of true pmfs that we depicted in
Table 3.1. The “matrix” depicted in Table 3.1 is a simplification of the table in
Figure 1 in Chandramouli and Shi↵rin (2016) with M = 66 rows and W = 3
columns. Please ignore the quantities to the right of the double vertical line for
the moment. Note that the number of rows M = 66 is a result of our arbitrary
choice of using a step size of 0.1 on the probabilities. Furthermore, recall that the
pmfs p(X | 

m

) are candidates for the true data generating pmf p⇤(X) and may
not have any connection with the models M

1

and M
2

specified above. Of par-
ticular interest is the pmf p(X | 

62

) = [0.8, 0.1, 0.1], which is neither a member of
M

1

nor of M
2

,7 but because it defines a valid pmf it is, nonetheless, a candidate
true data generating pmf.

Given this finite-dimensional matrix of Table 3.1, C&S then recommend to
elicit a scientist’s prior belief by setting prior beliefs �( 

m

) form = 1, . . . ,M , thus,

6C&S denote this by p
0

(✓
i

). Instead, we use the Greek letter ⇡
i

to distinguish this model
instance prior from the prior model probability P (M

i

) on the top level. The subscript i refers
to the model membership.

7A pmf of M
1

with f
1

(x
1

|#) = 0.8 requires # ⇡ 0.11. However, this automatically yields
f
1

(x
2

| 0.11) = 0.19. Hence, there is no # in M
1

that leads to the pmf indexed by  
62

. Similarly,
a pmf of M

2

necessarily has f
2

(x
1

|↵) = f
2

(x
3

|↵), which is clearly not the case for the pmf
indexed by  

62

.
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Table 3.1: The matrix is a simplified version of the matrix found in Figure 1 of
C&S withM = 66 andW = 3. The quantities under the columns withD( 

m

,M
1

)
and D( 

m

,M
2

) at the top refer to the KL-divergences, see the main text. The
parameter under ✓

i

refers to the model instance that the pmf p(X | 
m

) is allocated
to within the model under M

i

. For example, the candidate true pmf p(X | 
18

) is
allocated to the model instance f

1

(X |# = 0.60) of model class M
1

.

x

1

x

2

x

3

D( 
m

,M
1

) D( 
m

,M
2

) ✓

i

M
i

 

1

0.0 0.0 1.0 0 0.693 # = 1.00 M
1

 

2

0.0 0.1 0.9 0.002 0.624 # = 0.95 M
1

 

3

0.0 0.2 0.8 0.011 0.555 # = 0.90 M
1

...
...

...
...

...
...

...
...

 

11

0.0 1.0 0.0 0.693 0 ↵ = 1.00 M
2

 

12

0.1 0.0 0.9 0.325 0.368 # = 0.90 M
1

 

13

0.1 0.1 0.8 0.137 0.310 # = 0.85 M
1

 

14

0.1 0.2 0.7 0.060 0.253 # = 0.80 M
1

 

15

0.1 0.3 0.6 0.019 0.198 # = 0.75 M
1

 

16

0.1 0.4 0.5 0.011 0.145 # = 0.70 M
1

 

17

0.1 0.5 0.4 0.005 0.096 # = 0.65 M
1

 

18

0.1 0.6 0.3 0.032 0.052 # = 0.60 M
1

 

19

0.1 0.7 0.2 0.089 0.017 ↵ = 0.70 M
2

 

20

0.1 0.8 0.1 0.193 0 ↵ = 0.80 M
2

 

21

0.1 0.9 0.0 0.427 0.069 ↵ = 0.90 M
2

 

22

0.2 0.0 0.8 0.500 0.193 ↵ = 0.00 M
2

 

23

0.2 0.1 0.7 0.254 0.148 ↵ = 0.10 M
2

 

24

0.2 0.2 0.6 0.133 0.104 ↵ = 0.20 M
2

 

25

0.2 0.3 0.5 0.057 0.067 # = 0.65 M
1

 

26

0.2 0.4 0.4 0.014 0.034 # = 0.60 M
1

 

27

0.2 0.5 0.3 0.000 0.010 # = 0.55 M
1

...
...

...
...

...
...

...
...

 

61

0.8 0.0 0.2 0.500 0.193 ↵ = 0.00 M
2

 

62

0.8 0.1 0.1 0.137 0.310 # = 0.15 M
1

 

63

0.8 0.2 0.0 0.011 0.555 # = 0.10 M
1

 

64

0.9 0.0 0.1 0.325 0.368 # = 0.10 M
1

 

65

0.9 0.1 0.0 0.003 0.624 # = 0.05 M
1

 

66

1.0 0.0 0.0 0 0.693 # = 0.00 M
1

on each candidate true data generating pmf p(X | 
m

).8 For example, �( 
62

) = 0.7
means that the scientist bestows a large portion of belief to the pmf indexed by  

62

as being the true generating pmf p⇤(X). Furthermore, �( 
61

)+�( 
62

)+�( 
63

) =
0.90 means that the scientist is quite sure that the participant will generate the
response x

1

with 80% chance. As � represents the scientist’s prior belief, we
necessarily require that

P

M

m=1

�( 
m

) = 1.

8C&S denote this prior pmf probability as p
0

( 
m

). Instead, we use the Greek letter � to
distinguish this prior pmf probability on the lowest level from the model instance prior ⇡

i

(✓
i

) on
the intermediate level and the prior model probabilities P (M

i

) on the top level.
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3.3.2.2 Step 2: Propagating the prior belief to yield the prior model
probabilities

Once the prior beliefs �( 
m

) about the true data generating p⇤(X) are chosen,
C&S commence their belief propagation procedure by redistributing �( 

m

) over
the two models. Recall that a model (class) M

i

defines a collection of pmfs (model
instances) denoted as f

i

(X | ✓
i

). The allocation of the prior pmf belief of the first
candidate true pmf in Table 3.1, that is, �( 

1

), is easy, because the associated pmf
p(X | 

1

) = [0.0, 0.0, 1.0] does not belong to M
2

, but it is a member of M
1

; the
pmf indexed by  

1

is a model instance of M
1

when ✓
1

= # = 1. C&S therefore
allocate the prior pmf probability �( 

1

) to the model instance ⇡
1

(# = 1) of M
1

.
On the other hand, the pmf p(X | 

62

) = [0.8, 0.1, 0.1] is neither a member of M
2

nor does it belong to M
1

. To nonetheless allocate this prior pmf belief �( 
62

) to
a model instance of either M

1

or M
2

, C&S use a divergence measure denoted by
D. For simplicity we take as D the Kullback-Leibler (KL) divergence, which is a
measure of dissimilarity. The KL-divergence from a candidate true pmf indexed
by  

m

to a model instance of M
i

is defined as

D( 
m

, ✓
i

|M
i

) =
W

X

w=1

p(x
w

| 
m

) log
p(x

w

| 
m

)

f(x
w

| ✓
i

)
, (3.3.1)

and the larger this divergence, the more dissimilar the model instance f
i

(X | ✓
i

)
is from the candidate true data generating pmf p(X | 

m

). For example, a direct
calculation shows that the KL-divergence between the candidate true p(X | 

1

) in
Table 3.1 to the model instance of M

1

with ✓
1

= # = 1.0 is given by D( 
1

, ✓
1

=
1.0 |M

i

) = 0. The KL-divergence is zero if and only if the pmfs indexed by  
m

and
the model instance indexed by ✓

i

are exactly the same, hence, their dissimilarity
is zero.

The KL-divergence between the candidate true p(X | 
m

) and a collection of
pmfs defined by the model M

i

is given by D( 
m

,M
i

) = min
✓

i

D( 
m

, ✓
i

|M
i

).
That is, the dissimilarity between the candidate true data generating pmf  

m

and the model M
i

is the smallest dissimilarity between p(X | 
m

) and the model
instances f

i

(X | ✓
i

) of model M
i

. For example, a direct calculation shows that
the KL-divergence from the candidate true data generating pmf p(X | 

62

) to M
1

is given by D( 
62

,M
1

) = D( 
62

, ✓
1

= 0.15 |M
1

) = 0.137. Similarly, the KL-
divergence between the same candidate true data generating pmf to M

2

is given
by D( 

62

,M
2

) = D( 
62

, ✓
2

= 0.1 |M
2

) = 0.310. Because the divergence from
the candidate true pmf p(X | 

62

) to M
1

is smaller than the divergence to M
2

,
the C&S procedure implies that we should allocate all the prior pmf mass �( 

62

)
to the prior model instance probability ⇡

1

(# = 0.15) belonging to M
1

.
We suspect that the underlying idea of this belief allocation procedure is based

on the idea of chaining. Thus, if �( 
62

) = 0.70, the scientist has much fate in
p(X | 

62

) being the true data generating pmf. However, as p(X | 
62

) is not in
the model M

1

nor in M
2

, the C&S procedure then recommends to go for the
next best thing; assigning the pmf prior �( 

62

) to the model instance that is most
similar to p(X | 

62

), in this case, ⇡
1

(#) with # = 0.15.
This redistribution of the pmf prior �( 

m

) to model instance priors can be
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read from their table in Figure 1 in Chandramouli and Shi↵rin (2016) from left to
right.9

In our Table 3.1 the numbers under D( 
m

,M
1

) and D( 
m

,M
2

) represents
the KL-divergence from the candidate true pmf indexed by  

m

to the models M
1

and M
2

respectively. The parameter value under ✓
i

indicates which parameter
value # within M

1

or ↵ within M
2

corresponds to the model instance that is
closest to the pmf of  

m

. The last column indicates whether the  
m

is eventually
allocated to M

1

or M
2

.
As in their table in Figure 1 of Chandramouli and Shi↵rin (2016), note that

there are multiple candidates  
m

s allocated to certain parameter values in our
Table 3.1. For example, the candidate pmfs indexed by  

3

and  
12

are both
allocated to the same model instance indexed by # = 0.90 within M

1

. As such,
C&S derive the prior on the model instances as ⇡

1

(#) =
P

�( 
m

), where the sum
is over the candidates  

m

which have the same # in the column under ✓
i

. For
example, ⇡

1

(# = 0.90) = �( 
3

) + �( 
12

).
After allocating all the M number of prior pmf probability �( 

m

) to the model
instances of either model classes, we have ⇡

1

(#
k

) and ⇡
2

(↵
˜

k

) for k = 1, . . . ,K and

k̃ = 1, . . . , K̃. The K indicates the number of unique values of #s in the column
under ✓

i

. As there are multiple candidates allocated to certain parameter values
we typically have K + K̃ < M . With the model instance priors at hand, the C&S
scheme tells us to aggregate them to yield prior model probabilities, i.e., P (M

1

) =
P

K

k=1

⇡
1

(#
k

) and P (M
2

) =
P

˜

K

˜

k=1

⇡
2

(↵
˜

k

). As a result of
P

M

m=1

�( 
m

) = 1 we
have P (M

1

) + P (M
2

) = 1.

3.3.2.3 Step 3: Posterior predictive p-statistics

So far, we only discussed the C&S belief propagation procedure as a method to
translate a scientist’s prior belief �( ) about the true data generating p⇤(X) to
prior beliefs on the model instances ⇡

i

(✓
i

), which can then be used to define prior
beliefs on the models P (M

i

). These priors can be used for inference after we
observe data d. As in C&S, we simplify the discussion by supposing that the data
consist of one observation where the participant responded with x

1

.
To invert the data generative view of pmfs, we fix the data part of each pmf

at the observation p(X | 
m

) = p(d | 
m

) and consider the pmfs as a function of
 
m

, i.e., as likelihood functions. Bayes’ rule then allows us to update the subjec-
tively chosen pmf prior to a pmf posterior using all specified candidate likelihood
functions indexed by the  

m

s, that is, �( 
m

| d) = p(d | 
m

)�( 
m

)/C, for m =

1, . . . ,M , where the normalising constant C is given by C =
P

M

m=1

p(d | 
m

)�( 
m

).
Recall that the rows p(X | 

m

), thus, the likelihood functions, themselves do not
need to belong to the models M

1

and M
2

. In fact, most of them do not, as most
of the entries under D( 

m

,M
1

) and D( 
m

,M
2

) are non-zero.
For inference concerning replication studies, C&S recommend using posterior

predictive p-statistics. For example, the observations d
orig

of the original experi-
ment might suggest that a participant’s “right-list recognition ability” # is a half.
To test whether this postulate # = 0.5 can be reproduced, C&S recommend to

9We are unsure what ' in their table indicates.
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update the subjectively chosen pmf prior about the true p⇤(X) to a posterior yield-
ing �( 

m

| d
orig

). Recall that this posterior is also based on likelihood functions
p(d | 

m

) that do not belong to M
1

as discussed above. For example, if �( 
62

) > 0
then p(X | 

62

) = [0.8, 0.1, 0.1] in Table 3.1 is used as a likelihood to relate the
observations d

orig

to  
62

. Because there is no # that leads to p(X | 
62

), see the
footnote at the end of Section 3.3.2.1, the likelihood function at  

62

does not and
cannot extract information about # from d

orig

.
Nonetheless, C&S use the posterior �( 

m

| d
orig

) to weight all the candidate
true pmfs in Table 3.1 resulting in a posterior predictive

p(x
w

| d
orig

) =
M

X

m=1

p(x
w

| 
m

)�( 
m

| d
orig

) for w = 1, . . . ,W. (3.3.2)

This posterior predictive is used as a sampling distribution, i.e., it defines the
probabilities with which new data are generated. If the actually observation d

rep

is very improbable under this predictive, then the C&S procedure prescribes this
as a failure of reproducibility. The problem with this prediction is that it is also
calculated from the predictions of p(X | 

62

), even though this pmf  
62

has no
connection to # whatsoever.

In sum, it seems that the C&S recommendation for replication boils down
to comparing the observed data d

rep

in a replication attempt using the posterior
predictive as a sampling distribution, which is based on irrelevant likelihood func-
tions and subjective belief �( 

m

). Moreover, by using the posterior predictive as a
sampling distribution to assess replication, this method shares many pitfalls with
common p-value tests and therefore does not quantify evidence (e.g., Bayarri and
Berger, 2000; Wagenmakers, 2007).

3.3.2.4 C&S Bayes factors

Although C&S do not recommend to use Bayes factors for inference, they note
that Bayes factors can be constructed from their belief propagation procedure.
The main idea is to reuse the belief propagation procedure, but this time to re-
distribute the posterior beliefs �( 

m

| d) about the true data generating p⇤(X)
to posterior beliefs for the “model instances” ⇡

i

(✓̂
i

| d), which can then be used
to define posterior beliefs on the “models” P (M̂

i

| d). We are reluctant to call
P (M̂

i

| d) the posterior model probabilities, because they are calculated using
likelihood functions that do not belong to M

i

(hence, the hats in our notation).
There are now two ways to derive a Bayes factor based on the quantities resulting
from the C&S belief propagation procedure.

The first method involves the ratio of the posterior and prior model odds, that
is,

B̂F
12

(d) =
P (M̂

1

| d)/P (M̂
2

| d)
P (M

1

)/P (M
2

)
. (3.3.3)

This Bayes factor depends on the subjectively chosen prior beliefs �( 
m

) about
p⇤(X), the chosen divergence measure D, and –most troublesome– on the collec-
tion of candidate likelihood functions p(d | 

m

) rather than on the likelihood that
belong to the respective models.
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The second method involves the ratio of marginal likelihoods, that is,

B̃F
12

(d) =

P

K

k=1

f
1

(d |#
k

)⇡
1

(#
k

)
P

˜

K

˜

k=1

f
2

(d |↵
˜

k

)⇡
2

(↵
˜

k

)
. (3.3.4)

In contrast to B̂F
12

(d), this Bayes factor is calculated from the likelihoods f
i

(d | ✓
i

)
that actually do belong to the respective models. Hence, B̂F

12

(d) and B̃F
12

(d)
will di↵er from each other.

We have some reservations about the Bayes factor as defined in Eq. (3.3.3)
or Eq. (3.3.4) as a generalisation of traditional Bayes factors. First, a traditional
Bayes factor leads to the same quantity whether it is computed as the ratio of
the posterior and prior model odds, or as the ratio of marginal likelihoods. Sec-
ond, a traditional Bayes factor would involve continuous integrals, whenever the
parameters # and ↵ are free to vary in continuous intervals. The replacement of
the integrals by finite sums is an artefact of only considering a finite number M
of candidate true pmfs p(X | 

m

).

3.3.3 Lack of invariance

Our major concern with Bayes factors calculated from the C&S approach, how-
ever, is rooted in its operationalisation using a finite-dimensional matrix (e.g.,
Table 3.1), as it causes a lack of invariance a↵ecting every step of their belief
propagation procedure. As such, two scientist with the same subjective belief
�( ) about the true p⇤(X) using the same divergence measure D, but with a
di↵erent finite-dimensional matrix will calculate di↵erent Bayes factors.

We appreciate the attempt by C&S to assess how well models represent the true
data generating process. Their procedure considers all possible data generating
pmfs and as such can account for model misspecification. Although attractive,
such an unrestrictive view leads to complications when one is concerned with
testing models for which one has to set priors. The C&S recommendation is
to do so subjectively, which we consider nigh impossible. More specifically, the
collection of all possible data generative pmfs P is typically hard to describe and
without a proper description even harder to subjective assign prior beliefs to. Our
paper continuous as follows: (1) We first characterise P and simplify it with a
parameterisation; (2) a di↵erent parameterisation of P is then given leading to
a di↵erent finite-dimensional matrix. (3) In e↵ect, this leads to di↵erent prior
beliefs, and (4) di↵erent allocations, thus, di↵erent Bayes factors. (5) Lastly, we
remark how this problem is related to the invariance problem already solved by
Je↵reys (1946) and what his solution implies for the C&S procedure.

3.3.3.1 Characterising the collection of all possible pmfs

When X has W = 3 number of outcomes, its true distribution p⇤(X) can then be
characterised by W � 1 = 2 parameters. Recall that a pmf for X then defines the
three chances p(X) = [p(x

1

), p(x
2

), p(x
3

)] with which it generates the outcomes
[x

1

, x
2

, x
3

]. The pmf must therefore satisfy two conditions: (i) it has to be non-
negative, thus, 0  p(x

w

) for each outcome x
w

of X with w = 1, . . . ,W , and (ii)
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the probabilities must sum to one, i.e.,
P

W

w=1

p(x
w

) = 1. Note that this holds
true for any candidate true pmf p(X | 

m

) in Table 3.1. We call the collection of
functions for which the conditions (i) and (ii) hold the collection of all possible
pmfs or the full model and denote it by P. The collection P has an uncountably
infinite number of members, each capable of being the true data generating process
p⇤(X). By using a finite-dimensional matrix such as the one in Table 3.1, C&S,
thus, restrict their prior belief elicitation to only M = 66 candidate true pmfs.

To show that even for W = 3 the full model P is uncountable, we first pa-
rameterise P, that is, we identify each possible true pmf of P with a two dimen-
sional parameter  = (b, c). Given any pmf p(x) = [p(x

1

), p(x
2

), p(x
3

)], we define
b = p(x

1

), c = p(x
2

) and set  = (b, c). This construction is essentially a function
⇠ that maps a member of the full model P into a parameter space  of dimension
W � 1 = 2. Using the inverse parameterisation ⇠�1 we can identify every parame-
ter  = (b, c), where (i’) 0  b, c and (ii’) b+ c  1, with a pmf such that the three
outcomes [x

1

, x
2

, x
3

] are generated with the probabilities p(X | ) = [b, c, 1�b�c].
As there are an uncountable number of  = (b, c)s for which the conditions (i’)
and (ii’) holds, we conclude that there are also an uncountable number of pmfs
p(X | ) in the full model P for which (i) and (ii) holds.

3.3.3.2 Di↵erent parameterisations, di↵erent representation of P: A
di↵erent set of candidate true pmfs

The aforementioned parameterisation ⇠ : P !  relates to the candidate true pmfs
of Table 3.1 as we have actually chosen  

1

= (0.0, 0.0),  
2

= (0.0, 0.1), . . . , 
62

=
(0.8, 0.1), 

63

= (0.8, 0.2), 
64

= (0.9, 0.0), 
65

= (0.9, 0.1), 
66

= (1.0, 0.0). The
resulting M = 66 number of columns is due to the dependence between b and c.

A di↵erent parameterisation ⇠̃ from the full model P to a parameter space  ̃ is
based on a “stick-breaking” approach. Given a p(X) we then choose b̃ = p(x

1

), c̃ =
p(x

2

)/[1� p(x
1

)] and define  ̃ = (b̃, c̃).10 Using the inverse parameterisation ⇠̃�1

we can also identify every parameter  ̃ = (b̃, c̃), where (i’+ii’) 0  b̃, c̃  1, with a
pmf such that the three outcomes [x

1

, x
2

, x
3

] are generated with the probabilities
p(X | ) = [b̃, (1 � b̃)c, (1 � b̃)(1 � c̃)]. Note that every parameter  ̃ lies within
the unit square  ̃ = [0, 1] ⇥ [0, 1], and that b̃ and c̃ can be chosen independently
from each other. Again, as there are an uncountable number of elements in the
unit square, we have an uncountable collection of candidate true pmfs P. With
this stick-breaking representation of P and a step size of 0.1 we get the matrix
depicted in Table 3.2.

This new matrix di↵ers substantially from the previous one. First, it has
more rows, thus, a larger number of candidate true pmfs; M = 111 compared to
M = 66 in Table 3.1. Second, there are more candidate pmfs that imply that the
first response x

1

is generated with 80% chance; eleven in Table 3.2 compared to
three in Table 3.1.

10This only works if p(x
1

) 6= 1. When p(x
1

) = 1, we simply set c̃ = 0 and define  ̃ = (1, 0).
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Table 3.2: The matrix is a simplified version of the matrix found in Figure 1 of
C&S based on the di↵erent parameterisation ⇠̃ defined in text. Note how the pmf
p(X |  ̃

19

) is allocated to M
2

.

x

1

x

2

x

3

D( 
m

,M
1

) D( 
m

,M
2

) ✓

i

M
i

 ̃

1

= (0.0, 0.0) 0.00 0.00 1.00 0 0.693 # = 1.00 M
1

 ̃

2

= (0.0, 0.1) 0.00 0.10 0.90 0.003 0.624 # = 0.95 M
1

...
...

...
...

...
...

...
...

 ̃

17

= (0.1, 0.5) 0.10 0.45 0.45 0.000 0.120 # = 0.68 M
1

 ̃

18

= (0.1, 0.6) 0.10 0.54 0.36 0.013 0.078 # = 0.63 M
1

 ̃

19

= (0.1, 0.7) 0.10 0.63 0.27 0.046 0.041 ↵ = 0.63 M
2

...
...

...
...

...
...

...
...

 ̃

88

= (0.7, 1.0) 0.70 0.30 0.00 0.027 0.485 # = 0.15 M
1

 ̃

89

= (0.8, 0.0) 0.80 0.00 0.20 0.500 0.193 ↵ = 0.00 M
2

 ̃

90

= (0.8, 0.1) 0.80 0.02 0.18 0.393 0.212 ↵ = 0.02 M
2

 ̃

91

= (0.8, 0.2) 0.80 0.04 0.16 0.315 0.233 ↵ = 0.04 M
2

 ̃

92

= (0.8, 0.3) 0.80 0.06 0.14 0.248 0.256 # = 0.17 M
1

 ̃

93

= (0.8, 0.4) 0.80 0.08 0.12 0.189 0.281 # = 0.16 M
1

 ̃

94

= (0.8, 0.5) 0.80 0.10 0.10 0.137 0.310 # = 0.15 M
1

 ̃

95

= (0.8, 0.6) 0.80 0.12 0.08 0.091 0.342 # = 0.14 M
1

 ̃

96

= (0.8, 0.7) 0.80 0.14 0.06 0.053 0.378 # = 0.13 M
1

 ̃

97

= (0.8, 0.8) 0.80 0.16 0.04 0.022 0.421 # = 0.12 M
1

 ̃

98

= (0.8, 0.9) 0.80 0.18 0.02 0.002 0.474 # = 0.11 M
1

 ̃

99

= (0.8, 1.0) 0.80 0.20 0.00 0.011 0.555 # = 0.10 M
1

 ̃

100

= (0.9, 0.0) 0.90 0.00 0.10 0.325 0.368 # = 0.10 M
1

 ̃

100

= (0.9, 0.1) 0.90 0.01 0.09 0.263 0.384 # = 0.10 M
1

...
...

...
...

...
...

...
...

 ̃

110

= (0.9, 1.0) 0.90 0.00 0.10 0.003 0.623 # = 0.05 M
1

 ̃

111

= (1.0, 0.0) 1.00 0.00 0.00 0 0.693 # = 0.00 M
1

3.3.3.3 Di↵erent representation, di↵erent prior beliefs

Expanding on these observations, we suspect that a scientist would subjectively
set di↵erent prior beliefs depending on whether she is confronted with the matrix
of Table 3.1 or with the matrix of Table 3.2. In particular, when confronted with
the matrix of Table 3.1 the scientist might subjectively set �( 

61

) = �( 
63

) = 0.1
and �( 

62

) = 0.7 meaning that she is quite sure, that the participant will generate
the response x

1

with 80% chance, i.e., P (p⇤(x
1

) = 0.80) = 0.9. To cohere to this
belief the scientist would simply set �( ̃

89

) = �( ̃
99

) = 0.1 and �( ̃
94

) = 0.7
and, subsequently, set the prior belief of all the “in-between” pmfs that generate
x
1

with 80% to zero in the Table 3.2. We highly doubt that any scientist would
be so specific in formulating her prior beliefs and, thus, doubt that a subjective
assessment of the prior beliefs will work here.

As an alternative, we might think that we are noninformative if we give each
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candidate true pmf the same prior probability. This means that we then give each
candidate true pmf of Table 3.1 a prior probability of �( 

m

) = 1/66 ⇡ 0.0152. The
pmfs that the participant will generate the response x

1

with 80% chance then get a
total prior probability of 3/66 ⇡ 0.0455. On the other hand, in Table 3.2 a uniform
prior on �( ̃

m

) = 1/111 ⇡ 0.009 and the pmfs that the participant will generate
the response x

1

with 80% chance then gets prior probability of 11/111 ⇡ 0.099.
Hence, a di↵erent set of candidate true pmfs will lead to a di↵erent assessment
of prior beliefs. This lack of invariance depends on how many and which true
candidate pmfs are chosen from P in constructing the finite-dimensional matrices
of Table 3.1 and Table 3.2.

3.3.3.4 Di↵erent representation, di↵erent prior model probabilities,
thus, di↵erent Bayes factors

Applying the C&S belief propagation procedure to the matrix of Table 3.1 yields
di↵erent allocations, thus, di↵erent Bayes factors then when we use the matrix of
Table 3.2. For example, a scientist might believe that the true data generating
pmf is close to p(X | 

18

) = [0.1, 0.6, 0.3] of Table 3.1, thus, chooses �( 
18

) = 0.50.
This prior belief then gets allocated to the model instance f

1

(X |# = 0.6) of M
1

.
Similarly, we would expect that the scientist would also set �( ̃

19

) ⇡ 0.50 when
confronted with Table 3.2, because the candidate pmf p(X |  ̃

19

) = [0.10, 0.63, 0.27]
in the second matrix does not di↵er that much from the pmf p(X | 

18

) of the first
matrix. However, according to the second matrix the prior pmf probability �( ̃

19

)
is then allocated to the model instance f

2

(X |↵ = 0.63) of M
2

. In e↵ect, a
di↵erent representation leads to a di↵erent belief allocation, thus, di↵erent priors
⇡
i

(✓
i

), P (M
i

) and di↵erent posteriors P (M̂
i

| d) and, consequently, di↵erent Bayes
factors. As such, our understanding of the C&S belief propagation procedure leads
to an inadequate definition of Bayes factors, which depends on how we choose to
represent P.

3.3.3.5 Je↵reys’s prior and the C&S procedure

The reason for this lack of invariance is due to an error incurred from (1) the
parameterisation ⇠ itself, and (2) the discretisation of the parameter space. For
example, the matrices depicted in Table 3.1 and Table 3.2 were derived from
the parameterisations ⇠ and ⇠̃, respectively, followed by a discretisation of the
parameter space with a step size of 0.1 in each coordinate. The first point can
be repaired, as Je↵reys (1946) showed that Fisher information can be used to
neutralise the parameterisation error. This solution is more commonly known as
the Je↵reys’s prior. In Ly et al. (2017c) we showed that the Je↵reys’s prior on
the parameters, say,  = (b, c) in  leads to a uniform prior on pmfs in P. The
second point however cannot be fixed.

To elaborate on this latter point, recall that the collection of all data gener-
ating pmfs P is uncountably large, which means that the scientist’s actual prior
belief �( ) is a continuous quantity. By using a finite number M of candidate
true data generating pmfs, the target continuous random variable �( ) is then
approximated by a discretised version �( 

m

). The corresponding discretisation
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errors are comparable to the errors incurred when histograms are used to approx-
imate a smooth density function. Moreover, because the actual belief about  is
continuous, we have zero probability of having the true data generating process
p⇤(X) being exactly equal to one of the finite number of candidate pmfs p(X | 

m

).
As such, we cannot construct the actual belief �( ) from point masses. Note that
this continuity issue was already alluded to in Section 3.3.3.3 as one would expect
that if the pmfs indexed by  ̃

89

,  ̃
94

,  ̃
99

in Table 3.2 are assigned some prior mass,
the pmfs in between would also receive some prior mass. The implication is that
the C&S procedure might only work if we use a “matrix” with an uncountable
number of rows.

Furthermore, the discretisation leads to another type of approximation er-
ror that we refer to as geometric approximation error due to the chosen diver-
gence measure D. This error was alluded to in Section 3.3.3.4, where a small
change in the candidate true data generating pmf p(X | 

18

) = [0.1, 0.6, 0.3] to
p(X |  ̃

19

) = [0.10, 0.63, 0.27] leads to a completely di↵erent allocation of the prior
belief; from a model instance of M

1

to one of M
2

. The geometrical interpretation
stems from the fact that KL-divergence can be thought of as a generalisation of
the Fisher information metric.11 Moreover, it follows directly from the geometric
interpretation that the C&S belief propagation procedure favours the more com-
plex model, as it will attract a larger number of candidate data generating pmfs
indexed by  

m

, see Ly et al. (2017c). This a priori boosting of the more complex
model is at odds with the simplicity postulate that seems to be central in the
foundations of the C&S procedure, see Shi↵rin et al. (2016).

The fact that we cannot construct the actual belief �( ) from point masses
is at odds with the C&S idea that P (M

i

) is the sum of its parts. This bottom-
up view is what caused Shi↵rin et al. (2016) to avoid overlapping models; when
M

1

and M
2

share a pmf and the shared instance receives some prior mass, this
prior mass will be accounted for twice. As a result, the prior model probabilities
will then exceed one, i.e., P (M

1

) +P (M
2

) > 1. To deal with overlapping models
Shi↵rin et al. (2016) suggested to remove the common pmfs from the larger model.
This idea is elaborated on with a toy example where M

3

is a binomial model with
the chance of success ✓ fixed at ✓ = 0.5 and where M

4

represents the binomial
model in which ✓ is free to vary between zero and one. They then reformulate
M

4

as the binomial model M̃
4

in which ✓ is free to vary between (0, 0.49) and
(0.51, 1). This replacement of M

4

by M̃
4

leads to another approximation error.
One solution would be to allow M̃

4

to converge to M
4

by allowing ✓ to be in
(0, 0.5� ✏)[ (0.5+ ✏, 1). This construction however depends on how ✏ goes to zero
and induces the Borel-Kolmogorov paradox (e.g., Lindley, 1997; Wetzels et al.,
2010a). This paradox is another indication of how the C&S belief propagation
scheme depends on how we as scientists represent the problem in terms of the
chosen parameterisation and, subsequently, discretise the parameter space.

In other words, we believe that the lack of invariance is inescapable when the
C&S approach is operationalised with a finite-dimensional matrix leading to an
over-simplication of the problem resulting in a representation that is not on par

11The KL-divergence is not a metric in the formal sense, only its infinitesimal version can be
related to the Fisher information as a metric, i.e., Je↵reys’s prior.
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with the sophisticated ideas behind the C&S approach.

3.3.4 Conclusion

Based on the di↵erent strategies used to set priors ⇡
i

(✓
i

) within the models M
i

,
we conclude that the C&S belief propagation procedure answers a di↵erent ques-
tion than a traditional Bayes factor. We believe that C&S are mostly concerned
with how a scientist’s subjective knowledge of the true data generating p⇤(X) is
permeated in the models M

1

and M
2

. Hence, C&S focus on checking whether
the models M

1

and M
2

give a good representation of expert knowledge.
As such, we think that the C&S approach can be valuable at the preliminary

stage of model building. In particular, by considering all possible data generating
pmfs for the random variable X, the C&S procedure forces the statistician to
focus on building a model that is relevant for the problem at hand, rather than
being restricted by the standard models. We would like to emphasise that our
remarks are not aimed at the aspiration of C&S to construct good models that
mimic nature well.

Our major concern deals with the finite-dimensional representation that C&S
use to operationalise their procedure and the recommendations to set �( ) sub-
jectively. The idea to consider the full model P is to account for misspecification;
as a result, however, the subjective assessment of prior beliefs is nigh impossible.
Note that the subjective belief �( ) is necessary a continuous random variable,
because the full model P contains an uncountable number of candidate true pmfs
p(X | ). To make their procedure viable, C&S oversimplify the problem with a
finite-dimensional matrix yielding approximation errors that cannot be ignored.

The problem worsens when X is also continuous. In that case, the full model
should then be represented by a “matrix” with an uncountable number of rows
and columns. Moreover, this full model is far too complex, as it does not even
allow for consistent inference (Dvoretzky et al., 1956). This is why regularisation
methods were invented and alternative models were proposed that grow with the
number of samples (e.g., Bickel, 2006). The goal set by C&S to compare models
in a totally unrestrictive setting is ambitious and an active area of research that is
progressing slowly, see Borgwardt and Ghahramani (2009), Ghosal et al. (2008),
Holmes et al. (2015), Labadi et al. (2014), Salomond (2013) and Salomond (2014)
for some recent results.

For estimation problems, one solution would be to forgo the finite matrix rep-
resentation and consider the prior on P as a continuous random variable instead.
As a replacement of the subjective assessment, we then recommend Je↵reys’s prior
as it is uniform on P when X has a finite number of outcomes W . A Je↵reys prior
for the full model P is viable when W < 1, as the distribution of X is then at
most a multinomial distribution with W categories. When X is continuous the
Je↵reys prior can then be extended by a method described in Ghosal et al. (1997),
which has been used successfully to justify Bayesian nonparametric estimation
methods, see also Ghosal et al. (2000) and Kleijn and Zhao (2017). However, this
replacement of the discretised �( 

m

) by a continuous version �( ) is at odds with
the philosophy that the prior on the whole, P (M

i

), is a sum of its parts ⇡
i

(✓
i

) as
the individual model instances then necessarily receive zero mass. Furthermore,
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we do not know how to translate a continuous �( ) on all pmfs P to the model in-
stances ⇡

i

of M
i

without an explicitly defined relationship between the true data
generating p⇤(X) and the model instances of M

i

. In e↵ect, we doubt that the
C&S procedure extends traditional Bayes factors and that it is capable of yielding
a Je↵reys’s Bayes factors that formalises inductive reasoning and the logic of proof
by contradiction. The reason for this doubt is due to the fact that C&S do not
focus on the two models under test, instead, they embed these two models within
a larger encompassing model as Robert did, see Section 3.2.

In conclusion, we believe that a Je↵reys’s Bayes factor remains the preferred
method of inference, because a Je↵reys’s Bayes factor does not depend on how
the full model P is represented and discretised. Thus, it does not su↵er from the
lack of invariance as discussed above. Furthermore, a Je↵reys’s Bayes factor does
not require a subjectively elicitation of prior beliefs. Note that the Bayes factor
focuses on comparing the models M

1

and M
2

, no reference is made to any true
data generating process p⇤(X). Je↵reys was mostly concerned with quantifying
the (relative) evidence provided by the observations for either model. The Bayes
factor is not concerned with the true data generating process p⇤(X) and it does
not aspire to do so. Both M

1

and M
2

could be poor descriptions of the true
data generating pmf p⇤(X), but fortunately it has been shown that the model
selected with a Bayes factor is the model closest to the true p⇤(X) in terms of
KL-divergence (e.g., Dass and Lee, 2004). Hence, the model that is preferred by
the Bayes factor will be able to generalise better to yet unseen data –a guarantee
that aligns with the spirit of the C&S approach.

3.4 Conclusion

We would like to thank the authors of both comments for their stimulating re-
marks and for their creative alternatives and extensions to Je↵reys’s Bayes factors.
We hope that this discussion has resulted in a renewed appreciation for Harold
Je↵reys’s foundational contributions to model selection and hypothesis testing,
and we look forward to future developments in this exciting and important area
of research.
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Chapter 4

Bayesian Inference for Kendall’s
Rank Correlation Coe�cient

Abstract

This chapter outlines a Bayesian methodology to estimate and test the
Kendall rank correlation coe�cient ⌧ . The nonparametric nature of rank
data implies the absence of a generative model and the lack of an explicit
likelihood function. These challenges can be overcome by modelling test
statistics rather than data (Johnson, 2005). We also introduce a method for
obtaining a default prior distribution. The combined result is an inferential
methodology that yields a posterior distribution for Kendall’s ⌧ .

Keywords: Bayes factor, nonparametric inference.

4.1 Introduction

One of the most widely used nonparametric tests of dependence between two vari-
ables is the rank correlation known as Kendall’s ⌧ (Kendall, 1938). Compared to
Pearson’s ⇢, Kendall’s ⌧ is robust to outliers and violations of normality (Kendall
and Gibbons, 1990). Moreover, Kendall’s ⌧ expresses dependence in terms of
monotonicity instead of linearity and is therefore invariant under rank-preserving
transformations of the measurement scale (Kruskal, 1958; Wasserman, 2006). As
expressed by Harold Je↵reys (1961, p. 231): “(...) it seems to me that the chief
merit of the method of ranks is that it eliminates departure from linearity, and
with it a large part of the uncertainty arising from the fact that we do not know
any form of the law connecting X and Y ”. Here we apply the Bayesian inferen-
tial paradigm to Kendall’s ⌧ . Specifically, we define a default prior distribution

This chapter is published online as: van Doorn, J.B., Ly, A., Marsman, A., & Wagenmak-
ers, E.–J. (2017). Bayesian inference for Kendall’s rank correlation coe�cient. The American

Statistician. doi: http://dx.doi.org/10.1080/00031305.2016.1264998
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on Kendall’s ⌧ , obtain the associated posterior distribution, and use the Savage-
Dickey density ratio to obtain a Bayes factor hypothesis test (Dickey and Lientz,
1970; Je↵reys, 1961; Kass and Raftery, 1995).

4.1.1 Kendall’s ⌧

Let Xn = (X
1

, . . . , X
n

) and Y n = (Y
1

, . . . , Y
n

) be two random vectors each con-
taining measurements of the same n units. For example, consider the association
between French and maths grades in a class of n = 3 children: Tina, Bob, and
Jim; let xn = (8, 7, 5) be their observed grades for a French exam and yn = (9, 6, 7)
be their realised grades for a maths exam. For 1  i < j  n, each pair (i, j) is
defined to be a pair of di↵erences (x

i

� x
j

) and (y
i

� y
j

). A pair is considered to
be concordant if (x

i

� x
j

) and (y
i

� y
j

) share the same sign, and discordant when
they do not. In our data example, Tina has higher grades on both exams than
Bob, which means that Tina and Bob are a concordant pair. Conversely, Bob has
a higher score for French, but a lower score for maths than Jim, which means Bob
and Jim are a discordant pair. The observed value of Kendall’s ⌧ , denoted ⌧

obs

, is
defined as the di↵erence between the number of concordant and discordant pairs,
expressed as proportion of the total number of pairs:

⌧
obs

=

P

n

1i<jn

Q((x
i

, y
i

), (x
j

, y
j

))

n(n� 1)/2
, (4.1.1)

where the denominator represents the total number of pairs and Q is the concor-
dance indicator function:

Q((x
i

, y
i

)(x
j

, y
j

)) =

(

�1 if (x
i

� x
j

)(y
i

� y
j

) < 0,

+1 if (x
i

� x
j

)(y
i

� y
j

) > 0.
(4.1.2)

Table 4.1 illustrates the calculation for our small data example. Applying Eq. (4.1.1)
gives ⌧

obs

= 1/3, an indication of a positive correlation between French and maths
grades.

i j x
i

� x
j

y
i

� y
j

Q

1 2 8-7 9-6 1
1 3 8-5 9-7 1
2 3 7-5 6-7 -1

Table 4.1: The pairs (i, j) for 1  i < j  n and the concordance indicator
function Q for the data example where xn = (8, 7, 5) and yn = (9, 6, 7).

When ⌧
obs

= 1, all pairs of observations are concordant, and when ⌧
obs

= �1,
all pairs are discordant. Kruskal (1958) provides the following interpretation of
Kendall’s ⌧ : in the case of n = 2, suppose we bet that y

1

< y
2

whenever x
1

< x
2

,
and that y

1

> y
2

whenever x
1

> x
2

; winning $1 after a correct prediction and
losing $1 after an incorrect prediction, the expected outcome of the bet equals ⌧ .
Furthermore, Gri�n (1958) has illustrated that when the ordered rank-converted
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values of X are placed above the rank-converted values of Y and lines are drawn
between the same numbers, Kendall’s ⌧

obs

is given by the formula: 1 � 4z

n(n�1)

,
where z is the number of line intersections; see Fig. 4.1 for an illustration of this
method using our example data of French and maths grades. These tools allows
us to straightforwardly and intuitively calculate and interpret Kendall’s ⌧ .

8 7 5French grades ∶

9 6 7Math grades ∶

1 2 3Ranks ∶

Ranks ∶ 1 3 2

Figure 4.1: A visual interpretation of Kendall’s ⌧
obs

through the formula: 1 �
4z

n(n�1)

, where z is the number of intersections of the lines. In this case, n = 3,

z = 1, and ⌧
obs

= 1/3.

Despite these appealing properties and the overall popularity of Kendall’s ⌧ ,
a default Bayesian inferential paradigm is still lacking because the application
of Bayesian inference to nonparametric data analysis is not trivial. The main
challenge in obtaining posterior distributions and Bayes factors for nonparametric
tests is that there is no generative model and no explicit likelihood function. In
addition, Bayesian model specification requires the specification of a prior dis-
tribution, and this is especially important for Bayes factor hypothesis testing;
however, for nonparametric tests it can be challenging to define a sensible default
prior. Though recent developments have been made in two-sample nonparametric
Bayesian hypothesis testing with Dirichlet process priors (Borgwardt and Ghahra-
mani, 2009; Labadi et al., 2014) and Pòlya tree priors (Chen and Hanson, 2014;
Holmes et al., 2015), here we focus on a di↵erent approach, one that permits an
intuitive and direct interpretation.

4.1.2 Modelling test statistics

In order to compute Bayes factors for Kendall’s ⌧ we start with the approach
pioneered by Johnson (2005) and Yuan and Johnson (2008). These authors estab-
lished bounds for Bayes factors based on the sampling distribution of the stan-
dardised value of ⌧ , denoted by T ⇤, which will be formally defined in Section 4.2.1.
Using the Pitman translation alternative, where a non-centrality parameter is used
to distinguish between the null and alternative hypotheses (Randles and Wolfe,
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1979), Johnson and colleagues specified the following hypotheses:

H
0

: ✓ = ✓
0

, (4.1.3)

H
1

: ✓ = ✓
0

+
�p
n
, (4.1.4)

where ✓ is the true underlying value of Kendall’s ⌧ , ✓
0

is the value of Kendall’s ⌧
under the null hypothesis, and � serves as the non-centrality parameter which can
be assigned a prior distribution. The limiting distribution of T ⇤ under both hy-
potheses is normal distributed (Hotelling and Pabs, 1936; Noether, 1955; Cherno↵
and Savage, 1958), that is,

H
0

: T ⇤ ⇠ N (0, 1) (4.1.5)

H
1

: T ⇤ ⇠ N ( 3�
2

, 1). (4.1.6)

The prior on � is specified by Yuan and Johnson as

� ⇠ N (0, g), (4.1.7)

where g is used to specify the expectation about the size of the departure from
the null-value of �. This leads to the following Bayes factor:

BF
01

(d) =
p

1 + 9/4g exp
⇣

� gt⇤2

2g + 8/9

⌘

. (4.1.8)

Next, Yuan and Johnson calculated an upper bound for BF
10

(d), thus, a lower
bound on BF

01

(d), by maximising over the hyperparameter g.

4.1.3 Challenges

Although innovative and compelling, the approach advocated by Yuan and John-
son (2008) does have a number of non-Bayesian elements, most notably the data-
dependent maximisation over the hyperparameter g that results in a data-dependent
prior distribution. Moreover, the definition of H

1

depends on n: as n ! 1, H
1

and H
0

become indistinguishable and lead to an inconsistent inferential frame-
work.

Our approach, motivated by the earlier work by Johnson and colleagues, sought
to eliminate g not by maximisation but by a method we call “parametric yoking”
(i.e., matching with a prior distribution for a parametric alternative). In addition,
we redefined H

1

such that its definition does not depend on sample size. As such,
� becomes synonymous with the true underlying value of Kendall’s ⌧ when ✓

0

= 0.

4.2 Methods

4.2.1 Defining T ⇤

As mentioned above, Yuan and Johnson (2008) use the standardised version of ⌧ ,
denoted T ⇤ (Kendall, 1938) which is defined as

T ⇤ =

P

n

1i<jn

Q((X
i

, Y
i

), (X
j

, Y
j

))
p

n(n� 1)(2n+ 5)/18
. (4.2.1)

72



4.2. Methods

Here the numerator contains the concordance indicator function Q. Thus, T ⇤ is
not necessarily situated between the traditional bounds [�1, 1] for a correlation;

instead, T ⇤ has a maximum of
q

9n(n�1)

4n+10

and a minimum of �
q

9n(n�1)

4n+10

. This

definition of T ⇤ enables the asymptotic normal approximation to the sampling
distribution of the test statistic (Kendall and Gibbons, 1990).

4.2.2 Prior distribution through parametric yoking

In order to derive a Bayes factor for ⌧ we first determine a default prior for
⌧ through what we term parametric yoking. In this procedure, a default prior
distribution is constructed by comparison to a parametric alternative. In this case,
a convenient parametric alternative is given by Pearson’s correlation for bivariate
normal data. Ly et al. (2016a) use a symmetric stretched beta prior distribution
(↵ = �) on the domain (�1, 1), that is,

⇡(⇢) =
21�2↵

B(↵,↵) (1� ⇢2)(↵�1), ⇢ 2 (�1, 1), (4.2.2)

where B is the beta function. For bivariate normal data, Kendall’s ⌧ is related to
Pearson’s ⇢ by Greiner’s relation (Greiner, 1909; Kruskal, 1958):

⌧ =
2

⇡
arcsin(⇢). (4.2.3)

We use this relationship to transform the beta prior in Eq. (4.2.2) on ⇢ to a prior
on ⌧ , which leads to

⇡(⌧) = ⇡
2�2↵

B(↵,↵) cos
⇣⇡⌧

2

⌘

(2↵�1)

, ⌧ 2 (�1, 1). (4.2.4)

In the absence of strong prior beliefs, Je↵reys (1961) proposed a uniform distri-
bution on ⇢, that is, a stretched beta with ↵ = � = 1. This choice induces a
non-uniform distribution on ⌧ , i.e.,

⇡(⌧) =
⇡

4
cos
⇣⇡⌧

2

⌘

. (4.2.5)

In general, values of ↵ > 1 increase the prior mass near ⌧ = 0, whereas values
of ↵ < 1 decrease the prior mass near ⌧ = 0. When the focus is on parameter
estimation instead of hypothesis testing, we may follow Je↵reys (1961) and use a
stretched beta prior on ⇢ with ↵ = � = 1

2

. As is easily confirmed by entering these
values in Eq. (4.2.4), this choice induces a uniform prior distribution on Kendall’s
⌧ .1 The parametric yoking framework can be extended to other prior distributions
that exist for Pearson’s ⇢ (e.g., the inverse Wishart distribution; Berger and Sun,
2008; Gelman et al., 2014), by transforming ⇢ with the inverse of the expression
given in Eq. (4.2.3), namely,

⇢ = sin (
⇡⌧

2
). (4.2.6)

1Additional examples and figures of the stretched beta prior, including cases where ↵ 6= �,
are available online at https://osf.io/b9qhj/.
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4.2.3 Posterior distribution and Bayes factor

Removing
p
n from the specification of H

1

by substituting �
p
n for �, we get an

(approximate) normal distribution for T ⇤ under H
1

with mean µ = 3

2

�
p
n and

standard deviation � = 1, thus, the density of T ⇤ at t⇤ is given by

f(t⇤ | ✓
0

+�) =
1p
2⇡

exp (� 1

2

[t⇤ � 3

2

�
p
n]2). (4.2.7)

Filling in the observed value for T ⇤ and combining this normal likelihood function
with the prior from Eq. (4.2.4) then yields a posterior distribution for Kendall’s
⌧ . Next, Bayes factors can be computed as

BF
01

(d) =
p(t⇤|✓

0

)
R

f(t⇤|✓
0

+�)⇡(�)d�
, (4.2.8)

which in the case of Kendall’s ⌧ translates to

BF
01

(d) =
exp(� 1

2

t⇤2)
R

1

�1

exp (� 1

2

[t⇤ � 3

2

⌧
p
n]2)⇡ 2

2↵

B(↵,↵)

cos(⇡⌧
2

)2↵�1d⌧
. (4.2.9)

4.2.4 Verifying the asymptotic normality of T ⇤

Our method relies on the asymptotic normality of T ⇤, a property established math-
ematically by Hoe↵ding (1948). For practical purposes, however, it is insightful to
assess the extent to which this distributional assumption is appropriate for real-
istic sample sizes. By considering all possible permutations of the data, deriving
the exact cumulative density of T ⇤, and comparing the densities to those of a
standard normal distribution, Ferguson et al. (2000) concluded that the normal
approximation holds under H

0

when n � 10. But what if H
0

is false?
Here we report a simulation study designed to assess the quality of the normal

approximation to the sampling distribution of T ⇤ when H
1

is true. With the use of
copulas, 100,000 synthetic data sets were created for each of several combinations
of Kendall’s ⌧ and sample size n.2 For each simulated data set, the Kolmogorov-
Smirnov statistic was used to quantify the fit of the normal approximation to the
sampling distribution of T ⇤.3 Fig. 4.2 shows the Kolmogorov-Smirnov statistic
as a function of n, for various values of ⌧ when data sets were generated from
a bivariate normal distribution (i.e., the normal copula). Similar results were
obtained using Frank, Clayton, and Gumbel copulas. As is the case under H

0

(e.g., Ferguson et al., 2000; Kendall and Gibbons, 1990), the quality of the normal
approximation increases exponentially with n. Furthermore, larger values of ⌧
necessitate larger values of n to achieve the same quality of approximation.

The means of the normal distributions fit to the sampling distribution of T ⇤

are situated at the point 3

2

�
p
n. The data sets from this simulation can also be

used to examine the variance of the normal approximation. Under H
0

(i.e., ⌧ = 0),

2For more information on copulas see Nelsen (2006), Genest and Favre (2007), and Colonius
(2016).

3R-code, plots, and further details are available online at https://osf.io/b9qhj/.
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Figure 4.2: Quality of the normal approximation to the sampling distribution of
T ⇤, as assessed by the Kolmogorov-Smirnov statistic. As n grows, the quality of
the normal approximation increases exponentially. Larger values of ⌧ necessitate
larger values of n to achieve the same quality of approximation. The grey horizon-
tal line corresponds to a Kolmogorov-Smirnov statistic of 0.038 (obtained when
⌧ = 0 and n = 10), for which Ferguson et al. (2000, p. 589) deemed the quality of
the normal approximation to be “su�ciently precise for practical purposes”.

the variance of these normal distributions equals 1. As the population correlation
grows (i.e., |⌧ |! 1), the number of permissible rank permutations decreases and
so does the variance of T ⇤. The upper bound of the sampling variance of T ⇤ is a
function of the population value for ⌧ (Kendall and Gibbons, 1990):

�2

T

⇤  2.5n(1� ⌧2)

2n+ 5
. (4.2.10)

As shown in the online appendix, our simulation results provide specific values for
the variance which respect this upper bound. This result has ramifications for the
Bayes factor. As the test statistic moves away from 0, the variance falls below 1,
and the posterior distribution will be more peaked on the value of the test statistic
than when the variance is assumed to equal 1. This results in increased evidence in
favour of H

1

, so that our proposed procedure is somewhat conservative. However,
for n � 20, the changes in variance will only surface in cases where there already
exists substantial evidence for H

1

(i.e., BF
10

(d) � 10).

4.3 Results

4.3.1 Bayes factor behaviour

Now that we have determined a default prior for ⌧ and combined it with the
specified Gaussian likelihood function, computation of the posterior distribution
and the Bayes factor becomes feasible. For an uninformative prior on ⌧ (i.e.,
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↵ = � = 1), Fig. 4.3 illustrates BF
10

(d) as a function of n, for three values of
⌧
obs

. The lines for ⌧
obs

= 0.2 and ⌧
obs

= 0.3 show that BF
10

(d) for a true H
1

increases exponentially with n, as is generally the case. For ⌧
obs

= 0, the Bayes
factor decreases as n increases.
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Figure 4.3: Relation between BF
10

(d) and sample size (3  n  150) for three
values of Kendall’s ⌧ .

4.3.2 Comparison to Pearson’s ⇢

In order to put the result in perspective, the Bayes factors for Kendall’s tau (i.e.,
BF⌧

10

(d)) can be compared to those for Pearson’s ⇢ (i.e., BF⇢

10

(d)). The Bayes
factors for Pearson’s ⇢ are based on Je↵reys (1961), see also Ly et al., 2016a,
who used the uniform prior on ⇢. Fig. 4.4 shows that the relationship between
BF⌧

10

(d) and BF⇢

10

(d) for normal data is approximately linear as a function of
sample size. In addition, and as one would expect due to the loss of information
when continuous values are converted to coarser ranks, BF⌧

10

(d) < BF⇢

10

(d) in the
case of evidence in favour of H

1

(left panel of Fig. 4.4). When evidence is in favour
of H

0

, i.e. ⌧ = 0, BF⌧

10

(d) and BF⇢

10

(d) perform similarly (right panel of Fig. 4.4).

4.3.3 Real data example

Willerman et al. (1991) set out to uncover the relation between brain size and IQ.
Across 20 participants, the authors observed a Pearson’s correlation coe�cient of
r = 0.51 between IQ and brain size, measured in MRI count of grey matter pixels.
The data are presented in the top left panel of Fig. 4.5. Bayes factor hypothesis
testing of Pearson’s ⇢ yields BF⇢

10

(d) = 5.16, which is illustrated in the middle
left panel. This means that the data are 5.16 times as likely to occur under H

1

than under H
0

. When applying a log-transformation on the MRI counts (after
subtracting the minimum value minus 1), however, the linear relation between IQ
and brain size is less strong. The top right panel of Fig. 4.5 presents the e↵ect of
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Figure 4.4: Relation between the Bayes factors for Pearsons ⇢ and Kendall’s ⌧ =
0.2 (left) and Kendall’s ⌧ = 0 (right) as a function of sample size (i.e., 3  n 
150). The data are normally distributed. Note that the left panel shows BF

10

(d)
and the right panel shows BF

01

(d). The diagonal line indicates equivalence.

this monotonic transformation on the data. The middle right panel illustrates how
the transformation decreases BF⇢

10

(d) to 1.28. The bottom left panel presents our
Bayesian analysis on Kendall’s ⌧ , which yields a BF⌧

10

(d) of 2.17. Furthermore, the
bottom right panel shows the same analysis on the transformed data, illustrating
the invariance of Kendall’s ⌧ against monotonic transformations: the inference
remains unchanged, which highlights one of Kendall’s ⌧ most appealing features.

4.4 Concluding comments

We outlined a nonparametric Bayesian framework for inference about Kendall’s
tau based on modelling test statistics and by assigning a prior by means of a
parametric yoking procedure. The framework produces a posterior distribution
for Kendall’s tau, and –via the Savage-Dickey density ratio test– also yields a
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Figure 4.5: Bayesian inference for Kendall’s ⌧ illustrated with data on IQ and
brain size (Willerman et al. 1991). The left column presents the relation between
brain size and IQ, analysed using Pearson’s ⇢ (middle panel) and Kendall’s ⌧
(bottom panel). The right column presents the results after a log transformation
of brain size. Note that the transformation a↵ects inference for Pearson’s ⇢, but
does not a↵ect inference for Kendall’s ⌧ .
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Bayes factor that quantifies the evidence for the absence of a correlation.
Our general procedure (i.e., modelling test statistics and assigning a prior

through parametric yoking) is relatively general and may be used to facilitate
Bayesian inference for other nonparametric tests as well. For instance, Serfling
(1980) o↵ers a range of test statistics with asymptotic normality to which our
framework may be expanded, whereas Johnson (2005) has explored the modelling
of test statistics that have non-Gaussian limiting distributions.
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Chapter 5

Informed Bayesian t-Tests

Abstract

Across the empirical sciences, few statistical procedures rival the pop-
ularity of the frequentist t-test. In contrast, the Bayesian versions of the
t-test have languished in obscurity. In recent years, however, the theoretical
and practical advantages of the Bayesian t-test have become increasingly
apparent. Developed by Harold Je↵reys, the default Bayesian t-test assigns
a zero-centred Cauchy prior distribution to the e↵ect size parameter under
the alternative hypothesis. This specification is relatively restrictive, and
in scientific applications the researcher may possess expert knowledge that
allows the formulation of an informed prior distribution that is centred away
from zero. In order to facilitate a more informative Bayesian analysis of the
comparison between two means we extend Harold Je↵reys’s t-tests. This
extension allows researchers to assign a shifted and scaled t prior distribu-
tion to the e↵ect size parameter. We present expressions for the marginal
posterior distribution of the e↵ect size parameter and for the Bayes factor
test; three real-data examples highlight the practical value of the approach.

Keywords: Bayes factor, informed hypothesis test, posterior distribution.

5.1 Introduction

The t-test is designed to assess whether two means di↵er from one another. The
question is fundamental, and consequently the t-test has grown to be an inferential
workhorse of the empirical sciences. The popularity of the t-test is underscored by
considering the p-values published in eight major psychology journals from 1985
until 2013 (Nuijten et al., 2016); out of a total of 258,105 p-values, 26% tested
the significance of a t statistic. For comparison, 4% of those p-values tested an r

This chapter is submitted for publication and also available as arXiv preprint:1705.01064
as: Gronau, Q.F., Ly, A., & Wagenmakers, E.–J. (2017). Informed Bayesian t-tests.
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5. Informed Bayesian t-Tests

statistic, 4% a z statistic, 9% a �2 statistic, and 57% an F statistic. Similarly,
Wetzels et al. (2011) found 855 t-tests reported in 252 psychology articles, for an
average of about 3.4 t-tests per article.

The popularity of the t-test has always concerned its classical or frequentist
version. This article concerns the Bayesian version originally developed by Jef-
freys (1948). Je↵reys’s Bayesian t-test quantifies the predictive adequacy of two
competing hypotheses: the null hypothesis H

0

which states that the e↵ect size � is
equal to zero (i.e., H

0

: � = 0) versus the alternative hypothesis H
1

which allows
� to vary freely. Je↵reys’s test uses a zero-centred Cauchy prior distribution on �
with scale parameter � = 1, i.e., � ⇠ Cauchy(0, 1).

Je↵reys’s Bayesian t-tests come with the well-known advantages of Bayesian
inference: the ability to assess the relative plausibility of di↵erent values for � by
means of a posterior distribution; the ability to quantify evidence, both in favour
of the null hypothesis and in favour of the alternative hypothesis; the ability to
monitor the evidential flow as more observations become available; the ability
to stop data collection whenever the evidence is compelling (Berger and Berry,
1988; Rouder, 2014; Savage, 1961); and the ability to provide composite estimates
and predictions that take into account model uncertainty (Haldane, 1932; Hoeting
et al., 1999). The fact that Je↵reys’s t-tests have remained relatively unpopular
among practitioners can be explained by a combination of factors: Je↵reys’s writ-
ing is di�cult to parse, Bayesian inference is generally excluded from the standard
statistical curriculum o↵ered in the empirical sciences, and the Bayesian t-tests
were not available in mainstream statistical software packages. Recently, Rouder
et al. (2009) have brought the Bayesian t-test into the limelight, with further impe-
tus from the increased need for replication research to quantify evidence in favour
of the null hypothesis (Marsman et al., 2017), and the fact that the test was sub-
sequently implemented in user-friendly software packages (i.e., JASP Team, 2017;
Morey and Rouder, 2015).

Je↵reys’s Bayesian t-tests were meant to be “objective” in the sense of being
applicable across a large range of di↵erent fields and phenomena. In Je↵reys’s
vision, possibly inspired by his experience as a physicist, the null hypothesis H

0

represents an invariance or general law (i.e., � = 0), whereas the alternative hy-
pothesis H

1

relaxes the restriction imposed by H
0

and reflects the intuition that
the e↵ect is likely to be small. Moreover, by centring the Cauchy prior on zero,
Je↵reys avoided the complexity and context-dependency of having to specify an-
other parameter (i.e., the most likely value of � under H

1

). Nevertheless, a more
informed specification of the prior distribution on �, when possible, may increase
the informativeness of the inference.

Here we present an extension of Je↵reys’s default t-test that allows researchers
to incorporate expert knowledge into the prior specification of the e↵ect size pa-
rameter �. Specifically, we consider two families of prior distributions for �: the
family of shifted and scaled t distributions (which includes Je↵reys’s Cauchy prior
as a special case), and the family of shifted and scaled normal distributions. For
both families we derive the marginal posterior distribution of � and the Bayes
factor. For the normal family the solutions are completely analytic; for the t fam-
ily the solutions contain a one-dimensional integral that can easily be evaluated
numerically.
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5.2. Je↵reys’s default Bayes factor

5.2 Je↵reys’s default Bayes factor

Je↵reys developed Bayesian hypothesis tests for scenarios where the null hypoth-
esis H

0

represents a general law and the competing alternative hypothesis H
1

relaxes the restriction imposed by H
0

. For instance, in the one-sample t-test set-
ting, H

0

states that the population mean is equal to zero whereas the alternative
hypothesis allows for a non-zero population mean.

To quantify the evidence that the data provide for or against a general law,
Je↵reys (1961) developed a formal system of statistical inference with the following
key equation (Wrinch and Je↵reys, 1921, p. 387):

P (H
1

| d)
P (H

0

| d)
| {z }

Posterior odds

=
p(d |H

1

)

p(d |H
0

)
| {z }

BF10(d)(d)

P (H
1

)

p(H
0

)
| {z }

Prior odds

(5.2.1)

In his work, Je↵reys focused on the Bayes factor (Etz and Wagenmakers, 2017;
Kass and Raftery, 1995; Ly et al., 2016a; Robert et al., 2009). The Bayes factor
has an intuitive interpretation: when BF

10

(d) = 10 this indicates that the data are
10 times more likely under H

1

than under H
0

; when BF
10

(d) = .2 this indicates
that the data are 5 times more likely under H

0

than under H
1

.
Let H

0

be specified by a series of nuisance parameters ⇣ and, importantly, a
parameter of interest that is fixed at a single value of particular interest, ✓ = ✓

0

.
The alternative hypothesis H

1

is specified using similar nuisance parameters ⇣,
but in addition H

1

releases the restriction on ✓. In order to obtain the Bayes
factor, the model parameters are integrated out

BF
10

(d) =

R

⇥

R

Z

f(d | ✓, ⇣,H
1

)⇡(✓, ⇣ |H
1

) d⇣ d✓
R

Z

f(d | ✓ = ✓
0

, ⇣,H
0

)⇡(⇣ |H
0

) d⇣
, (5.2.2)

showing that the Bayes factor can be regarded as the ratio of two weighted av-
erages where the weights correspond to the prior distribution for the parameters.
Consequently, the choice of the prior distribution is crucial for the development of
a Bayes factor hypothesis test.

Je↵reys’s procedure for assigning prior distributions to the parameters exploits
the fact that H

0

is nested within H
1

(obtained by setting ✓ = ✓
0

). For the nuisance
parameters, Je↵reys used his famous parameterisation invariant “Je↵reys’s” prior
given by ⇡(⇣) /

p

det I(⇣) where I(⇣) denotes the Fisher information matrix. For
the test-relevant parameter ✓, Je↵reys based his prior choice on two desiderata.
The first desideratum, predictive matching, states that the Bayes factor should be
perfectly indi↵erent (i.e., BF

10

(d) = 1) in case the data are completely uninfor-
mative. The second desideratum, information consistency, states that the Bayes
factor should provide infinite support for one of the two hypotheses in case the
data are overwhelmingly informative (Bayarri et al., 2012; Je↵reys, 1942). In case
of the t-test, these two desiderata led Je↵reys to a Cauchy prior distribution for
the test-relevant e↵ect size parameter (Ly et al., 2016a).

Je↵reys’s development of the Bayes factor test was mainly concerned with
situations where there is little prior knowledge available. However, it seems that he
was not completely opposed to including existing expert prior knowledge into the
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specification of the test-relevant prior distribution in case it is available (Je↵reys,
1961, p. 252):

“In any of these cases it would be perfectly possible to give a form
of f(a) [i.e., prior distribution for the test-relevant parameter, in our
notation ⇡(✓)] that would express the previous information satisfacto-
rily, and consideration of the general argument of 5.0 will show that it
would lead to common-sense results, but they would di↵er in scale. As
we are aiming chiefly at a theory that can be used in the early stages
of a subject, we shall not at present consider the last type of case”

As Je↵reys alludes to, there may be situations where researchers have strong prior
knowledge about the subject area. In this case, a procedure that admits a prior
distribution for the test-relevant parameter which better reflects the prior state of
knowledge might yield more informative tests of the researchers’ hypotheses than
tests based on the default prior.

Note that Je↵reys’s default t-test assigns the crucial e↵ect size parameter � a
zero-centred Cauchy distribution under H

1

; hence, under H
1

the most likely e↵ect
size value is zero, a proposition that many researchers find problematic. Instead,
these researchers may wish to centre their prior distribution on the non-zero value
for � that reflects their knowledge-based expectation about the e↵ects at hand.
Below we derive the posterior distributions and Bayes factors for two families of
prior distributions on � that allow changes in shift and scale. We first consider the
one-sample and paired samples t-test and then consider the independent samples
t-test.

5.3 One-sample and paired samples t-test

5.3.1 Model

In a one-sample t-test, n observations are assumed to be drawn from a normal
distribution, that is, y

i

⇠ N (µ,�2) for i = 1, 2, . . . , n. Note that the paired
samples t-test is a special case of this formalisation, since a paired samples t-test
is equivalent to a one-sample t-test on the di↵erence scores. We follow Je↵reys
and reparameterise the model in terms of the dimensionless e↵ect size � = µ/�
(Je↵reys, 1961; Ly et al., 2016a; Rouder et al., 2009; Wetzels et al., 2009). The
null hypothesis states that the e↵ect size is zero (i.e., H

0

: � = 0) whereas the
alternative hypothesis states that the e↵ect size is non-zero (i.e., H

1

: � 6= 0).

5.3.2 Prior distributions

Next we need to specify prior distributions for the parameters. For the parameter
common to both models (i.e., �2), we use ⇡(�2) / ��2, in line with Je↵reys’s
approach. For the test-relevant e↵ect size �, we depart from Je↵reys’s default
choice and consider an informed shifted and scaled t prior distribution, that is,
� ⇠ t(µ

�

, �,), where µ
�

corresponds to the location parameter, � to the scale
parameter, and  to the degrees of freedom.
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Note that this specification includes Je↵reys’s standard Cauchy prior distribu-
tion as a special case (i.e., when  = 1). Additionally, we present the results for
an informed normal prior of the form � ⇠ N (µ

�

, g) where µ
�

corresponds to the
mean and g to the variance of the normal distribution.

5.3.3 Posterior distribution for e↵ect size �

After conducting a Bayesian t-test, the two quantities of primary interest are the
posterior distribution for e↵ect size � under H

1

and the Bayes factor (presented in
the next section). For enhanced readability we suppress the conditioning on H

1

and write the marginal posterior distribution for � under H
1

as

⇡(� | d) =
R1
0

f(d | �,�2)⇡(�2)d�2 ⇡(�)

p(d)
, (5.3.1)

where d refers to the data. When we use a t prior of the form t(µ
�

, �,), we obtain
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where ⇡(g) denotes an inverse-gamma distribution of the form IG(
2

, �2 

2

) given
by

⇡(g) =
(�2 

2

)


2

�(



2

)

g�


2

�1 exp (� �

2


2g

), (5.3.3)
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where
1

F
1

denotes the confluent hypergeometric function. Furthermore, t corre-
sponds to the one-sample t-value defined as t =

p
nȳ/s where s corresponds to

the unbiased sample standard deviation and ⌫ = n� 1 corresponds to the degrees
of freedom of the t-test. The integral with respect to g in the denominator is due
to the t prior representation as a scale-mixture of normal distributions as, for in-
stance, applied in the well-known mixture of g priors (e.g., Liang et al., 2008). This
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integral is independent of � and thus only needs to be evaluated once, something
which can easily be accomplished via numerical integration.

In order to derive this expression for the posterior distribution we made use
of a lemma distilled from the Bateman project (Bateman et al., 1954; Ly et al.,
2017d). Note that in order to calculate the posterior distribution, we only require
the t-value and the sample size; this is convenient because it allows a computation
of the posterior distribution of � for a t-test reported in an empirical article which
usually presents the t-value and the sample size, but not the raw data.

The posterior distribution for a normal prior of the form � ⇠ N (µ
�

, g) is
obtained by removing the integral over g with respect to ⇡(g) in the denominator
and replacing the shifted and scaled t prior distribution in the numerator by the
normal prior distribution which yields:
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where A,B,C, and D are defined as before. Detailed derivations can be found in
the online appendix.

5.3.4 Bayes factor

In this section we present the Bayes factor for the informed generalisation of
Je↵reys’s one-sample t-test. The Bayes factor BF

10

(d) is given by the ratio of
the marginal likelihoods of H

1

and H
0

. The marginal likelihoods are obtained by
integrating out the model parameters with respect to their prior distributions
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10
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R1
0

R1
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The Bayes factor for a shifted and scaled t prior on � is given by:
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the Bayes factor for a normal prior on � is given by
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where A,B, ⌫, t, and ⇡(g) are defined as before. Note that, as for the posterior
distribution of �, the only information needed to compute this Bayes factor is the
t-value and the sample size n. A detailed derivation is presented in the online
appendix.
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5.3. One-sample and paired samples t-test

5.3.5 Example I: The crowd within e↵ect

As an example application, consider the so-called crowd within e↵ect. When peo-
ple are asked to provide quantitative judgments, it has long been known that the
average of the estimates across persons tends to be more accurate than the in-
dividual judgments; this is called the wisdom of the crowd e↵ect (Galton, 1907;
Surowiecki, 2004). Recently, Vul and Pashler (2008) showed that a similar e↵ect
may occur when a single individual is asked to provide a quantitative judgment
twice: the average of two successive assessments was more accurate than the first
or second assessment alone. Due to the similarity to the wisdom of the crowd
e↵ect, Vul and Pashler (2008) termed this phenomenon the crowd within e↵ect.

This surprising e↵ect was successfully replicated by Steegen et al. (2014). Here,
we present an informed reanalysis of the replication study where we use our prior
knowledge from the original study to specify the e↵ect size prior distribution for the
replication experiment, following Lindley’s adage “today’s posterior is tomorrow’s
prior” (Lindley, 1972).

The original experiment by Vul and Pashler featured an immediate and a de-
layed condition. In the immediate condition, participants provided judgments to
eight questions such as “What percentage of the world’s airports are in the United
States?” and they were asked to make a second guess for each of the questions
immediately after they had completed the questionnaire. In the delayed condition,
participants provided the second judgments three weeks after completing the ques-
tionnaire. For our reanalysis, we focus on the results for the delayed condition.
Furthermore, we only consider the comparison of the averaged estimate to the first
guess. In the original experiment, a classical paired t-test indicated that the error
of the average was smaller than the error of the first guess: t(172) = 6.22, p < .001.
Steegen et al. successfully replicated this finding: t(139) = 4.02, p < .001. For our
reanalysis, we proceeded as follows (Verhagen and Wagenmakers, 2014):

1. We analysed the original experiment using a zero-centred Cauchy prior for
the e↵ect size as proposed by Je↵reys (1948). However, instead of using the
standard Cauchy distribution that was Je↵reys’s default choice, we set the
scale parameter of the Cauchy distribution to 1/

p
2 ⇡ 0.707, the present

default choice in the field of psychology. This Cauchy prior is equivalent to
a t(0, 1/

p
2, 1) prior distribution for the e↵ect size parameter �.

2. Using the default Cauchy prior distribution, the paired t-test reported in
the original article yields a Bayes factor of BF

10

(d) = 2, 483, 125 indicating
overwhelming evidence for H

1

with � ⇠ Cauchy(0, 1/
p
2) over H

0

: � = 0.
This result can be obtained using the equations just presented, but the anal-
ysis is also easily conducted using the BayesFactor R package (Morey and
Rouder, 2015) which also produces samples from the posterior distribution
for the e↵ect size parameter �. We fitted a t distribution to these posterior
samples which yielded the following distribution: t(0.465, 0.078, 41.478).

3. Next, the posterior distribution for � served as the prior distribution for
the analysis of the replication experiment. Specifically, we contrasted the
skeptic’s H

0

: � = 0 to the proponent’s H
F

: � ⇠ t(0.465, 0.078, 41.478).
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Figure 5.1: Results of the informed reanalysis of the crowd within e↵ect replication
study by Steegen et al. (2014). The dotted line corresponds to the informed
t(0.465, 0.078, 41.478) prior distribution based on our knowledge from the original
study by Vul and Pashler (2008). The solid line corresponds to the posterior
distribution, with a 95% credible interval and the posterior median displayed on
top. The Bayes factor in favour of the informed alternative hypothesis over the null
hypothesis equals BF

F0

(d) = 901.5. Figure available at https://tinyurl.com/
kzrhad6 under CC license https://creativecommons.org/licenses/by/2.0/.

We obtain a Bayes factor of BF
F0

(d) = 901.5 indicating that the data from
Steegen et al. are about 900 times more likely under H

F

than under H
0

.
As a comparison, we also conducted the default analysis of the replication
experiment (i.e., using again the zero-centred Cauchy prior with scale pa-
rameter 1/

p
2 instead of the informed t prior distribution) which yielded a

Bayes factor of BF
10

(d) = 170.2.

Fig. 5.1 displays the informed prior distribution (dotted line), the posterior
distribution after observing the replication experiment (solid line), a 95% poste-
rior credible interval, the posterior median, and the Bayes factor. The posterior
distribution is located near the informed prior distribution, albeit centred on a
slightly smaller e↵ect size value.

Fig. 5.2 displays the results for the default Cauchy prior distribution with a
scale parameter of 1/

p
2 (dotted line). Compared to the posterior distribution

based on the informed t prior, the posterior distribution based on the default
Cauchy prior is wider and shifted towards smaller e↵ect size values. This reflects
the influence of the prior distribution which, in case of the informed t prior, “pulls”
the posterior towards larger values.

Another observation is that the Bayes factor in favour of the informed alterna-
tive hypothesis is larger than the Bayes factor in favour of the default alternative
hypothesis. This can be explained by interpreting the Bayes factor as a measure
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Figure 5.2: Results of the default analysis of the crowd within e↵ect replication
study by Steegen et al. (2014). The dotted line corresponds to the default Cauchy
prior distribution with scale parameter 1/

p
2. The solid line corresponds to the

posterior distribution, with a 95% credible interval and the posterior median dis-
played on top. The Bayes factor in favour of the default alternative hypothesis
equals BF

10

(d) = 170.2. Figure available at https://tinyurl.com/n7tkm9y un-
der CC license https://creativecommons.org/licenses/by/2.0/.

of the predictive success of two competing hypotheses. The informed alternative
hypothesis makes riskier predictions than the default alternative hypothesis, but
since the results are consistent with these predictions, the informed hypothesis is
rewarded more. In fact, we can obtain the Bayes factor that compares the informed
alternative hypothesis to the default alternative hypothesis by transitivity

BF
F1

(d) =
p(d |H

F

)

p(d |H
0

)
| {z }

BF

F0(d)

p(d |H
0

)

p(d |H
1

)
| {z }

BF01(d)

=
BF

F0

(d)

BF
10

(d)
. (5.3.13)

Hence, the Bayes factor in favour of the informed alternative hypothesis over the
default alternative hypothesis equals BF

F1

(d) = 901.5/170.2 ⇡ 5.3.

5.4 Two-sample t-test

5.4.1 Model

We extend our informed approach to the unpaired/independent samples version
of Je↵reys’s t-test. We assume that n

y

observations are drawn from a normal
distribution of the form y

i

⇠ N (µ � ↵

2

,�2) where i = 1, 2, . . . , n
y

in the first
group, and n

x

observations are drawn from a normal distribution of the form

89

https://tinyurl.com/n7tkm9y
https://creativecommons.org/licenses/by/2.0/


5. Informed Bayesian t-Tests

x
j

⇠ N (µ+ ↵

2

,�2) where j = 1, 2, . . . , n
x

in the second group. Similar to the one-
sample t-test, we reparameterise the model in terms of the e↵ect size � = ↵/�. As
before, the null hypothesis H

0

: � = 0 is pitted against the alternative hypothesis
H

1

: � 6= 0.

5.4.2 Prior distributions

The unpaired samples t-test features two nuisance parameters (i.e., the variance
�2 and the grand mean µ). In line with Je↵reys’s approach, we assign these
parameters the (independent) parameterisation invariant prior ⇡(µ,�2) / ��2.
For e↵ect size �, we again consider an informed shifted and scaled t distribution,
that is � ⇠ t(µ

�

, �,), and an informed normal prior, that is � ⇠ N (µ
�

, g).

5.4.3 Posterior distribution for e↵ect size � and Bayes factor

Conveniently, for the independent samples t-test, the expressions for the poste-
rior distribution and the Bayes factor are obtained by adjusting the respective
expressions for the one-sample/paired samples t-test (i.e., Eqns. (5.3.2, 5.3.9), and
Eqns (5.3.11, 5.3.12) in the following way:

1. Replace n by an “e↵ective” sample size n
e↵

defined as n
e↵

= n

y

n

x

n

y

+n

x

(Rouder

et al., 2009; Ly et al., 2016a).

2. Replace the one-sample/paired samples degrees of freedom ⌫ = n� 1 by the
independent samples degrees of freedom ⌫ = n

y

+ n
x

� 2.

3. Replace the one-sample/paired samples t-test t-value by the independent
samples t-value defined as

t =
x̄� ȳ

r

(n

x

�1)s

2
x

+(n

y

�1)s

2
y

n

y

+n

x

�2

( 1

n

x

+ 1

n

y

)

. (5.4.1)

A detailed derivation is presented in the online appendix.

5.4.4 Example II: The facial feedback hypothesis

The facial feedback hypothesis states that a↵ective responses can be influenced
by one’s facial expression even when that facial expression is not the result of
an emotional experience. In a seminal study, Strack et al. (1988) found that
participants who held a pen between their teeth (inducing a facial expression
similar to a smile) rated cartoons as more funny than participants who held a pen
with their lips (inducing a facial expression similar to a pout).

In a recently published Registered Replication Report (Wagenmakers et al.,
2016a), 17 labs worldwide attempted to replicate this finding using a preregistered
and independently vetted protocol. A random-e↵ects meta-analysis yielded an
estimate of the mean di↵erence between the “smile” and “pout” condition equal
to 0.03 [95% CI: �0.11, 0.16]. Furthermore, one-sided default Bayesian unpaired
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t-tests (using a Cauchy prior scale of 1/
p
2) revealed that for all 17 studies, the

Bayes factor indicated evidence in favour of the null hypothesis and for 13 out of
the 17 studies, the Bayes factor in favour of the null was larger than 3. Overall,
the authors concluded that “the results were inconsistent with the original result”
(Wagenmakers et al., 2016a, p. 924).

Here we present an informed reanalysis of the replication studies based on a
prior elicitation e↵ort with Dr. Suzanne Oosterwijk, a social psychologist at the
University of Amsterdam with considerable expertise in this domain.

5.4.4.1 Prior elicitation

Before commencing the elicitation process, we asked our expert to ignore the
knowledge about the failed replication of Strack et al. (1988). Next, we stressed
that the goal of the elicitation e↵ort was to obtain an informed prior distribu-
tion for � under the alternative hypothesis, that is, under the assumption that
the e↵ect is present. This was important in order to prevent unwittingly elicit-
ing a prior that is a mixture between a point mass at zero and the distribution
of interest. Then, we proceeded in steps of increasing sophistication. First, to-
gether with the expert we decided that the theory specified a direction, implying
a one-sided hypothesis test. Next, we asked the expert to provide a value for the
median of the e↵ect size: this yielded a value of 0.35. Subsequently, we asked
for values for the 33% and 66% percentile of the prior distribution for the e↵ect
size: this yielded values of 33%-tile = 0.25 and 66%-tile = 0.45. To finesse and
validate the specified prior distribution we used the MATCH Uncertainty Elicita-
tion Tool (http://optics.eee.nottingham.ac.uk/match/uncertainty.php), a
web application that allows one to elicit probability distributions from experts
(Morris et al., 2014). The complete elicitation e↵ort took approximately one hour
and resulted in a t distribution with location 0.350, scale 0.102, and 3 degrees of
freedom.

5.4.4.2 Reanalysis of the Oosterwijk replication study

Having elicited an informed prior distribution for � under H
F

, we now turn to a
detailed reanalysis of the facial feedback replication attempt from Dr. Oosterwijk’s
lab at the University of Amsterdam. Later, we summarise the results for all 17
replication attempts.

The alternative hypothesis is directional, that is, the teeth condition is pre-
dicted to result in relatively high funniness ratings, not relatively low funniness
ratings. In order to respect the directional nature of the alternative hypothesis
the two-sided informed t-test outlined above requires a correction. Specifically, the
Bayes factor that compares an alternative hypothesis that only allows for positive
e↵ect size values to the null hypothesis can be computed via a simply identity
that exploits the transitive nature of the Bayes factor (Morey and Wagenmakers,
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Figure 5.3: Results of an informed reanalysis of the facial feedback hypothesis
replication data from the Oosterwijk lab. The dotted line corresponds to the
elicited t(0.350, 0.102, 3) prior distribution. The solid line corresponds to the
associated posterior distribution, with a 95% credible interval and the poste-
rior median displayed on top. The Bayes factor in favour of the null hypothe-
sis over the one-sided informed alternative hypothesis equals BF

0F+(d) = 11.5.
Figure available at https://tinyurl.com/mk7uaxm under CC license https://

creativecommons.org/licenses/by/2.0/.

2014):

BF
+0

(d) =
p(d |H

+

)

p(d |H
1
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| {z }

BF+1(d)

p(d |H
1

)

p(d |H
0

)
| {z }

BF10(d)

= BF
+1

(d)BF
10

(d). (5.4.2)

We already showed how to obtain BF
10

(d), that is, the Bayes factor for the two-
sided test of an informed alternative hypothesis; BF

+1

(d) can be obtained by
simply dividing the posterior mass for � larger than zero (obtained by numerically
integrating Eq. (5.3.2)) by the prior mass for � larger than zero. The Bayes factor
hypothesis test that we report will respect the directional nature of the facial
feedback hypothesis and include the correction term from Eq. (5.4.2).

Fig. 5.3 displays the results of the reanalysis of the data from the Oosterwijk
lab. The prior and posterior distribution do not impose the directional constraint.
The one-sided informed Bayes factor equals BF

0F+(d) = 11.5 indicating that the
data are about eleven times more likely under the null hypothesis than under the
one-sided informed alternative hypothesis.

For comparison, Fig. 5.4 displays the results based on the default one-sided
zero-centred Cauchy distribution with scale 1/

p
2. The one-sided default Bayes

factor equals BF
0+

(d) = 8.7, indicating that the data are about 9 times more likely
under the null hypothesis than under the one-sided default alternative hypothesis.
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Figure 5.4: Results of the default analysis of the facial feedback hypothesis
replication data from the Oosterwijk lab. The dotted line corresponds to the
default Cauchy prior distribution with scale parameter 1/

p
2. The solid line

corresponds to the associated posterior distribution, with a 95% credible inter-
val and the posterior median displayed on top. The Bayes factor in favour
of the null hypothesis over the one-sided default alternative hypothesis equals
BF

0+

(d) = 8.7. Figure available at https://tinyurl.com/mgs28ob under CC
license https://creativecommons.org/licenses/by/2.0/.

Hence, both the informed and the default Bayes factor yield the same qualitative
conclusion, that is, considerable evidence for the null hypothesis. However, the
unrestricted posterior distributions di↵er noticeably between the informed and the
default analysis: the posterior median based on the informed prior specification
is positive and equal to 0.153 (95% credible interval: [�0.264, 0.390]) whereas the
posterior median based on the default prior distribution is equal to �0.152 (95%
credible interval: [�0.511, 0.200]).

5.4.4.3 Reanalysis of all 17 facial feedback replication studies

Fig. 5.5 displays the (nondirectional) posterior distributions under the informed
H

F

: � ⇠ t(0.350, 0.102, 3) and under the default H
1

: � ⇠ Cauchy(0, 1/
p
2)

for the reanalysis of all 17 replication studies. The posterior distributions for �
di↵er noticeably for the informed and the default prior specification. Under H

F

,
the posterior distributions are shifted towards larger e↵ect size values and the
posteriors are more peaked than the ones corresponding to the default prior under
H

1

.
Fig. 5.6 displays the (directional) informed and default Bayes factors for the

reanalysis of all 17 replication studies. Each dot corresponds to a study; the x-
coordinate corresponds to the one-sided informed Bayes factor and the y-coordinate
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Figure 5.5: Comparison of the posterior distributions for � under
H

F

: � ⇠ t(0.350, 0.102, 3) and H
1

: � ⇠ Cauchy(0, 1/
p
2) for the fa-

cial feedback hypothesis replication data from the 17 labs. Figure available
at https://tinyurl.com/l7pxbno under CC license https://creativecommons
.org/licenses/by/2.0/.
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5.5. Example III: Reanalysis of 593 t-tests
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Figure 5.6: Comparison of the one-sided default and one-sided informed Bayes
factor analysis of the facial feedback hypothesis replication data from the 17 labs.
The x-coordinate corresponds to the one-sided informed Bayes factor and the
y-coordinate corresponds to the one-sided default Bayes factor as reported in Wa-
genmakers et al. (2016a). Figure available at https://tinyurl.com/ke4489k

under CC license https://creativecommons.org/licenses/by/2.0/.

corresponds to the one-sided default Bayes factor as reported in Wagenmakers
et al. (2016a). The results are qualitatively similar. For Bayes factors smaller
than about six, the one-sided default Bayes factor provides slightly more evidence
for the null hypothesis than the one-sided informed Bayes factor. For Bayes factors
larger than about six, this pattern is reversed.

In sum, for parameter estimation it matters whether the analysis is based
on an informed prior distribution or a default prior distribution. In contrast,
for hypothesis testing the results are relatively similar: both the informed Bayes
factor and the default Bayes factor support the conclusion that the original study
by Strack et al. (1988) could not be successfully replicated by the 17 labs involved
in the replication attempt.

5.5 Example III: Reanalysis of 593 t-tests

For our final example we reanalyse the significant subset of the 855 t-tests collected
by Wetzels et al. (2011) from the 2007 issues of two popular psychology journals
(i.e., Psychonomic Bulletin & Review and Journal of Experimental Psychology:
Learning, Memory, and Cognition). The analysis of these 593 significant t-tests
allows for an empirical investigation of the relation between the default Bayes
factor and the informed Bayes factor.
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Figure 5.7: Comparison of the one-sided informed Bayes factor that specifies a
zero truncated t(0.350, 0.102, 3) prior for � under the alternative hypothesis and
the one-sided default Bayes factor that specifies a zero truncated Cauchy(0, 1/

p
2)

prior for � under the alternative hypothesis for the 593 significant t-tests reported
in Wetzels et al. (2011). The corresponding two-sided p-values are indicated by
di↵erent shapes and colours: red squares correspond to p-values smaller than
.001; green triangles correspond to p-values between .001 and .01; blue circles
correspond to p-values between .01 and .05. Figure available at https://tinyurl
.com/m5fatwu under CC license https://creativecommons.org/licenses/by/

2.0/.

For the informed Bayes factor, we adopt the expert prior from the previous
example, that is, a t(0.350, 0.102, 3) distribution for �. This prior distribution
was elicited within the context of the facial feedback hypothesis, but we believe
it may serve as an informed prior for small-to-medium e↵ect sizes across many
areas of psychological research. For the default Bayes factor we again use the
Cauchy(0, 1/

p
2) distribution for �. Both Bayes factors are one-sided.

Fig. 5.7 displays the one-sided informed Bayes factors, BF
F+0

(d), and the de-
fault one-sided Bayes factors, BF

+0

(d), for the 593 significant t-tests collected by
Wetzels et al. (2011). The two-sided p-values are indicated by di↵erent shapes and
colours. The overall pattern indicates a positive correlation between the informed
and default Bayes factor. However, for Bayes factors that roughly correspond to
t-tests with p-values in between .001 and .05, the informed Bayes factor generally
provides more evidence for the alternative hypothesis than the default Bayes fac-
tor. For large Bayes factors that roughly correspond to p-values smaller than .001,
this pattern is reversed.

This reversal can be explained by considering how well the informed alternative
hypothesis has predicted the observed e↵ect sizes. When considering the informed
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5.6. Quantifying evidence for H
0
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Figure 5.8: Comparison of the one-sided informed Bayes factor that specifies a
zero truncated t(0.350, 0.102, 3) prior for � under the alternative hypothesis and
the one-sided default Bayes factor that specifies a zero truncated Cauchy(0, 1/

p
2)

prior for � under the alternative hypothesis for the 593 significant t-tests reported
in Wetzels et al. (2011). The corresponding observed e↵ect sizes are indicated
by di↵erent shapes and colours: red squares correspond to observed e↵ect sizes
larger than 0.675; green triangles correspond to observed e↵ect sizes between 0.025
and 0.675. Figure available at https://tinyurl.com/mo5g9y2 under CC license
https://creativecommons.org/licenses/by/2.0/.

t(0.350, 0.102, 3) prior, the central 95% prior credible interval ranges from about
0.025 to 0.675. Hence, when the observed e↵ect sizes fall in the predicted range
(i.e., roughly from 0.025 to 0.675) the informed alternative hypothesis will perform
relatively well; when the observed e↵ect sizes are larger or smaller the default
alternative hypothesis will perform relatively well.

Fig. 5.8 displays the same Bayes factors as Fig. 5.7 but indicates the observed
e↵ect sizes by di↵erent shapes and colours. For all observed e↵ect sizes that fall
within the interval that is plausible under the informed alternative hypothesis,
BF

F+0

(d) provides more evidence for an e↵ect than BF
+0

(d). Hence, this empirical
investigation suggests that the informed generalisation of Je↵reys’s t-tests can lead
to more diagnostic tests.

5.6 Quantifying evidence for H0

A remaining question is how the informed Bayes factor compares to the default
Bayes factor in case the null hypothesis is (approximately) true. To investigate
this scenario we computed the maximum possible Bayes factor in favour of the
null hypothesis as a function of the number of participants per group by fixing the
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5. Informed Bayesian t-Tests
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Figure 5.9: The maximum possible Bayes factor in favour of H
0

as a function of
the number of participants per group for unpaired t-tests. The dashed red line
corresponds to the default Bayes factor that specifies a Cauchy(0, 1/

p
2) prior for

� under the alternative hypothesis; the solid blue line corresponds to the informed
Bayes factor that specifies a t(0.350, 0.102, 3) prior for � under the alternative
hypothesis. Figure available at https://tinyurl.com/m92mvpx under CC license
https://creativecommons.org/licenses/by/2.0/.

t-value to zero. Fig. 5.9 displays the results. When the number of participants per
group is small, the default Bayes factor provides more evidence for H

0

than does
the informed Bayes factor. However, when the number of participants per group
is larger than 82, this pattern is reversed.

An intuitive explanation for the reversal is provided by the Savage-Dickey
density ratio representation of the Bayes factor (Dickey and Lientz, 1970): the
Bayes factor in favour of H

0

equals the ratio of posterior to prior density for �
under the alternative hypothesis evaluated at the test value � = 0. When n is
small, the posterior for � under the informed hypothesis is similar to the informed
prior whereas the less restrictive default prior will be updated more strongly by
the data. Hence, in case H

0

is true, the ratio of posterior to prior density evaluated
at zero will be larger for the default alternative hypothesis than for the informed
alternative hypothesis. However, when n grows large, the data start to overwhelm
the prior so that the posterior distributions become more similar. In that case,
the ratio of posterior to prior density will be larger for the informed alternative
hypothesis since its prior density at zero is smaller than that of the default prior.
In the limit as n ! 1, the posterior distributions will be identical; in this case,
the di↵erence of the log Bayes factor for the informed and the default prior is
equal to the di↵erence of the log of the informed prior evaluated at zero and the
log of the default prior evaluated at zero (e.g., Gronau and Wagenmakers, 2017).
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5.7. Concluding comments

5.7 Concluding comments

The comparison between two means is a quintessential inference problem. Harold
Je↵reys believed that the only satisfactory solution lay in the application of a
Bayes factor t-test (Rouder et al., 2009; Je↵reys, 1961; Ly et al., 2016a; Wetzels
et al., 2009), the purpose of which is to quantify the relative predictive perfor-
mance of two competing hypotheses: the null hypothesis H

0

that represents an
invariance or general law and the alternative hypothesis H

1

that relaxes this re-
striction. However, in their current form, Je↵reys’s tests do not allow researchers
to incorporate expert knowledge in the specification of the prior distribution for
e↵ect size under the alternative hypothesis, as all of Je↵reys’ priors are centred at
zero.

In this article, we have presented an informed extension of Je↵reys’s t-tests
that admits the specification of prior distributions centred away from zero. This
flexibility may encourage the use of prior distributions that better represent the
predictions from the hypothesis under test, producing more diagnostic outcomes
for the same data. Specifically, our final example showed that when the observed
e↵ect size falls within the region of plausible values predicted by the informed
prior, the informed Bayes factor provides more evidence for an e↵ect than does
the default Bayes factor. Furthermore, we illustrated that when H

0

is true and
the sample size is su�ciently large, the informed Bayes factor can also provide
more evidence for the nullity of an e↵ect than does the default Bayes factor.

The merits and debits of an informed prior specification will always remain
a topic of debate. In our opinion, the prior distribution is an integral part of
the model specification (e.g., Vanpaemel, 2010) and should be adjusted to include
existing knowledge and impose meaningful constraints. The perceived dangers
of the subjectivity that accompanies an informed analysis can be mitigated by
preregistering the prior distribution (Chambers, 2013) and by conducting sensi-
tivity analyses in which di↵erent prior choices are explored. For instance, when
it comes to small-to-medium e↵ects in experimental psychology, we believe the
Oosterwijk prior is eminently plausible; di↵erent specifications are certainly pos-
sible, but they will need to respect the basic constraints (i.e., a mean around .35,
most mass between .1 and .6) so that the results will be relatively insensitive to
these choices.

We hope that empirical scientists will feel encouraged to pay more attention to
the predictions of the hypotheses they seek to test (Rouder et al., 2016a, 2016b).
There is a price to be paid in order to apply an informed analysis –the method
cannot be applied without thought– but the corresponding reward is a more diag-
nostic test.

The online appendix can be found on arXiv: https://arxiv.org/abs/1704

.02479.
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Chapter 6

A Limit-Consistent Bayes Factor for
Testing the Equality of Two Poisson

Rates

Abstract

To facilitate the selection of prior distributions with good properties we
introduce the desideratum of limit-consistency. This desideratum is relevant
for tests of equality between two processes, and it concerns the hypothetical
scenario where data acquisition for one process is terminated early whereas
data acquisition of the second process continues indefinitely. In such cases,
the Bayes factor ought to approach a finite limit. We rederive Je↵reys’s
1939 Bayes factor for the comparison between two Poisson rates and prove
that it is not limit-consistent: as sample size for the uninterrupted process
increases, support in favour of the null hypothesis eventually grows without
bound. We generalise Je↵reys’s approach by centring the alternative hy-
pothesis around the value specified by the null hypothesis. We prove that
the generalised version of Je↵reys’s test is limit-consistent.

Keywords: Bayes factor, hypergeometric functions, statistical evidence, two-
sample test.

6.1 Introduction

A homogenous Poisson process Y
i

(t
i

) has rate �
i

if, for given �
i

> 0, the chance
of observing Y

i

(t
i

) = y
i

after t
i

units of time is

f(y
i

|�
i

, t
i

) =
(�

i

t
i

)yi

y
i

!
e��

i

t

i , (6.1.1)

This chapter is under preparation as Ly, A., Raj, A., Marsman, M. & Wagenmakers, E.–J.
(2017). A limit-consistent Bayes factor for testing the equality of two Poisson rates.
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6. A Limit-Consistent Bayes Factor for Testing the Equality of
Two Poisson Rates

where y
i

is any non-negative integer. A famous use of the Poisson distribution is
in the detection of radioactivity using a Geiger counter (Rutherford et al., 1910;
Stirzaker, 2000).

Here we study a two-sample problem and focus on evaluating the hypothesis
that two homogenous Poisson processes have equal rate with exposure times t

1

and t
2

not necessarily the same.
Throughout the text t

1

and t
2

represent time, but they could as well relate to
measurement from di↵erent areas (e.g., Haight, 1967) or in the case of radioac-
tivity refer to the di↵erent number of atoms in two specimens of rock. Indeed,
measurements of Poisson processes with t

1

= t
2

are rare and, more often than not,
t
1

6= t
2

.
The frequentist test for the equality of two Poisson rates has received consid-

erable attention (e.g., Haight, 1967; Krishnamoorthy and Thomson, 2004; Przy-
borowski and Wilenski, 1940 for the t

1

= t
2

case, and Ng et al., 2007; Ractli↵e,
1964; Shiue and Bain, 1982 for the t

1

6= t
2

case). Here we focus on the Bayesian
hypothesis test known as the Bayes factor.

The purpose of this paper is three-fold: Firstly, we introduce the desideratum of
limit-consistency, relevant for the behaviour of any test that involves a comparison
between two or more processes. Secondly, we rederive the Bayes factor proposed
by Je↵reys for the two-sample Poisson problem (Je↵reys, 1939, pp. 211-212)1 and
prove that it violates limit-consistency. Thirdly, we propose a generalisation of
Je↵reys’s test that is limit-consistent.

6.1.1 Desiderata that facilitate the selection of prior
distributions

LetM
1

denote the model in which the rates �
1

and �
2

of the two Poisson processes
are free to vary, and M

0

the restriction of M
1

such that �
1

= �
2

. In the Bayesian
setting the models are assigned prior model probabilities 0 < P (M

0

), P (M
1

) < 1,
which in light of the observed data d can be updated to posterior model probabil-
ities using Bayes’ theorem. Doing this for both models and subsequently taking
the ratio of the result leads to the key expression

P (M
1

| d)
P (M

0

| d)
| {z }

Posterior odds

=
p(d |M

1

)

p(d |M
0

)
| {z }

BF10(d)

P (M
1

)

P (M
0

)
| {z }

Prior odds

. (6.1.2)

The term BF
10

(d) is known as the Bayes factor and equals the change from prior
to posterior model odds brought about by the observed data d (Etz and Wagen-
makers, 2017; Je↵reys, 1935; Kass and Raftery, 1995; Ly et al., 2016a).

Note that the Bayes factor BF
10

(d) does not depend on the prior model prob-
abilities P (M

1

) and P (M
0

). However, the Bayes factor is the ratio of marginal
likelihoods:

p(d |M
i

) =

Z

f(d | ✓
i

,M
i

)⇡
i

(✓
i

)d✓
i

, (6.1.3)

1The widely available third edition contains the same text (i.e., Je↵reys, 1961, pp. 267–268).
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6.1. Introduction

which shows that the Bayes factor does depend on the priors ⇡
1

(✓
1

) and ⇡
2

(✓
2

)
that are assigned to the parameters within the two models.

For this reason, the selection of prior distributions demands careful considera-
tion. Fortunately, general principles constrain the selection of prior distributions.
For instance, priors of arbitrary width yield Bayes factors that favour the null
model irrespective of the observed data (e.g., the Je↵reys-Lindley-Bartlett paradox
Bartlett, 1957; Je↵reys, 1961; Lindley, 1957). Furthermore, the prior on the test-
relevant parameter must be proper, as improper priors contain suppressed normal-
isation constants and may lead to Bayes factors of arbitrary value. Consequently,
in Bayes factor hypothesis testing we cannot use popular “non-informative” priors
selected by formal rules (Kass and Wasserman, 1996) such as the right-Haar prior
(e.g., Berger et al., 1998; Ghosh, 2011) and Je↵reys’s parameterisation-invariant
prior (e.g., Je↵reys, 1946; Ly et al., 2017c) which are both improper. We also re-
quire that a reasonable Bayes factor does not depend on the units of measurement
that the researcher chooses to represent the data. Naturally, we also desire that
the Bayes factors are calculable in the sense that both integrals in the numerator
and denominator are solvable for any data set d.

Other desiderata unfortunately hold only for continuous random variables.
For instance, the desideratum of predictive matching states that the Bayes factor
ought to be perfectly indi↵erent, i.e., BF

10

(d) = 1, in case the data are completely
uninformative; the desideratum of information consistency states that the Bayes
factor ought to provide infinite support for the alternative hypothesis in case the
data are overwhelmingly informative (for a review see Bayarri et al., 2012; see also
Bayarri and Berger, 2013). In case of discrete data it is not clear what constitutes
completely uninformative and overwhelmingly informative.

Here we propose a new and relatively general desideratum that further con-
strains the selection of prior distributions: limit-consistency. This desideratum
holds regardless of whether the data are discrete or continuous, and applies when-
ever the test at hand features a comparison between two or more processes or
groups. Consider again a comparison between two Poisson processes and assume
that the measurement of the first process is terminated early, whereas the mea-
surement of the second process continuous indefinitely. In the limit, knowledge
about the second process will reach perfection, but knowledge about the inter-
rupted process will remain incomplete. Consequently, there exists a bound on
the level of evidence that can be obtained in a test that compares the two pro-
cesses. As measurement for the second process continues, the Bayes factors ought
to approach a finite limit.

The practical value of limit-consistency as a constraint on the selection of
prior distributions will now be demonstrated through Harold Je↵reys’s test for
the equality of two Poisson rates.
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Two Poisson Rates

6.2 Je↵reys’s Bayes factor for the comparison of two
Poisson rates

Je↵reys’s derivation starts with a rewrite of the joint distribution of the two pro-
cesses Y

1

(t
1

) and Y
2

(t
2

), i.e.,
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in terms of the relative timed rate ✓ = �1t1
�1t1+�2t2

and the total timed rate ⇣ =
�
1
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+ �
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t
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, that is,
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where y
.

= y
1

+ y
2

denotes the total number of observations across the two pro-
cesses. Setting �

2

= �
1

shows that M
0

can be perceived as a restriction of M
1

with the relative timed rate ✓ known and fixed at ✓
0

= t1
t

.

, where t
.

= t
1

+ t
2

, thus,

f(d | ⇣,M
0

) = f(y
1

| y
.

, t1
t

.

)f(y
.

| ⇣). (6.2.3)

The factorisation of the two likelihood functions allowed Je↵reys to conceptualise
the two-sample Poisson problem as a conditional binomial test, if the same prior on
the common parameter ⇣ is chosen.2 This can be achieved by assigning indepen-
dent gamma priors �

i

⇠ Gam(↵
i

,�t
i

) in M
1

and �
1

⇠ Gam(↵
.

,�t
.

) in M
0

, where
↵
.

= ↵
1

+ ↵
2

; the induced prior on the total timed rate is then ⇣ ⇠ Gam(↵
.

,�)
under both models.

Under the alternative hypothesis, the test relevant parameter ✓ receives a beta
prior, that is,
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where ⌘ = (↵
1

,↵
2

,�) denotes the hyperparameters and B denotes the beta func-
tion. Hence, the prior factorises and, consequently, so do the marginal likelihoods:
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where f(y
1

| y
.

, t1
t

.

) is given in Eq. (6.2.2), and where
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2With t
1

= t
2

we have ✓
0

= 1

2

and note the resemblance to the frequentist conditional
binomial test proposed by Przyborowski and Wilenski (1940), which was published one year
after the first edition of Je↵reys’s book.
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6.2. Je↵reys’s Bayes factor for the comparison of two Poisson rates

Dividing Eq. (6.2.5) by Eq. (6.2.6) shows that

BFJ
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where d = (y
1

, t
1

, y
2

, t
2

). Je↵reys proposed to set ↵
1

= ↵
2

= a, i.e, BFJ

10 ; a

(d) =

BFJ

10 ; a,a

(d) with a = 1, that is,
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)y1( t2
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to compare the model M
1

with di↵ering Poisson rates against M
0

in which the
two rates are the same.

6.2.1 Properties of Je↵reys’s Bayes factor BFJ
10 ; a(d)

6.2.1.1 Invariances

Observe that by setting �
i

⇠ Gam(↵
i

,�t
i

) and by specifying the test relevant
parameter to be the unitless quantity ✓, we have e↵ectively assigned a beta prior
Beta(↵

1

,↵
2

) to ✓. Within this framework, the setting ↵
1

= ↵
2

= a leads to a
Bayes factor BFJ

10 ; a

(d) that does not depend on how the processes are labeled, as

the same output is obtained for d̃ = (y
2

, t
2

, y
1

, t
1

) and for d.
Furthermore, the measurement scale for the times t

1

and t
2

does not a↵ect the
outcome, as the Bayes factor BFJ

10 ; a

(d) only depends on the ratio t1
t

.

.

6.2.1.2 Uninformativeness for balanced outcomes

Je↵reys’s choice for a = 1 was inspired by the Bayes factor he developed for the
binomial problem X ⇠ Bin(✓, n). Je↵reys (1961, p. 257) noted that when testing
H

0

: ✓ = 1/2 against H
1

: ✓ 2 (0, 1) the Bayes factor BFJ

10 ; a

(x, n) = 1 after a
single observation n = 1 independently of whether we observe a success x = 1 or
a failure x = 0. Je↵reys mentions that this behaviour also extends to the case
when the number of observed successes x equals the number of failures n � x,
(i.e., n = 2x), as an additional observation will once again not change the Bayes
factor, meaning BFJ

10 ; a

(x, 2x) = BFJ

10 ; a

(x, 2x+1) = BFJ

10 ; a

(x+1, 2x+1). Note
that this property holds for any other a > 0, but only if H

0

: ✓ = 1/2. When
applied to the Poisson case, this means that when the two exposure times are the
same (i.e., t

1

= t
2

) and the observed counts are the same (i.e., y
1

= y
2

), Je↵reys’s
Bayes factor does not change when a single additional count is added to one of
the processes.

6.2.1.3 Limit-inconsistency

Unfortunately, Je↵reys’s Bayes factor BFJ

10 ; a

(d) with a > 0 is limit-inconsistent,

that is, BFJ

10 ; a

(d) does not stabilise once data collection of the first process is
interrupted at t

1

and data acquisition of the second process continues indefinitely.
The following property shows that Je↵reys’s Bayes factor BFJ

10 ; a

(d) will eventually
favour the simpler model M

0

, regardless of the data.
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Two Poisson Rates

Property 6.2.1 (BFJ

10 ; a

(d) is limit-inconsistent). Let y
1

, t
1

,�
2

> 0 be fixed. Then
for every a > 0 (i.e., a symmetric beta distribution on ✓), Je↵reys’s Bayes factor
BFJ

10 ; a

(d) tends to zero as t
2

grows. ⇧

Proof. We proof by contradiction and assume that for all t
2

the logarithm of the
Bayes factor BFJ

10 ; a

(d) is bounded from below, thus, the existence of constant M
such that

log BFJ

10 ; a

(d) = log p
a

(y
1

| y
.

)� log f(y
1

| y
.

, t1
t

.

) � M (6.2.11)

for all t
2

. To simplify matters we use y
2

= E(Y
2

(t
2

)) = �
2

t
2

. The asymptotic
behaviour of � log f(y

1

| y
.

, t1
t1+t2

) for t
2

large can be described by the following
two series

�y
1

log( t1
t1+t2

) = y
1

[log( t2
t1
) + t1

t2
] +O( 1

t

2
2
), (6.2.12)

��
2

t
2

log( t2
t1+t2

) = �
2

t
1

[1� t1
2t2

] +O( 1

t

2
2
). (6.2.13)

In addition, Stirling’s approximation of the beta function implies that the loga-
rithm of the Bayes factor behaves as

log BFJ

10 ; a

(d) ⇠ log�(y
1

+ a)� (y
1

+ a) log(�
2

t
2

+ a) (6.2.14)

+y
1

log

✓

t
2

t
1

◆

+ �
2

t
1

,

when t
2

is large. The assumption that log BFJ

10 ; a

(d) is bounded from below leads
to a contradiction as a rewrite now shows that

log�(y
1

+ a) + �
2

t
1

�M � y
1

log(�
2

t
1

+ at1
t2

) + a log(�
2

t
2

+ a), (6.2.15)

from which we can incorrectly conclude that the logarithm is a bounded function.
Thus, BFJ

10 ; a

(d) ! 0 as t
2

! 1.

Two concrete examples are given in Fig. 6.1. In both panels, the dashed line
represents the logarithm of BFJ

10 ; a

(d) with a = 1. In the left panel y
1

= t
1

= 1 and
y
2

= �
2

t
2

with �
2

= 5. The dashed line decreases, meaning that Je↵reys’s Bayes
factor eventually indicates evidence for the null hypothesis �

1

= �
2

as �
2

= 5 is
estimated more precisely but the estimate of �

1

remains highly uncertain.
In the right panel y

1

= t
1

= 1 and �
2

= 1. For small values of t
2

, Je↵reys’s
Bayes factor BFJ

10 ; a

(d) with a = 1 now conveys evidence in favour of the null,
which is what is expected in this situation. However, the dashed line again de-
creases, showing that the evidence for the null grows without bound even though
the information about the first process is limited and uncertain. Choosing another
a > 0 does not solve the problem as the bias for the null model is driven by the
term a log(�

2

t
2

+ a) in the asymptotic expansion in Eq. (6.2.15).
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Figure 6.1: Je↵reys’s Bayes factor BFJ

10 ; 1

(d) (dashed lines in both panels) is
limit-inconsistent and increasingly favours the null hypothesis as the exposure
time of the second process lengthens. This bias can be eliminated by setting
a = 0 in the prior distribution, but the resulting Bayes factor BFJ

10 ; 0

(d) (dot-
dashed lines) unduly favours the alternative model. The localised Bayes factor
BF

10 ; a

(d) (solid line) is limit-consistent. Left panel: The log of the Bayes factor
based on y

1

= t
1

= 1 and �
2

= 5, which should yield some evidence in favour of
the alternative hypothesis as t

2

grows. Right panel: The log of the Bayes factors
based on y

1

= t
1

= 1 and �
2

= 1, which should yield some evidence in favour of
the null hypothesis as t

2

grows.

6.3 A limit-consistent Bayes factor for the comparison of
two Poisson rates

One way to obtain a limit-consistent Bayes factor is by setting a = 0, as the bias
term in the asymptotic expansion then cancels. The dot-dashed line in Fig. 6.1
confirms that BFJ

10 ; 0

(d) stabilises as t
2

increases. The problem with a = 0, how-
ever, is that we then e↵ectively use an improper prior with an unspecified normal-
isation constant on the test relevant parameter ✓ and this choice introduces new
problems. Fig. 6.1 shows the undesirable consequence: in both panels, BFJ

10 ; 0

(d)
overvalues the support in favour of the alternative hypothesis; this is particularly
poignant for the example shown in the right panel, where y

1

= t
1

= 1 and �
2

= 1,
which ought to result in evidence for the null hypothesis. Moreover, a = 0 yields
infinite support for the alternative when y

1

= 0, y
2

= 1 and t
1

= t
2

.
In order to obtain a Bayes factor that is limit-consistent we now consider the

localised beta distribution that expands the beta distribution with an additional
parameter ✓

0

that allows the model M
1

to be centred on the simpler model M
0

.
This centring occurs on the logit scale. Recall that the standard beta distribution
Beta(↵

1

,↵
2

) reparameterised as � = log( ✓

1�✓

) is given by3

Z 1

�1
⇡(� ; ↵

1

,↵
2

)d� =
1

B(↵
1

,↵
2

)

Z 1

�1

e�↵1

(1 + e�)↵1+↵2
d�. (6.3.1)

3Thus,
R
d� =

R
✓�1(1 � ✓)�1d✓ and equivalently, ✓ = e

�

1+e

�

and therefore,
R
d✓ =

R
e

�

(1+e

�

)

2 d�.
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As � ranges over the real line, its location can be shifted by �
0

resulting in

⇡
↵1,↵2(� ; �0) =

1

B(↵
1

,↵
2

)

e↵1(���0)

(1 + e���0)↵1+↵2
. (6.3.2)

Back transforming this distribution with �
0

= log( ✓0
1�✓0

) yields the localised beta
distribution

⇡
↵1,↵2(✓ ; ✓0) =

1

B(↵
1

,↵
2

)
✓↵1�1(1� ✓)↵2�1

| {z }

Beta(✓ ;↵1,↵2)

( 1�✓0
✓0

)↵1(1� [2� 1

✓0
]✓)�(↵1+↵2),

(6.3.3)

where Beta(✓ ; ↵
1

,↵
2

) refers to the beta density. Note that with ✓
0

= 1/2 (i.e.,
t
1

= t
2

), ↵
1

= ↵
2

= a and a = 1, we retrieve Je↵reys’s choice on ✓ in the two-
sample Poisson problem. Hence, a Bayes factor constructed from this prior retains
the desirable behaviour of BFJ

10 ; a

(d) for a > 0 at t
1

= t
2

. To derive this localised
Bayes factor we have to calculate the marginal likelihood with this new prior.

Property 6.3.1 (The marginal likelihood of a binomially distributed random
variable with a localised beta prior). Let f(y

1

| y
.

, ✓) be the binomial pmf and ✓
distributed according to a localised beta prior. The marginal likelihood is then

p
↵1,↵2,✓0(y1 | y.) =

✓

y
.

y
1

◆

B(↵
1

+ y
1

,↵
2

+ y
2

)

B(↵
1

,↵
2

)
(6.3.4)

⇥
2

F
1

(↵
1

+ ↵
2

,↵
1

+ y
1

; ↵
1

+ ↵
2

+ y
.

; 2� 1

✓0
)( 1�✓0

✓0
)↵1

where
2

F
1

(u, v ; w ; z) denotes Gauss’ hypergeometric function. ⇧

Proof. With C =
�

y

.

y1

�

( 1�✓0
✓0

)↵1/B(↵
1

,↵
2

), u
1

= y+↵
1

, u
2

= y
2

+↵
2

, v = ↵
1

+↵
2

and by definition of the prior predictive, we have

p
↵1,↵2,✓0(y1 | y.) = C

Z

1

0

✓u1�1(1� ✓)u2�1(1� ✓[2� 1

✓0
])�vd✓, (6.3.5)

= CB(u
1

, u
2

)
2

F
1

(v, u
1

; u
1

+ u
2

; 2� 1

✓0
). (6.3.6)

The last equality follows from Euler’s integral representation of the hypergeometric
function (Abramowitz and Stegun, 1964, p. 558).

Hence, with the gamma prior ⇣ ⇠ Gam(↵
.

,�) on the total timed rate as before,
and a beta prior localised at ✓

0

= ( t1
t

.

) on the relative timed rate ✓, we have the
following Bayes factor for the two-sample Poisson problem:

BF
10 ;↵1,↵2(d) =

B(↵
1

+ y
1

,↵
2

+ y
2

)

B(↵
1

,↵
2

)( t1
t

.

)y1( t2
t

.

)y2

⇥
2

F
1

(↵
1

+ ↵
2

,↵
1

+ y
1

; ↵
1

+ ↵
2

+ y
1

+ y
2

; t1�t2
t1

)( t2
t1
)↵1 . (6.3.7)

This is essentially Je↵reys’s Bayes factor BFJ

10 ;↵1,↵2
(d), but with a correction

factor for the localisation at t1
t

.

.
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6.3. A limit-consistent Bayes factor for the comparison of two Poisson rates

6.3.1 Properties of the new Bayes factor BF10 ; a(d)

Property 6.3.2 (Invariance). With ↵
1

= ↵
2

= a we have

BF
10 ; a

(d) = BFJ

10 ; a

(d)( t2
t1
)a

2

F
1

(2a, a+ y
1

; 2a+ y
1

+ y
2

; 1� t2
t1
) (6.3.8)

= BFJ

10 ; a

(d)( t1
t2
)a

2

F
1

(2a, a+ y
2

; 2a+ y
1

+ y
2

; 1� t1
t2
) (6.3.9)

which implies that this Bayes factor is invariant under relabeling and independent
of the units for the times t

1

and t
2

. ⇧

Proof. Using Pfa↵’s transform (Gradshteyn and Ryzhik, 2007), we find

2

F
1

(2a, a+ y
1

; 2a+ y
.

; 1� t2
t1
) = ( t2

t1
)�2a

2

F
1

(2a, a+ y
2

; 2a+ n ; 1� t1
t2
).

Multiplying both sides by BFJ

10 ; a

(d)( t2
t1
)a yields the assertion.

Property 6.3.3 (Limit-consistency). Suppose that the data collection of the first
process is halted at t

1

resulting in y
1

observations. Furthermore, let y
2

= �
2

t
2

for
some �

2

> 0, then the Bayes factor BF
10 ; a

(d) converges to a limit as t
2

grows
indefinitely. Thus,

g
a

(y
1

, t
1

,�
2

) = lim
t2!1

BF
10 ; a

(y
1

, t
1

,�
2

t
2

, t
2

) (6.3.10)

exists. For a = 1, the solution g
a

can be well approximated by

g̃(y
1

, t
1

,�
2

) = log�(y
1

+ a) + �
2

t
1

� y
1

log(�
2

t
1

) + a log
⇣�

2

t
1

⌘

(6.3.11)
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y
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1

+ �
2

t
1

� a
+ log

⇣ t
1

y
1

+ �
2

t
1

� a

⌘

�

�(y
1

+ a) log
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1

+ �
2

t
1

+ a

y
1

+ �
2

t
1

� a

⌘

�1

2
log
⇣

1� 8a(a+ y
1

)

3a+ �
2

t
1

+ y
1

+ |y
1

+ �
2

t
1

� a|
⌘

which we verified numerically. ⇧

Proof. To study the asymptotic behaviour of BF
10 ; a

(d) we consider Eq. (6.3.9)
as the hypergeometric function with arguments smaller than one, thus, 1� t1

t2
, are

easier to handle as t
1

⌧ t
2

. We first provide some intuition.
Recall that the asymptotic behaviour of BFJ

10 ; a

(d) is given by

log BFJ

10 ; a

(d) ⇠ log�(y
1

+ a)� y
1

log(�
2

t
1

)� a log(�
2

t
2

+ a) + �
2

t
1

. (6.3.12)

Hence, to show that log BF
10 ; a

(d) stabilises, we have to show that the loga-
rithms of the additional factors of Eq. (6.3.9), that is, ( t1

t2
)a and

2

F
1

(2a, a +

�
2

t
2

; 2a+ n ; 1� t1
t2
) behave as a log(t

2

) because this cancels out the bias-driving
term a log(�

2

t
2

+ a). To see that this is possible, we consider the asymptotic
behaviour of the hypergeometric function for the argument and the parameters
separately.
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Suppose that the argument z = 1� t1
t2

is fixed, then the parameters v = a+�
2

t
2

and w = 2a+ y
1

+ �
2

t
2

of the hypergeometric function
2

F
1

(u, v ; w ; z) will be of
the same order whenever t

2

is large (Temme, 2003). As a result, we obtain

2

F
1

(2a, a+ �
2

t
2

; 2a+ �
2

t
2

+ y
1

; 1� t1
t2
) ⇡ (1� z)�2a = ( t1

t2
)�2a. (6.3.13)

Multiplying both sides of Eq. (6.3.13) by BFJ

10 ; a

(d)( t1
t2
)a, taking the logarithm,

and considering the asymptotic expansion with respect to t
2

shows that the bias-
driving factor is adjusted to �a log(�

2

t
1

+a t1
t2
), which suggests that log BF

10 ; a

(d)
indeed stabilises.

Similarly, suppose that the parameters v = a + �
2

t
2

and w = 2a + y
1

+
�
2

t
2

are fixed, then for t
2

large, the argument of the hypergeometric function

2

F
1

(u, v ; w ; z) can be taken to be one at the expense of a small approximation
error. This roughly implies that for y

1

> a we have

2

F
1

(2a, a+ �
2

t
2

; 2a+ y
1

+ �
2

t
2

; 1) =
�(2a+ y

1

+ �
2

t
2

)�(y
1

� a)

�(y
1

+ �
2

t
2

)�(y
1

+ a)
, (6.3.14)

whenever t
2

is large enough. Again, multiplying both sides by BFJ

10 ; a

(d)( t1
t2
)a and

writing out the beta function in BFJ

10 ; a

(d) then shows that

BF
10 ; a

(d) ⇡ B(�
2

t
2

+ a, y
1

� a)( t1
t2
)a (6.3.15)

whenever t
2

is large enough. An asymptotic expansion for t
2

large as in Prop. 6.2.1
then shows that

log BF
10 ; a

(d) ⇡ log�(y
1

� a) + (a� y
1

) log(�
2

t
1

+ at1
t2

) + �
2

t
1

+O( 1

t

2
2
),

(6.3.16)

which suggests that log BF
10 ; a

(d) converges to a finite number as t
2

grows indef-
initely.

For a rigorous proof of the result and the derivation of g
a

(y
1

, t
1

,�
2

), we used
a Laplace approximation to the hypergeometric function

2

F
1

(2a, a + �
2

t
2

; 2a +
�
2

t
2

+ y
1

; 1 � t1
t2
) as described by Butler and Wood (2002) at each fixed t

2

. We
then used Mathematica to derive the limit which led to a function that spanned
over four pages and therefore is not presented here.

By serendipity4 we were able to approximate the four-page equation by
g̃(y

1

, t
1

,�
2

) given above. Numerical experiments confirm that g̃ approximates
the true g

a

well, see Table 6.1, and that g
a

is in neighborhood of BF
10 ; a

(d) with
t
2

large. The error that stands out occurs with y
1

= 2 and t
1

= 5, which leads to
the correct limit g

1

(2, 5, 1) = 0.047 and the approximated limit g̃(2, 5, 1) = 0.019.

The logarithm of the Bayes factor BF
10 ; a

(d) as a function of t
2

is depicted
as the solid line in Fig. 6.1. In the left panel, an exact calculation shows that

4The replacement of 4ax(c� b) by 4a(c�a) in the definition of ŷ in Butler and Wood (2002,
p. 1164).
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6.4. Discussion

Table 6.1: With �
2

= 1 and relative error g1(y1,t1,�2)�g̃(y1,t1,�2)

g0(y1,t1,�2)
in percentage.

t
1

= 2 t
1

= 5 t
1

= 10 t
1

= 25 t
1

= 100 t
1

= 250
y
1

= 2 -3.1 58.3 0.4 3e-2 4e-4 3e-5
y
1

= 5 -5.6 -0.1 4.4 2e-2 4e-4 3e-5
y
1

= 10 -5e-2 -0.8 -1e-2 2e-2 4e-4 3e-5
y
1

= 25 -1e-3 -3e-3 -7e-3 -7e-4 3e-4 2e-5
y
1

= 100 -3e-6 -8e-6 -2e-5 -5e-5 -8e-6 2e-5
y
1

= 250 -5e-8 -2e-7 -4e-7 -1e-6 -5e-6 -5e-7

Table 6.2: With �
2

= 5 and relative error g1(y1,t1,�2)�g̃(y1,t1,�2)

g0(y1,t1,�2)
in percentage.

t
1

= 2 t
1

= 5 t
1

= 10 t
1

= 25 t
1

= 100 t
1

= 250
y
1

= 2 -0.4 3e-2 3e-3 2e-4 2e-4 3e-6
y
1

= 5 4.4 2e-2 3e-3 2e-4 3e-6 2e-7
y
1

= 10 -1e-2 2e-2 3e-3 2e-4 3e-6 2e-7
y
1

= 25 -7e-3 -7e-4 3e-3 2e-4 3e-6 2e-7
y
1

= 100 -2e-5 -5e-5 -1e-4 -5e-3 2e-6 2e-7
y
1

= 250 -4e-7 -1e-6 -2e-6 -7e-7 2e-6 2e-7

Table 6.3: With �
2

= 0.001 and relative error g1(y1,t1,�2)�g̃(y1,t1,�2)

g0(y1,t1,�2)
in percentage.

t
1

= 2 t
1

= 5 t
1

= 10 t
1

= 25 t
1

= 100 t
1

= 250
y
1

= 2 -4e-2 -0.12 -0.27 -0.7 -3.2 -7.6
y
1

= 5 -3e-4 -9e-4 -2e-3 -6e-3 -3-2 0.1
y
1

= 10 -1e-5 -4e-5 -9e-5 -3e-4 -1e-3 -4e-3
y
1

= 25 -3e-7 -7e-7 -2e-6 -5e-6 -2e-5 -7e-5
y
1

= 100 -8e-10 -2e-9 -5e-9 -1e-8 -7e-8 -2e-7
y
1

= 250 -2e-11 -5e-11 -1e-10 -3e-10 -1e-9 -2e-9

g
1

(1, 1, 5) = 1.21, whereas the approximation yields g̃(1, 1, 5) = 1.15; this means
that when the first process yields y

1

= t
1

= 1 and stops, the evidence in favour
of the alternative hypothesis is then bounded by BF

10 ; 1

(d)  e1.21 ⇡ 3.35. For
the case depicted in the right panel, an exact calculation shows that g

1

(1, 1, 1) =
�0.63, whereas the approximation yields g̃(1, 1, 1) = �0.90; this means that when
the first process yields y

1

= t
1

= 1 and stops, the evidence in favour of the null
hypothesis is then bounded by BF

01 ; 1

(d)  e0.63 ⇡ 2.46.

6.4 Discussion

We proposed the new desideratum of limit-consistency that can help guide the
specification of prior distributions for tests that involve a comparison of two or

111



6. A Limit-Consistent Bayes Factor for Testing the Equality of
Two Poisson Rates

more processes or groups. As a concrete illustration of the added value of the
desideratum we rederived Je↵reys’s (1939) Bayes factor BFJ

10 ; a

(d) for the two-
sample Poisson problem. We proved that this Bayes factor is not limit-consistent:
when t

1

is fixed and t
2

grows indefinitely, the Bayes factor increasingly supports
the null, regardless of the data. This implies that researchers who use Je↵reys’s
Bayes factor for the comparison of two Poisson rates can bias the evidence in favour
of the null by selectively investing resources in data collection for one of the two
processes. We then proposed a generalisation of Je↵reys’s test that eliminates
the bias-driving term; consequently, this localised Bayes factor is limit-consistent
while retaining the positive features of Je↵reys’s original test.

The proof of limit-consistency can perhaps be sharpened – a four-page long
definition of the limit function g

a

(y
1

, t
1

,�
2

) based on Mathematica output is not
intuitive, and the serendipitous approximation g̃(y

1

, t
1

,�
2

) may warrant more re-
search. Insights might be gained from the fact that the unnormalised posterior
for ✓ with the localised beta prior as a function of t

2

is either log-concave or log-
convex, depending on y

1

, t
2

and �
2

. Additional insight might be acquired from
studying the di↵erential equation corresponding to the hypergeometric function in
the Bayes factor, or other saddle points methods as hinted at by Cvitković et al.
(2017), López and Pagola (2011), and Temme (2003).

In our derivation of the localised Bayes factor BF
10 ; a

(d) we extended Je↵reys’s
proposal of using a beta distribution on the test-relevant parameter ✓ by adding
a location parameter on the logit scale. By representing the problem this way
we could use the methods and intuitions that Je↵reys developed for his Bayesian
t-test (Je↵reys, 1948, pp. 242–248; Ly et al., 2016a, 2016b).

We believe that the localised Bayes factor BF
10 ; a

(d) for comparing two Poisson
rates is consistent with Je↵reys’s general philosophy of testing – more so, perhaps,
than Je↵reys’s own proposal from 1939. The desideratum of limit-consistency
appears logical and compelling, and we hope that it can be helpful in a broad
range of discrete data problems.
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Chapter 7

Four Requirements for an Acceptable
Research Programme

Abstract

In a recent article for Basic and Applied Social Psychology, Witte and
Zenker (2016) proposed a research strategy that rests on the sequential eval-
uation of a point-alternative hypothesis. At first a large study is used to
determine a “specific theoretical e↵ect size” and then, in a series of follow-
up studies, this estimated e↵ect size is contrasted against an e↵ect size of
zero. The authors deem this strategy “free of various deficits that beset
dominant strategies (e.g., meta-analysis, Bayes factor analysis)” and argue
that its broad adoption constitutes “one way in which the confidence crisis
may be overcome”.

We disagree with their research strategy as it does not go far enough.
One should avoid hindsight bias and acknowledge uncertainty that comes
with scientific learning. The four requirements given here provide the con-
text in which Bayes factors can help empirical scientists learn from data.

Keywords: Crisis of confidence, exploratory versus confirmatory research,
scientific learning.

We agree with Witte and Zenker (2016) that it can be useful to test an alternative
hypothesis that is constructed, in part or in whole, from earlier data (e.g., Verhagen
and Wagenmakers, 2014; Wagenmakers et al., 2016c). We also agree that it can
be informative to take into account a sequence of studies as it unfolds over time
(e.g., Scheibehenne et al., 2016). In this comment, however, we focus mainly
on areas of disagreement, which centre on what we believe to be mistakes and
omissions. First we address the mistakes and discuss how, in our opinion, Witte

This chapter is published as Marsman, M., Ly, A., & Wagenmakers, E.–J. (2016). Four
requirements for an acceptable research programme. Basic and Applied Social Psychology, 38 (6),
308–312. doi: http://dx.doi.org/10.1080/01973533.2016.1221349.
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7. Four Requirements for an Acceptable Research Programme

and Zenker (2016) fell prey to two common fallacies: the power fallacy and the
fallacy of the transposed conditional. Even for experienced scholars, these fallacies
may be di�cult to recognise. Second, we address the omissions and discuss four
requirements for an acceptable research programme.

7.1 The power fallacy

On repeated occasions, Witte and Zenker (2016) lament the lack of statistical
power while at the same time boasting about the strength of statistical evidence.
This confused interpretation of the data can be overcome by recognising that
power and evidence are inherently di↵erent concepts. Before we start, let’s take
for granted that the desired test is between H

0

: � = 0 versus a point-alternative
H

1

: � = 0.30.
Now power is a pre-data concept, a metric constructed by averaging across all

possible data sets that could be obtained in the envisioned experiment. A priori
and on average –with respect to all possible data sets– experiments designed with
low power are unlikely to yield a significant outcome given that H

1

is true. In
contrast, evidence is a post-data concept. In this specific scenario it is given by the
likelihood ratio, the relative probability of the observed data under the competing
hypotheses. The likelihood ratio considers only the data that have in fact been
obtained.

As discussed elsewhere in detail, after the data have been observed, data that
could have been observed –but were not– are evidentially irrelevant (e.g., Berger
and Wolpert, 1988; Bayarri et al., 2016; Wagenmakers et al., 2015a; Wagenmakers
et al., 2017c). Basically, our pre-data state of knowledge has changed by the
observation of the data, and after the data have arrived our post-data state of
knowledge is all that ought to matter.

When the pre-data concept of power is erroneously used for post-data purposes
–such as inference and the quantification of evidence–, this entails a deliberate loss
of important information, namely the actual outcomes of the experiment.

7.2 The fallacy of the transposed conditional

Witte and Zenker (2016) correctly point out that the Bayes factor is the proba-
bility of the data under H

0

versus H
1

(Wagenmakers et al., 2016b). They also
acknowledge that the Bayes factor and the likelihood ratio are “quantitatively”
equivalent whenever the hypotheses are both simple (i.e., consisting of a single
specified point value for e↵ect size). However, Witte and Zenker (2016) argue that
by simply changing the nomenclature1 –from Bayes factors to likelihood ratios–
allows them to interpret the likelihood ratio as the relative plausibility of the hy-
potheses. So even though what is calculated is the relative probability of the data
given the hypotheses, the result is interpreted as the relative probability of the
hypotheses given the data. By doing so Witte and Zenker (2016) commit the
fallacy of the transposed conditional.

1“What’s in a name? That which we call a rose by any other name would smell as sweet” –
Juliet, Act 2 Scene 2
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Unfortunately, in statistical inference there is no such thing as a free lunch
(Rouder et al., 2016a). Any time one wishes to assign probabilities to parameters
or models, one is automatically committed to the Bayesian framework (Ly et al.,
2016a, 2016b). Specifically, the only way to obtain a posterior probability is by
using the data to update a prior probability. Bayes factors quantify the extent
to which the data change the prior model odds to posterior model odds, and as
such they can be considered the relative evidence that the data provide for the
models under consideration. The Bayes factor is therefore only one ingredient
for inference. The other ingredient is the prior model odds. One is licensed to
interpreted Bayes factors (or likelihood ratios, for simple models) as posterior
odds, but only when the prior odds equals 1, and not when the prior odds is
ignored.

To appreciate the importance of the prior odds, consider the competing mod-
els H

1

: “people have extra-sensory perception (ESP)” versus H
0

: “people do not
have ESP”. Few researchers would seriously entertain equal prior odds in this case.
Moreover, suppose the likelihood ratio for an ESP experiment yielded a factor of
30 in favour of ESP; do we conclude from this that the ESP hypothesis is 30 times
more likely than the null hypothesis? Of course we do not, and if the authors
methodology were to sanction this inference (which it does not), then this would
be a compelling argument against their methodology instead of a compelling argu-
ment for ESP. Extraordinary claims require extraordinary evidence, and in order
to assess the posterior plausibility of ESP one needs to combine the evidence from
the data (i.e., the Bayes factor) with the prior plausibility of the ESP phenomenon
(Wagenmakers et al., 2015b).

7.3 Requirements of a research programme

A research programme that can cure the current “crisis of confidence” (Pashler
and Wagenmakers, 2012) needs to be more ambitious than the approach proposed
by Witte and Zenker (2016). Below we outline four key requirements and point
to the relevant literature.

7.3.1 I. Preregistration

Philosophers, psychologists, physicians, and physicists have long argued that em-
pirical research needs to respect the distinction between work that is exploratory
or hypothesis-generating and work that is confirmatory or hypothesis-testing, and
that this needs to be done by preregistering the analysis plan in all of its de-
tails (e.g., Barber, 1976; Chambers, 2013; Feynman, 1998; Goldacre, 2009; Peirce,
1878,8; Wagenmakers et al., 2012).

These theoretical arguments have garnered empirical support in the sense
that preregistered replications rarely support the original e↵ects (e.g., Nosek and
Lakens, 2014; Open Science Collaboration, 2012). Without preregistration, re-
searchers can easily and unwittingly fall prey to hindsight bias and confirmation
bias. In our opinion, any research programme that does not include preregistration
is seriously incomplete.

117



7. Four Requirements for an Acceptable Research Programme

7.3.2 II. Transparency

In reproducible research, transparency is essential. Indeed, one can argue that
preregistration falls under the general heading of transparency as well. Here we
use transparency to refer to open materials, open data, and open analysis code.
Recent initiatives such as TOP (Transparency and Openness Promotion, Nosek
et al., 2015), PRO (The Peer Reviewers’ Openness Initiative, Morey et al., 2016),
and the Center for Open Science badges for good academic behaviour (Kidwell
et al., 2016) aim and change the dominant culture so that openness becomes the
norm, not the exception.

In our own work, we have developed the open-source statistical software pro-
gram JASP (jasp-stats.org; JASP Team, 2017). In JASP, users can save data,
analysis input, analysis output, and analysis annotations in a single .jasp file.2

When this file is uploaded to the Open Science Framework, the OSF JASP pre-
viewer allows anybody with an online browser to inspect the annotated output,
even without having JASP installed.

7.3.3 III. Comprehensive knowledge updating

A mature research programme allows knowledge to be updated as new data come
in (Scheibehenne et al., 2016). This requirement is fulfilled by Witte and Zenker
(2016), but only in part: what is updated is the likelihood ratio, but not the
value of the parameter. In other words, based on the initial study, Witte and
Zenker (2016) committed themselves 100% to the single point estimate � = 0.30.
This violates what Lindley termed “Cromwell’s rule”. Cromwell famously told
the Church of Scotland “I beseech you, in the bowels of Christ, think it possible
you may be mistaken”. Cromwell’s rule states that one should not categorically
rule out anything, for this makes it impossible to learn. As explained by Lindley
(1985), “So leave a little probability for the moon being made of green cheese; it
can be as small as 1 in a million, but have it there since otherwise an army of
astronauts returning with samples of the said cheese will leave you unmoved.”

Occasionally there are reasons to violate Cromwell’s rule. For instance, one
may wish to evaluate the relative adequacy of the predictions from a theoretically
meaningful hypothesis – perhaps a general law or invariance (Rouder et al., 2009),
or perhaps a physical law involving gravity or the speed of light. In the current
example, however, the point estimate of 0.30 is devoid of theoretical content;
the e↵ect size could di↵er from one context to the next, or it could be lower or
higher. The original data set suggested � = 0.30, but what if a second, much
larger data set3 had suggested � = 0.10? This value is still consistent with the
general theory of there being an e↵ect, only it is a little smaller than suggested in
the original study. The likelihood ratio would have favoured H

0

, but at the same
time it would be obvious that H

0

is false. This is the equivalent of the Lindley’s
astronaut scenario.

2The analysis output may also be saved separately.
3For concreteness and to avoid ambiguity, let’s say one thousand times as large.
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The correct way to update knowledge is to update both the plausibility of
competing models and the plausibility of the parameters within those models.4

This implies that we also need priors on the parameters within the models. The
introduction of these priors have led to much debate in the statistical community
at first, as they were perceived as highly subjective. However, it has since been
mathematically proved that the influence of the prior on the posterior washes out
easily with enough data (e.g., Bickel and Kleijn, 2012; Kleijn and van der Vaart,
2012; van der Vaart, 1998) for the regular models typically used in the psycholog-
ical sciences. As such, rather than using a point estimate of the parameter from a
first data set as a point alternative hypothesis, we propose to use the posterior of
the e↵ect size instead. By using the posterior as a prior in the next study, we in-
corporate all the relevant information from the first data set for inference in a next
experiment. Hence, subjectivity simply refers to the incorporation of previously
collected data rather than an opinion. This method of extracting information
from one study to another is further explored in Ly et al. (2017b), Verhagen and
Wagenmakers (2014), and Wagenmakers et al. (2016c), and by doing so we adhere
to the laws of probability. Hence, our proposition of using Bayesian methods leads
to a principled method of learning. Moreover, it automatically gives us posteriors
that can be readily used to quantify the uncertainty of our inference.

7.3.4 IV. Acknowledging uncertainty

In our experience, researchers strongly desire unambiguous yes/no answers, even
when these are unavailable due to the stochastic nature of the data. Paradoxically,
the noisier the data, the stronger this desire seems to become.

The decision-making framework of null hypothesis significance testing (NHST)
o↵ers some certainty: if p < .05, we may “reject the null hypothesis”. This is ful-
filling, because by making a decision we have swept all of the existing uncertainty
under the rug. There is no more need to debate the outcome any longer, the
researcher may feel, because we were sanctioned to make a Decision to Reject the
Null Hypothesis. After the Gordian knot has been cut, it is futile to argue about
other possible decisions that could have been made. This way, NHST o↵ers an
illusion of certainty, and with it the protection again critique and self-doubt.

Unfortunately there are several problems with the decision-making framework
of null hypothesis significance testing. The list is endless, but here we highlight
the following concerns:

1. Utilities are ignored. If the purpose of statistical inference in academia is to
make decisions, then one needs to specify utilities or loss functions associated
to the potential outcomes (e.g., Lindley, 1985). Without utilities there can
be no sensible decision making.

2. Scientists often do not make decisions. One of our favourite quotations is
from Rozeboom (1960, p. 420): “The null-hypothesis significance test treats

4Point hypotheses are a good approximation to posterior distributions that are highly peaked,
but in the case of Witte and Zenker (2016) we see no compelling reason in this case to violate
Cromwell’s rule and update knowledge only partially.
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acceptance or rejection of a hypothesis as though these were decisions one
makes on the basis of the experimental data—i.e., that we elect to adopt
one belief, rather than another, as a result of an experimental outcome. But
the primary aim of a scientific experiment is not to precipitate decisions, but
to make an appropriate adjustment in the degree to which one accepts, or
believes, the hypothesis or hypotheses being tested.”

3. The p-value from the framework of null hypothesis significance testing –upon
which the Decision to Reject the Null Hypothesis is based– is “violently
biased against the null hypothesis.” (Edwards, 1965, p. 400; see also Berger
and Delampady, 1987; Edwards et al., 1963; Johnson, 2013; Marsman and
Wagenmakers, 2017; Sellke et al., 2001; Wetzels et al., 2011). For these
and other reasons we sympathise with the p-value ban in Basic and Applied
Social Psychology (Trafimow and Marks, 2015).

Instead of using ad-hoc decision rules for seeking certainty where there is none, it
is better to acknowledge and quantify uncertainty. If a Bayes factor indicates that
the data are 4 times more likely under H

1

than under H
0

, this does not mean that
H

0

has been refuted, or that H
1

is true. Authors should make claims that are in
accordance with the strength of evidence in the data – often, this means that the
claims should be more modest. In turn, editors and reviewers should reward such
modesty, not punish it.

7.4 Concluding comments

We proposed four requirements for an acceptable research programme, which we
believe to be at odds with Witte and Zenker’s (2016) proposal. Specifically, their
proposal fails to acknowledge uncertainty and does not result in coherent knowl-
edge updates. This is because Witte and Zenker (2016) sweep the prior model
probabilities under the rug and violate the laws of probability by using an inter-
mediate estimate as a point alternative hypothesis. Moreover, by using a point
alternative hypothesis, Witte and Zenker (2016) ignore the uncertainty with which
the alternative was specified.

For comprehensive knowledge updating, that is, statistical learning, we have
to adhere to the laws of probability, the same way the motion of stars has to
obey the laws of physics. Our advocacy for Bayesian methods in psychology is,
in essence, a call to adopt a principled method of learning. This call is neither
new nor controversial, as Bayesian methods have been adopted in fields such as
econometrics, statistics and computer science with great success.

The reward for adopting Bayesian methods in psychology is substantial: not
only do our conclusions adhere to the laws of probability, but we also obtain
automatic uncertainty quantification in terms of posterior distributions. These
posteriors provide a full summary of the previous data sets and can be trans-
formed into so-called posterior predictives which give an indication of how our
previous findings generalise to new experiments (Liu and Aitkin, 2008). The pos-
terior predictive as a measure of replicability will be better in predicting future
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outcomes compared to Witte and Zenker’s (2016) approach as was shown in Wa-
genmakers et al. (2006). Their loss in performance is due to their commitment to
a single point alternative hypothesis, thus, their disregard of the uncertainty in
their intermediate step and, therefore, their violation of the laws of probability.

The proposed four requirements for an acceptable research programme are rel-
atively straightforward to execute, but they imply that researchers acknowledge
and counteract fundamental human biases and desires. Implementing the pro-
gramme therefore requires a change in academic culture. Academic culture is
di�cult to change, but the past five years have demonstrated that it can be done.
Driven by the combined e↵orts from researchers, journals, funders, and institutes
(especially the Center for Open Science), there has been a dramatic and positive
reorientation of academic values. The caterpillar known as psychological science
has finally started its metamorphosis, and only the future will show whether the
butterfly is willing to learn from the data that were actually observed.
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Chapter 8

Bayesian Reanalyses from Summary
Statistics: A Guide for Academic

Consumers

Abstract

Across the social sciences, researchers have overwhelmingly used the clas-
sical statistical paradigm to draw conclusions from data, often focusing heav-
ily on a single number: p. Recent years, however, have witnessed a surge of
interest in an alternative statistical paradigm: Bayesian inference, in which
probabilities are attached to parameters and models. We feel it is informa-
tive to provide statistical conclusions that go beyond a single number, and
–regardless of one’s statistical preference– it can be prudent to report the
results from both the classical and the Bayesian paradigm. In order to pro-
mote a more inclusive and insightful approach to statistical inference we show
how the open-source software program JASP (jasp-stats.org) provides a set of
comprehensive Bayesian reanalyses from just a few commonly-reported sum-
mary statistics such as t and N . These Bayesian reanalyses allow researchers
–and also editors, reviewers, readers, and reporters– to quantify evidence on
a continuous scale, assess the robustness of that evidence to changes in the
prior distribution, and gauge which posterior parameter ranges are more
credible than others. The procedure is illustrated using the seminal Fes-
tinger and Carlsmith (1959) study on cognitive dissonance.

Keywords: Bayes factor, data visualisation, e↵ect size, hypothesis testing,
p-value.

This chapter is submitted for publication and also available as PsyArXiv preprint: https://
osf.io/7dzmk as: Ly, A., Raj, A., Marsman, M., Etz, A., & Wagenmakers, E.–J. (2017).
Bayesian reanalyses from summary statistics: A guide for academic consumers.
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8. Bayesian Reanalyses from Summary Statistics: A Guide for
Academic Consumers

8.1 Introduction

Classical null hypothesis statistical testing (NHST) allows researchers to evalu-
ate scientific propositions in a seemingly straightforward manner: whenever the
p-value falls below a threshold ↵ (usually set to .05) researchers feel licensed to
reject the null hypothesis that the e↵ect is absent and embrace the alternative
hypothesis that the e↵ect is present. For example, in the results section one may
encounter conclusions such as “overall classification accuracy was greater than
chance”, “the analysis revealed a main e↵ect of the manipulation”, and “the cor-
relation was significant”; in the discussion section, these statements are abstracted
from the standard NHST framework even further, conveying the impression that
whenever p < .05, the data strongly favour the alternative hypothesis over the
null hypothesis of no e↵ect.

The field’s mechanistic use of p-values appears to be at odds with the recent
warning issued by the The American Statistical Association (ASA; Wasserstein
and Lazar, 2016, p. 131): “The widespread use of ‘statistical significance’ (gener-
ally interpreted as ‘p  0.05’) as a license for making a claim of a scientific finding
(or implied truth) leads to considerable distortion of the scientific process.” In-
deed, p-values have been critiqued on numerous grounds (e.g., Nickerson, 2000;
Rouder et al., 2016a; Wagenmakers et al., 2017b). One widely appreciated con-
cern is that p-values do not convey information about the size of the e↵ect or the
precision with which that e↵ect is estimated (e.g., Cumming, 2014).

As one prominent alternative to p-value NHST, recent years have seen an in-
creased interest in Bayesian inference (Vandekerckhove et al., 2017; Wagenmakers
et al., 2016b), a paradigm in which prior uncertainty about parameters and models
is updated by means of observed data to yield posterior uncertainty. Specifically,
the posterior distribution quantifies the information about the e↵ect size under
the alternative hypothesis, whereas the Bayes factor quantifies the predictive ade-
quacy of the null hypothesis as compared to the predictive adequacy of an exactly-
specified alternative hypothesis (e.g., Etz and Wagenmakers, 2017; Je↵reys, 1961;
Kass and Raftery, 1995; Myung and Pitt, 1997).

A discussion on the merits and demerits of the di↵erent statistical paradigms
is beyond the scope of this paper. We agree with the ASA’s recommendation to
go beyond p, and that it is prudent to adopt an inclusive statistical approach. For
when the results of di↵erent statistical paradigms point in the same direction, this
bolsters one’s confidence in the conclusions, but when the results are in blatant
contradiction, this will weaken one’s confidence.

In the spirit of promoting a more inclusive statistical approach, our primary
goal is to demonstrate the ease with which published classical results can be sub-
jected to a Bayesian reanalysis using the recently developed “Summary Stats”
module in JASP (JASP Team, 2017). Depending on the analysis at hand, this
module takes as input commonly-reported statistics such as t, r, and R2 together
with sample size N , and returns a comprehensive Bayesian assessment.1 Impor-
tantly, this Bayesian assessment can be executed in the absence of the raw data.

1The website http://pcl.missouri.edu/bayesfactor, designed and maintained by Je↵
Rouder, exploits the same idea, but focuses exclusively on the Bayes factor.
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This is essential when the data are no longer available or when they cannot be
shared; but even when the raw data are publicly available, the analysis presented
here is much more e�cient – reviewers, readers, and reporters can obtain a compre-
hensive Bayesian assessment almost instantaneously. We believe that the richness
of the Bayesian report contrasts favourably with a report of just the summary
statistics themselves. We illustrate this claim using a seminal study published
more than half a century ago.

8.2 The Festinger & Carlsmith (1959) cognitive dissonance
study

In a landmark publication,2 Festinger and Carlsmith (1959, hereafter FC) outlined
a theory to account for cognitive dissonance, a phenomenon they described as
follows: “If a person is induced to do or say something which is contrary to his
private opinion, there will be a tendency for him to change his opinion so as
to bring it into correspondence with what he has done or said” (p. 209). Early
experiments on cognitive dissonance (e.g., Kelman, 1953) induced participants to
make a statement contrary to their personal opinion for the chance to gain a
reward. It was hypothesised that for greater rewards there would be a greater
change to the opinion, but the data showed the reverse: the smaller the reward,
the greater change in opinion. FC proposed a theory that could account for this
behavioural pattern, which they subsequently put to the test in an ingenious
experiment.

FC’s experiment included control, high reward, and low reward conditions,
each with twenty participants. All participants performed a boring task for one
hour, after which they were asked to take a survey and answer questions about,
among other things, their enjoyment of the study. Where the conditions di↵er is
what happens after completing the boring task, but before completing the survey.
In the reward conditions, participants were asked to interact with a confederate
by telling them that the experiment was interesting and fun; for this they received
either twenty dollars (high reward) or one dollar (low reward). In the control
condition participants went straight to the post-interview and did not interact
with the confederate. According to FC, the crucial test of their theory lies in
comparing the post-interview enjoyment ratings from the low versus high reward
conditions, where the low reward condition is predicted to have higher enjoyment
ratings. In line with their theory’s prediction, FC found a higher mean enjoyment
rating in the low reward group than in the high reward group, t(38) = 2.22,
p = .032, and this was taken as support for their theoretical position. No e↵ect
size is reported in the original paper but this can be easily computed from the
t-value and degrees of freedom, giving d = 0.720.

2Cited over 3,300 times according to Google Scholar, May 19, 2017.

125



8. Bayesian Reanalyses from Summary Statistics: A Guide for
Academic Consumers

-2.0 -1.0 0.0 1.0 2.0

0.0

0.5

1.0

1.5

2.0

D
en

si
ty

Effect size 

BF10 = 2.056
BF01 = 0.486

median = 0.571
95% CI: [-0.032, 1.197]

data|H1

data|H0

Posterior
Prior

0 0.25 0.5 0.75 1 1.25 1.5

1/3

1

3

10

Anecdotal

Moderate

Anecdotal

EvidenceBF
10

Cauchy prior width

Evidence for H1

Evidence for H0

max BF10:
user prior:
wide prior:
ultrawide prior:

BF10 = 2.056

BF10 = 1.522
BF10 = 1.830

2.159 at r = 0.459

Figure 8.1: A comprehensive Bayesian reanalysis of the seminal study by Festinger
and Carlsmith (1959), obtained by entering t = 2.22 and N

1

= N
2

= 20 into the
JASP Summary Stats module. See text for details.

8.3 Bayesian reanalysis

We wish to conduct a Bayesian reanalysis of the FC result, but the raw data from
this study are no longer available. However, the Summary Stats module in JASP

a↵ords a comprehensive Bayesian reanalysis using only the test statistic reported
in the original paper.3 Inputting the reported t-value and sample sizes for the two
groups yields the results shown in Fig. 8.1.

In the left panel, the dotted line represents the prior distribution for e↵ect
size under H

1

: a zero-centred Cauchy distribution (i.e., a t-distribution with one
degree of freedom; Je↵reys, 1948; Ly et al., 2016a, 2016b), here with interquartile
range set to a default value of r = 0.707 (e.g., Morey and Rouder, 2015; for a larger
family of informed prior distributions see Gronau et al., 2017a). Thus, under H

1

–that is, assuming the e↵ect is present– the expectation is that the e↵ect is most
likely to be small, although the possibility that it is large is not ruled out.

In the left panel, the solid line is the posterior distribution for e↵ect size, that
is, the knowledge about e↵ect size obtained after updating the prior distribution
using the observed data, and assuming that H

1

holds. This posterior distribution
has a median of 0.571,4 and a relatively wide 95% central credible interval that
ranges from �0.032 to 1.197 – in other words, 95% of the posterior mass lies in the
interval from �0.032 to 1.197; clearly, the e↵ect has not been estimated with much
precision. More generally, by computing the area under the posterior distribution
between � = a and � = b, one can assess how plausible it is that � falls in the
interval from a to b (e.g., Wagenmakers et al., 2016b; Wagenmakers et al., 2017a).
For instance, by comparing the area under the posterior distribution to the right
of zero against that to the left of zero, we quantify how much more likely it is

3The Summary Stats module is activated via the options menu located in the top right corner
of the JASP window.

4Note that the prior distribution has shrunk the sample value of d = 0.720 toward zero.
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that the e↵ect is positive rather than negative, under H
1

– that is, under the
presumption that the e↵ect is present.

In general, the posterior distribution quantifies all that we know about e↵ect
size �, given that H

1

holds and the e↵ect exists. The latter point is worth empha-
sising since it has been argued that one may perform a Bayesian null hypothesis
test by judging whether the 95% credible interval overlaps with zero. Despite its
beguiling simplicity, such a procedure is incorrect (Berger, 2006; Je↵reys, 1961),
because it begs the question – the extent to which a null hypothesis is plausible
cannot be assessed when this hypothesis has been ruled out in advance (i.e., un-
der the continuous prior distribution assumed by H

1

, the probability of any single
point such as p(� = 0) equals zero).

In order to perform a Bayesian hypothesis test, one needs to compare the
predictive performance of the null hypothesis H

0

against that of the alternative
hypothesis H

1

. The result of this comparison is known as the Bayes factor, and
the left panel of Fig. 8.1 reveals that it equals 2.056 – that is, the observed FC data
are only about twice as likely under H

1

than under H
0

. Arch-Bayesian Harold
Je↵reys deemed this level of evidence “not worth more than a bare mention”
(Je↵reys, 1961, p. 432). The proportion wheel on top visualises the strength of
the evidence.5

The Bayes factor quantifies relative predictive performance, and the predictive
performance from H

1

is determined in part by the prior distribution. Under a
default prior specification, it is natural to wonder how robust the conclusions are
to plausible changes in the prior distribution. To address this issue, the Summary
Stats module allows one to select the option “Bayes factor robustness check”.
The right panel of Fig. 8.1 shows the result: the Bayes factor as a function of
the interquartile range r of the Cauchy prior distribution. The values range from
r = 0 (when H

1

reduces to H
0

and the Bayes factor is 1 regardless of the data)
to r = 1.5. Across this entire range, the Bayes factor never exceeds 3; in fact, the
maximum Bayes factor in favour of H

1

equals 2.159, obtained when the width r
is set to 0.459.

In this particular scenario we find that a seminal result, significant with a
p-value of .032, does not yield compelling evidence against H

0

when assessed
from a default Bayesian perspective.6 Even though the evidence against H

0

is
relatively inconclusive, the posterior distribution can nevertheless be used as a
prior in further studies, and allows one to compute the so-called replication Bayes
factor (Ly et al., 2017b; Verhagen and Wagenmakers, 2014).

In sum, the Bayesian reanalyses shown in Fig. 8.1 are easily obtained in JASP

and paint an inferential picture more complete than the one provided by the
statement “t(38) = 2.22, p = .032”.

5See also https://osf.io/3acm7/.
6For a further discussion of the FC results, see https://mattiheino.com/2016/11/13/legacy-

of-psychology/.
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8.4 Concluding comments

The Summary Stats module in JASP unlocks a comprehensive Bayesian experience
from a few commonly-reported summary statistics. Here we illustrated the mod-
ule for the case of an independent-samples t-test, but the Summary Stats module
can also be used for inference concerning paired-samples t-tests, correlation coef-
ficients, binomial proportions, and linear regression models. An entire literature
filled with classical statistics is now open for a straightforward Bayesian reanalysis.

Two remarks are in order. First, even when the summary statistics are “suf-
ficient” (i.e., they capture all relevant information) on general grounds it is still
beneficial to have access to the raw data. The raw data can be used to confirm
that the statistical model is appropriate, the desirability of which is vividly dis-
played by Anscombe’s quartet (e.g., Anscombe, 1973; Matejka and Fitzmaurice,
2017).7

Second, the Bayesian analyses discussed above are “objective” or “uninforma-
tive” in the sense that under H

1

, the prior distributions for e↵ect size are centred
around zero, the value specified by H

0

. However, the Bayesian framework can be
extended to include informed prior distributions – these distributions incorporate
context-specific expectations and need not be centred around zero (Gronau et al.,
2017a). We plan to add the extensions to informed priors to JASP in the near
future. Just like the reanalysis with objective priors, the reanalysis with informed
priors is a function solely of the summary statistics.

In closing, the Bayesian reanalyses outlined here provide an opportunity to
expand summary statistics to statements about posterior distributions and Bayes
factors. This expansion a↵ords (1) an additional inferential perspective that sup-
plements the classical perspective; (2) a reanalysis of published findings without
requiring the raw data, and (3) a highly e�cient method for editors, reviewers,
readers, and reporters to gauge whether the conclusions from a di↵erent statistical
paradigm contradict or confirm the classical conclusions. We hope that this re-
analysis will spur a more graded assessment of statistical evidence and a reporting
of statistical outcome measures that is both comprehensive and inclusive.

7See also Alberto Cairo’s Anscombosaurus at http://www.thefunctionalart.com/2016/08/
download-datasaurus-never-trust-summary.html.
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Chapter 9

Replication Bayes Factors from
Evidence Updating

Abstract

We describe a general method that allows experimenters to quantify the
evidence from the data of a direct replication attempt given data already
acquired from an original study. These so-called replication Bayes factors
are a reconceptualisation of those introduced by Verhagen and Wagenmak-
ers (2014) for the common t-test. This reconceptualisation is computation-
ally simpler and generalises easily to most common experimental designs for
which Bayes factors are available.

Keywords: Evidence synthesis, hypothesis testing, meta-analysis, replica-
tion.

9.1 Introduction

The past five years have witnessed a dramatic increase in interest for replication
studies, largely in response to psychology’s “crisis of confidence” (e.g., Pashler
and Wagenmakers, 2012). While this crisis is not unique to the field of psychology
by any means, psychologists have been at the forefront of e↵orts to assess and
improve reproducibility in science by way of large-scale replication initiatives, such
as the Reproducibility Project: Psychology (Open Science Collaboration, 2015),
the Social Psychology special issue on replication (Nosek and Lakens, 2014), and
the various ManyLabs e↵orts (Ebersole et al., 2016; Klein et al., 2014). Although
the importance of direct replication has been contested by some (for an overview
of the most common arguments see Zwaan et al., 2017), the increasing prominence

This chapter is submitted for publication and also available as PsyArXiv preprint: osf.io/
preprints/psyarxiv/u8m2s as: Ly, A., Etz, A., Marsman, M. and Wagenmakers, E.–J. (2017).
Replication Bayes Factors from Evidence Updating.
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9. Replication Bayes Factors from Evidence Updating

of replication studies has prompted researchers to examine the question of how to
assess, statistically, the degree to which a replication study succeeds or fails.

A number of complementary questions may arise when evaluating replication
studies:

1. Completely ignoring the data of the original study, what is the evidence that
the e↵ect is present or absent in the replication attempt? (e.g., Marsman
et al., 2017).

2. Taking the data of the original study fully into account, what is the evidence
that the e↵ect is present or absent in the replication attempt? (e.g., Verhagen
and Wagenmakers, 2014).

3. Pooling the data from the original study and the replication attempt, what
is the evidence that the e↵ect is present or absent? (e.g., Scheibehenne et al.,
2016).

4. Comparing the data from the original study and the replication attempt,
what is the evidence that the e↵ect sizes are similar or dissimilar? (e.g.,
Bayarri and Mayoral, 2002).

Here we focus on answering the second question using the “replication Bayes
factor”, which can be conceptualised as contrasting the position of a hypothetical
skeptic and proponent:

“The 1st hypothesis is that of the skeptic and holds that the e↵ect
is spurious; this is the null hypothesis that postulates a zero e↵ect size,
H

0

: � = 0. The 2nd hypothesis is that of the proponent and holds
that the e↵ect is consistent with the one found in the original study,
an e↵ect that can be quantified by a posterior distribution. Hence,
the 2nd hypothesis –the replication hypothesis– is given by H

r

: � ⇠
‘posterior distribution from original study.’ The weighted-likelihood
ratio [i.e., the replication Bayes factor] between H

0

and H
r

quantifies
the evidence that the data provide for replication success and failure.”
(Verhagen and Wagenmakers, 2014, p. 1457)

Verhagen and Wagenmakers (2014) proposed this replication Bayes factor in
the context of the t-test, and Wagenmakers et al. (2016c) extended it to the
correlation test. The main idea is intuitive: first the original result is summarised
by its posterior distribution, and, subsequently, this posterior is used as a prior
for the replication attempt. Despite its intuitive appeal in terms of the coherent
updating of information, the replication Bayes factor comes with at least three
challenges: (1) the procedure is not exact, as the posterior distribution from the
original study often needs to be approximated by a convenient function; (2) the
procedure requires technicalities and is not easy to apply; (3) the procedure does
not generalise well to more complicated designs such as ANOVA (but see Harms,
2016; Wagenmakers et al., 2016c).

Here we outline an alternative procedure that solves these challenges. Specif-
ically, the rules of Bayesian updating reveal that the replication Bayes factor
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quantifies the change in evidence provided by the replication experiment, given
that the evidence provided by the original study is already available. This means
that any software package that is able to output ordinary Bayes factors can also
be used to provide replication Bayes factors, by simply feeding it the combined
data sets.

Below we first describe the Bayes factor in general terms; subsequently we
outline the new conceptualisation of the replication Bayes factor and then apply it
to a number of concrete examples. We end by discussing the method’s limitations
and future challenges.

9.2 The Bayes factor

The Bayes factor is “fundamental to the Bayesian comparison of alternative statis-
tical models” (O’Hagan and Forster, 2004, p. 55) and it represents “the standard
Bayesian solution to the hypothesis testing and model selection problems” (Lewis
and Raftery, 1997, p. 648) and “the primary tool used in Bayesian inference for
hypothesis testing and model selection” (Berger, 2006, p. 378).

Developed and promoted by Je↵reys (1961), the Bayes factor contrasts the
predictive performance of two competing models (e.g., Etz and Wagenmakers,
2017; Kass and Raftery, 1995; Ly et al., 2016a, 2016b). Here we focus on the
standard scenario that features a null hypothesis, H

0

, which stipulates the absence
of an e↵ect, and an alternative hypothesis, H

1

, which stipulates the presence of
an e↵ect. Both hypotheses are falsifiable in the sense that they make specific
predictions about the to-be-observed data. This is accomplished by assigning the
model parameters specific values, or –in case the values are unknown and require
estimation from the data– entire distributions. For instance, in the case of the
t-test, H

0

assigns e↵ect size � a single specific value, namely � = 0 (i.e., the e↵ect
is absent); in contrast, H

1

assigns e↵ect size � a distribution that reflects the
uncertainty about the true e↵ect (e.g., � ⇠ N (0, 1); i.e., the e↵ect is present but
likely to be small).

When the competing hypotheses have been adorned with prior distributions so
as to allow concrete predictions about to-be-observed data, the evidence provided
by the actually observed data d is given by the hypotheses’ relative predictive
adequacy for those data (Wagenmakers et al., 2016b):

P (H
1

| d)
P (H

0

| d)
| {z }

Posterior model odds

=
p(d |H

1

)

p(d |H
0

)
| {z }

Predictive

updating factor

⇥ P (H
1

)

P (H
0

)
| {z }

Prior model odds

(9.2.1)

The predictive updating factor –henceforth: the Bayes factor– quantifies the
change in beliefs about the relative plausibility of the competing hypotheses brought
about by the observed data. The predictions that a hypothesis makes for the ob-
served data is obtained by averaging the predictions across the parameter space,
weighted by the prior plausibility of the parameter values. For a single hypothesis,
this average predictive adequacy is also known as the marginal likelihood or the
prior predictive likelihood:
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p(d)
|{z}

Average

predictive adequacy

=

Z

⇥

d ✓

| {z }

Summed across

all values of ✓,

f(d | ✓)
| {z }

likelihood

for a specific ✓,

⇥ ⇡(✓)
|{z}

weighted by the

prior plausibility of that ✓.

(9.2.2)

The Bayes factor is the ratio of the average predictive adequacies for the two
competing models:

BF
10

(d) =
p(d |H

1

)

p(d |H
0

)
=

R

⇥1
f(d | ✓

1

,H
1

) ⇡(✓
1

|H
1

)d✓
1

R

⇥0
p(d | ✓

0

,H
0

) ⇡(✓
0

|H
0

) d ✓
0

, (9.2.3)

where ✓
1

is the parameter vector under H
1

, and ✓
0

is the (typically shorter) pa-
rameter vector under H

0

. Thus, when BF
10

(d) = 3 the data are three times
more likely under H

1

than under H
0

, and when BF
10

(d) = 1/7 (or equivalently,
BF

01

(d) = 7), the data are seven times more likely under H
0

than under H
1

.
The Bayes factor o↵ers several advantages for the analysis of empirical data

(e.g., Dienes, 2014; Rouder, 2014; Schönbrodt and Wagenmakers, 2017; Wagen-
makers et al., 2017b). Specifically, the Bayes factor allows the researcher to quan-
tify evidence, to discriminate between absence of evidence (i.e., BF

01

(d) ⇡ 1)
versus evidence of absence (i.e., BF

01

(d) � 1). The Bayes factor also allows one
to monitor the evidence as the data come in (Gronau and Wagenmakers, 2017)
and to design experiments in order to ensure compelling evidence. Finally, the
Bayes factor can also be used to quantify replication success, a topic to which we
turn next. For a more detailed introduction to the various fundamental Bayesian
concepts see Wagenmakers et al. (2017a, 2017b), and Etz and Vandekerckhove
(2017).

9.3 Bayesian updating in action

For concreteness, consider the article by Krupenye et al. (2016) titled “Great
apes anticipate that other individuals will act according to false beliefs”. In two
experiments, the authors used

“(...) an anticipatory looking test (originally developed for human
infants) to show that three species of great apes reliably look in antic-
ipation of an agent acting on a location where he falsely believes an
object to be, even though the apes themselves know that the object
is no longer there. Our results suggest that great apes also operate,
at least on an implicit level, with an understanding of false beliefs.”
(Krupenye et al., 2016, p. 110)

The Krupenye et al. (2016) article presents two experiments. In each experi-
ment, the apes could either look at the target or at the distractor. Here we start by
presenting a Bayesian reanalysis of the first experiment. In this experiment. “(...)
we tested 40 apes [19 chimpanzees, 14 bonobos, and 7 orangutans (...)]. Thirty
subjects looked to either the target or the distractor during the central-approach
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period. Of these 30, 20 looked first at the target (P = 0.098, two-tailed binomial
test)” (Krupenye et al., 2016, p. 113).

Now we will reanalyse these results from a Bayesian perspective using the
Summary Stats module in JASP (https://jasp-stats.org; Ly et al., 2017e). In
our reanalysis, we assume that the data we observe are binomial and governed by
a population parameter ✓, the unknown proportion of apes in the population who
first look at the target. The hypothesis that the apes are performing at chance
level is specified as H

0

: ✓ = 0.5. This hypothesis is contrasted with H
1

, the
hypothesis that ✓ can take on values other than 0.5. For illustrative purposes,
under H

1

we assign ✓ a default prior distribution of Beta(1, 1) that is uniform
across the interval from 0 to 1. With the model in place, our uncertainty about
the unknown parameter ✓ is then updated by the data (i.e., 20 out of 30 looks at
the target), and this yields the results shown in Fig. 9.1.

In Fig. 9.1, consider the two grey dots that mark the height of the prior and
posterior distribution at ✓ = 0.5, the null hypothesis of chance performance. These
heights can be used to obtain the Savage-Dickey representation of the Bayes factor,
an intuitive depiction of its strength and direction: If the dot at ✓ = 0.5 gets higher
from prior to posterior, the Bayes factor will provide evidence in favour of the null
hypothesis (and vice-versa); moreover, the ratio of the heights of the dots exactly
equals the Bayes factor (Dickey and Lientz, 1970; Wagenmakers et al., 2010). In
this analysis the two dots are almost at an equal height, and the Bayes factor
obtained is BF

10

(d) = 1.153, which indicates that the data are non-diagnostic in
choosing between the two hypotheses under scrutiny.

We may have gained hardly any evidence for the one hypothesis over the other.
However, assume we know that the null hypothesis is false, uninteresting, or gen-
erally unworthy of attention. Then we are left with H

1

, and the corresponding
posterior information about ✓ is shown as the full curve in Fig. 9.1. The area
under this curve to the right of ✓ = 0.5 is much larger than the area to the left
of ✓ = 0.5; consequently, if we only take H

1

into consideration, the previously
non-diagnostic data inform us that ✓ is likely to be higher than 0.5 (see also Etz
and Vandekerckhove, 2017, Example 5); indeed, the 95% credible interval ranges
from 0.486 to 0.808.

The idea of Verhagen and Wagenmakers was to use this posterior from the first
experiment as an informed prior for a second experiment. This is in accordance
with Bayesian parameter updating and the adage “today’s posterior is tomorrow’s
prior” (Lindley, 1972, p. 2). The resulting “replication Bayes factor” quantifies the
relative predictive adequacy of the null hypothesis versus an alternative hypothesis
that is completely informed by the knowledge of the parameter obtained from the
first study.

To demonstrate the procedure, consider the second experiment conducted by
Krupenye et al. (2016): “In experiment two, we tested 30 subjects (29 from ex-
periment one, plus one additional bonobo). Twenty-two apes made explicit looks
to the target or the distractor during this period. Of these 22, 17 looked first at
the target (P = 0.016, two-tailed binomial test)” (Krupenye et al., 2016, p. 113).

In order to compute the replication Bayes factor, we take the posterior distri-
bution from Experiment 1 (i.e., the solid line in Fig. 9.1), and use it as a prior
distribution for the analysis of the second experiment. Recall that the original
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Figure 9.1: Bayesian reanalysis of the results from the first experiment in Krupenye
et al. (2016), where 20 out of 30 apes (⇡ 67%) first looked at the target. Figure
from JASP.

uniform prior was a Beta(1, 1) distribution; after incorporating the twenty suc-
cesses and ten failures from the first experiment, the posterior remains a beta
distribution, namely, Beta(1 + 20, 1 + 10). This distribution can be specified in
the Summary Stats module of JASP.

The result is displayed in Fig. 9.2. The dotted line quantifies the knowledge
of an idealised proponent, who believes the e↵ect is present and has access to the
data from Experiment 1. The solid line is the posterior distribution when this
knowledge has been updated using the data from Experiment 2. This posterior
distribution does not assign much mass to values of ✓ near 0.5, and consequently
the replication Bayes factor is relatively strong: the data are about 16 times more
likely under the proponent’s H

r

than under the skeptic’s H
0

.
This process of updating to a posterior and then using it as a prior for the anal-

ysis of the next experiment is relatively straightforward for this simple example.
For more complex models, however, the process can be burdensome, approximate,
and intricate. In the remainder of this paper we will propose an easier, more ex-
act way forward that focuses on updating the evidence rather than updating the
parameter priors.

9.4 The replication Bayes factor reconceptualised

The example above demonstrated how the replication Bayes factor can be obtained
by a standard Bayesian parameter updating process, that is, by using the posterior
distribution from the first experiment as a prior distribution for the replication
test of the second experiment.
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Figure 9.2: Bayesian reanalysis of the results from the second experiment in Kru-
penye et al. (2016) –where 17 out of 22 apes (⇡ 77%) first looked at the target–
after having updated ✓ using the data from the first experiment. Figure from
JASP.

However, there exists a simpler way to obtain the replication Bayes factor, one
that does not explicitly require the parameter updating process. To explain this
alternative method we revisit Krupenye et al. (2016) and analyse the data from
both experiments together (i.e., 20 + 17 = 37 first looks at the target out of 30 +
22 = 52 trials). Fig. 9.3 shows the results. The posterior distribution equals the
one shown in Fig. 9.2; in other words, it does not matter whether the original prior
distribution is updated in two steps –first the data from Experiment 1, then the
data from Experiment 2– or all at once. Crucially, this property also holds for the
Bayes factor (e.g., Je↵reys, 1938, pp. 190–192). The Bayes factor for the combined
result, shown in Fig. 9.3, equals 18.961. The Bayes factor for the first experiment
equals 1.153 (see Fig. 9.1), and the Bayes factor for the second experiment –after
updating based on the knowledge obtained in the first experiment– equals 16.448
(see Fig. 9.2).1 Multiplying these two Bayes factors yields 1.153⇥16.448 = 18.965,
the same result as is obtained when all data are analysed at once.2

In other words, the multiplication of component Bayes factors, when properly

1For a warning concerning the multiplication of Bayes factors that have not been properly
updated see Je↵reys, 1938, pp. 190–192; Je↵reys, 1961, section 6.0; and Wagenmakers et al.,
2015b).

2The di↵erence between 18.965 and 18.961 is due to the fact that the JASP output is accurate
to three decimal places.
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Figure 9.3: Bayesian reanalysis of the results from the first and second experiment
in Krupenye et al. (2016) combined, where 37 out of 52 apes (⇡ %71) first looked
at the target. Figure from JASP.

updated, yields the complete Bayes factor:

BF
10

(d
orig

, d
rep

)
| {z }

Complete BF

= BF
10

(d
orig

)
| {z }

BF original

experiment

⇥BF
10

(d
rep

| d
orig

)
| {z }

Replication BF

, (9.4.1)

where d
orig

denotes the original data and d
rep

the data from the replication at-
tempt. Note that the replication Bayes factor is the change in the Bayes factor due
to the observation of the replication data and quantifies the additional evidence for
the alternative hypothesis given what was already observed in the original study.

Rearranging Eq. (9.4.1) then yields the crucial identity

BF
10

(d
rep

| d
orig

) =
BF

10

(d
orig

, d
rep

)

BF
10

(d
orig

)
, (9.4.2)

which shows that the replication Bayes factor may be obtained by dividing the
complete Bayes factor by the Bayes factor from the original experiment. Im-
portantly, the replication Bayes factor is obtained much easier by updating the
evidence than by updating the parameters, as the evidence updating procedure
does not require the researcher to approximate the posterior from the original
study and specify it in a software program. For complex models, this requirement
is prohibitive. We now turn to additional examples that demonstrate the ease
with which the evidence-updating (henceforth “EU”) replication Bayes factor can
be obtained.
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9.5 Example 1: A t-test to assess whether superstition
improves performance

Consider perhaps the most routine replication scenario, one where a researcher
conducts a replication of a study whose analysis featured a t-test. For a common
t-test, JASP allows the specification of a Cauchy, t, or normal prior for the e↵ect
size � and the user is free to specify the centre and scale of this prior (for technical
details see Gronau et al., 2017a). However, in contrast to parameter ✓ from the
binomial test, the posterior for � in a t-test has no known distributional form. The
applied scientist is therefore unable to use the posterior as a prior to calculate a
replication Bayes factor in JASP.

To overcome this hurdle, Verhagen and Wagenmakers (2014) proposed to ap-
proximate the posterior on e↵ect size obtained from the t-test with a normal
distribution; this normal distribution is then used as a prior for the analysis of
the replication experiment. Unfortunately, this approximation in the intermediate
step between the original and the replication study makes this method computa-
tionally involved and hard to generalise to other designs.

To illustrate the simplicity of the EU replication Bayes factor, we revisit a
recently published replication study by Calin-Jageman and Caldwell (2014) on
the e↵ect of superstition and performance in golf players (Damisch et al., 2010).
The authors summarised the background as follows:

“Can superstitions actually improve performance? Damisch, Sto-
berock, and Mussweiler (2010) reported a striking experiment in which
manipulating superstitious feelings markedly increased golfing ability.
Participants attempted 10 putts, each from a distance of 100 cm.
Some participants were primed for superstition prior to the task by
being told ‘Here is the ball. So far it has turned out to be a lucky
ball.’ Controls were simply told ‘This is the ball everyone has used so
far.’ Remarkably, this manipulation produced a substantial increase
in golf performance: Controls made 48% of putts while superstition-
primed participants made 65% of putts (d = 0.83, 95% CI [0.05, 1.60]).”
(Calin-Jageman and Caldwell, 2014, p. 239)

A classical t-test3 of the original data resulted in a statistically significant result,
t(26) = 2.14, p = .042, d = .83. As shown in Fig. 9.4, a Bayesian independent sam-
ples t-test using the JASP Summary Stats module returns BF

10

(d
orig

) = 1.820, a
level of evidence that is not compelling. Calin-Jageman and Caldwell (2014) per-
formed a direct replication of this work. Their Experiment 1 featured 58 control
participants and 66 “superstition-activated” participants. The latter group out-
performed the controls by only 2%, a result that is not statistically significant (i.e.,
t(122) = .29, p = .77, d = .05).

To compute the EU replication Bayes factor, we first need to compute the
complete Bayes factor for these two datasets. Since both the original and replica-
tion papers report the raw means and standard deviations for each of the two

3This analysis is consistent with the one used in the original experiment and the replication
attempt. A more appropriate statistical analysis arguably uses a hierarchical binomial model.
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Figure 9.4: Bayesian reanalysis of the original results from Experiment 1 of
Damisch et al. (2010), where golfers who played with a “lucky” ball made more
putts (t(26) = 2.14, p = .042, d = .83). Figure from JASP.

groups (which are su�cient statistics for the t-test, see Ly et al., 2017c), we
can straightforwardly compute the overall t-value for the combined data (see
Appendix 9.A for a description of the algebra involved); this yields an overall
t = 1.14, which corresponds to a complete Bayes factor of BF

10

(d
orig

, d
rep

) = 0.318.
The replication Bayes factor can now be obtained by simply dividing the com-
plete Bayes factor by the Bayes factor from the original data alone and leads to
BF

10

(d
rep

| d
orig

) = 0.175. In other words, the skeptic’s null hypothesis predicted
the data from the replication attempt 1/.175 = 5.72 times better than the propo-
nent’s alternative hypothesis informed by the original dataset.

9.6 Example 2: A contingency table analysis to test
whether more valuable stimuli are judged to be
relatively rare

The previous example featured a t-test and therefore the replication Bayes factor
could also have been approximated using the parameter-updating procedure out-
lined in Verhagen and Wagenmakers (2014). We now turn to an example for which
this parameter-updating procedure is problematic: the default Bayesian test for
independence in a contingency table (Gunel and Dickey, 1974; Jamil et al., 2017).

The test for independence involves the construction of a model that is more
complex than the models used for the t-test. Consequently, in JASP, the researcher
can only input a parameter that governs the relative concentration of the joint
prior distribution, and –for the special case of a 2 ⇥ 2 table– receive a posterior
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9.6. Example 2: A contingency table analysis to test whether more valuable
stimuli are judged to be relatively rare

Table 9.1: Data from Dai et al. (2008), who concluded that endowing a category
may lead participants to judge that category to be relatively rare.

Estimates

Endowed Fewer flowers Fewer birds Total

Flowers 15 12 27
Birds 8 21 29

Total 23 33 56

distribution for the log-odds ratio, a derived summary measure that quantifies the
degree of association. This generic setup does not allow researchers to obtain a
joint parameter posterior from past studies and use it as a prior for current studies,
frustrating the parameter-updating version of the replication Bayes factor.

However, a contingency table replication test is straightforwardly implemented
by using the EU replication Bayes factor, as we now demonstrate by an example
taken from the Reproducibility Project: Psychology (RP:P; Open Science Col-
laboration, 2015). As part of the RP:P, Fuchs, Estel, and Göllner performed a
replication of a study by Dai et al. (2008), who

“(. . . ) tested a novel heuristic for making judgements of relative
frequency. According to this so-called value heuristic, ‘people judge
the frequency of a class of objects on the basis of the subjective value
of the objects’ (p. 18). Based on the principle that scarcity increases
an object’s value, the authors [Dai et al.] formulate the hypothesis
that individuals will assess more valuable stimulus classes to be less
frequent even when value is not diagnostic of frequency.”

The data from Dai and colleagues’ original study are presented in Table 9.1.
The raw data suggest that endowing a category leads participants to judge that
category as having fewer occurrences, in line with their original hypothesis. Sub-
jecting this original finding to a classical contingency table test results in �2(1, 56) =
4.51, p = .037, and a default Bayesian reanalysis (Gunel and Dickey, 1974) using
JASP yields BF

10

(d
orig

) = 2.880.
The data from Fuchs and colleagues’ replication attempt are shown in Ta-

ble 9.2. A classical contingency table test applied to these data returns �2(1, 51) =
1.57, p = .21, which is not statistically significant. To reanalyse this data using our
EU replication Bayes factor, we first combine the data into a single sample (see Ta-
ble 9.3) and compute the complete Bayes factor, BF

10

(d
orig

, d
rep

) = 0.298. To ob-
tain the replication Bayes factor we simply divide BF

10

(d
orig

, d
rep

) by BF
10

(d
orig

),
which yields BF

10

(d
rep

| d
orig

) = 0.103. This means that the replication data are
predicted 1/0.103 = 9.71 times better by the null hypothesis than by the alterna-
tive hypothesis informed by the original data set.
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Table 9.2: Data from the replication experiment by Fuchs and colleagues. The
data do not support the original finding of Dai et al. (2008).

Estimates

Endowed Fewer flowers Fewer birds Total

Flowers 11 16 27
Birds 14 10 24

Total 25 26 51

Table 9.3: Data from the original and replication experiment combined. Note
that this pooling procedure assumes that the data are exchangeable, that is, it
presumes that the replication study is direct and close.

Estimates

Endowed Fewer flowers Fewer birds Total

Flowers 26 28 54
Birds 22 31 53

Total 48 59 107

9.7 Concluding comments

The replication Bayes factor (Verhagen and Wagenmakers, 2014) provides an in-
tuitive measure of replication success: rather than ignoring the original study, the
replication Bayes factor uses the posterior distribution obtained from the original
study as a prior distribution for the test of the data from the replication study.

Here we provided an additional perspective on the replication Bayes factor,
namely as the change in evidence brought about by observing the results from the
replication study. The advantage of this “evidence-updating” or EU perspective
on the replication Bayes factor is that is does not require approximations and that
it can be easily applied to complex models.

Both the original parameter-updating version and the current EU version of the
replication Bayes factor are based on the idea of evidence synthesis and scientific
learning (e.g., Marsman et al., 2016a; Scheibehenne et al., 2016). With more than
two studies, the proposed method is similar to a fixed-e↵ects meta-analysis that
assumes the data to be exchangeable.4

As with any statistical method, it can become vulnerable when its core assump-
tions are violated. For the EU replication Bayes factor, the most serious threat
to its validity arises when the replication is not close, and aspects di↵er that the
model assumes to be the same. Consider the t-test. The parameter-updating ver-

4For an extension of the methodology to random-e↵ects models and model-averaging see
Gronau et al., 2017c; Scheibehenne et al., 2017.
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9.A. Deriving the t-value across all data sets

sion updates only the test-relevant parameter �, but the nuisance parameters (e.g.,
the grand mean, which is common to H

0

and H
1

) were not updated. This small
omission is rectified by the EU version that automatically and implicitly updates
the joint prior for all model parameters. But this updating of nuisance parame-
ters also creates a lack of robustness: when the nuisance parameters do undergo
a large change from original to replication study, the results can be misleading.
For instance, assume that a replication attempt successfully reproduces the main
e↵ect of condition, but all participants are 150 ms slower. When the raw data
from the two studies are combined, this artificially inflates the variance and may
make it appear as if the replication failed.

A similar warning applies for a correlation test, where the parameter of interest
–the correlation coe�cient ⇢– may be of similar magnitude in the original and the
replication study, but global changes in the location parameters of the bivariate
normal can skew the outcome of the EU replication Bayes factor. For instance,
suppose one studies the relation between income and body weight. The replication
attempt finds the same correlation but on average participants earn $10,000 more
and weigh 15 pounds less. Visually this yields two clouds of points; each may have
the same shape and orientation, but pooling the raw data may create a misleading
impression.

The solution to this lack of robustness is two-fold. First, users must be aware
that this is a potential problem. Second, the data may be transformed to absorb
any changes in nuisance parameters. For instance, correlational data may be
mean-centred before being combined.

Another vulnerability of the replication Bayes factor (regardless of whether it is
the parameter-updating version or the EU version) is that, in rare case, it brings
about a replication paradox. The paradox is that when a replication attempt
strongly suggests that the results go in the direction opposite to the one found
in the original study, the replication Bayes factor may yield compelling evidence
in favour of the alternative hypothesis that the e↵ect has successfully replicated.
As with all uses of probability theory, such paradoxes reveal a lack of proper
understanding. Appendix 9.C illustrates the paradox and explains that it can be
resolved by imposing an order-restriction.

No single measure of replication success su�ces to address all questions that
surround the interpretation of a replication attempt. We advocate an inclusive
approach to the statistical assessment of replication success, and we hope that
the EU replication Bayes factor can be one of many tools that are at researchers’
disposal, to be applied not just across laboratories but also within laboratories.

9.A Deriving the t-value across all data sets

The two-sample t-statistic over the combined data d
all

= (d
orig

, d
rep

) can be com-
puted from the sample means and variances of the two data sets

d
orig

= (n
orig,x

, x̄
orig

, s2
orig,x

, n
orig,y

, ȳ
orig

, s2
orig,y

), (9.A.1)

d
rep

= (n
rep,x

, x̄
rep

, s2
rep,x

, n
rep,y

, ȳ
rep

, s2
rep,y

), (9.A.2)
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where n
orig,x

, n
orig,y

are the sample sizes,x̄
orig

, ȳ
orig

the sample means and
s̄2
orig,x

, s̄2
orig,y

the (unbiased) sample variance of the first and second group from
the original data set. The same symbols with orig replaced by rep have an analo-
gous meaning. The combined two-sample t-statistic under the assumption of equal
variance is then given by

t
all

=
x̄
all

� ȳ
all

q

s2[ 1

n

all,x

+ 1

n

all,y

]
, (9.A.3)

where n
all,x

= n
orig,x

+ n
rep,x

, n
all,y

= n
orig,y

+ n
rep,y

are the combined sample
sizes of the first and second group respectively, and where

x̄
all

=
n
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x̄
orig

+ n
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x̄
rep

n
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, (9.A.4)
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are the combined means of the two groups and
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the combined sample variance, where
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ȳ2
orig

+ ⌫
rep,y

s2
rep,y

+ n
rep,y

ȳ2
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are the combined sums of squares of the first and second group, respectively, with
⌫
orig,x

= n
orig,x

� 1, ⌫
orig,y

= n
orig,y

� 1 denoting the degrees of freedom.

Proof. The combined mean of the first group follows from the the equality

n
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x̄
all
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n

all,x

X
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x
i
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orig,x
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orig

+ n
rep,x
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, (9.A.9)

and the combined mean of the second group can be derived analogously. Recall
that the sums of squares

P

(x
i

� x̄)2 is defined as the the sum of the squares
centred at zero minus n times the square of the mean, that is,

⌫
orig,x

s2
orig,x

=

n
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X
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(x
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� x̄
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X
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. (9.A.10)
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The same holds for the the sums of squares of the replication data and the com-
bined data d

all

. As such, we can write the first sums of squares in the numerator
of s2 as

n

all,x

X

i=1

(x
i

� x̄
all

)2 = ⌫
orig,x
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rep,x
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rep,x
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� n
all,x

x̄2

all
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and the derivation is similar for y.

9.B Replication Bayes factors as conditional Bayes factors

Let d
orig

, d
rep

be exchangeable and write ⇡(✓
0

| d
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) and ⇡(✓
1

| d
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) for the pos-
terior for the parameters of the null model and alternative model respectively.
Thus,
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where p(d
orig

|M
j

) is the marginal likelihood for M
j

. The procedure that uses
the posterior based on the original data set d

orig

as a prior for the replication data
set can now be rewritten as
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Hence, the parameter-updating and evidence-updating replication Bayes factor are
equivalent to each other under the assumption that d

orig

and d
rep

are exchangeable
and the fixed e↵ect assumption.

9.C Replication paradox and solution

Regardless of whether it is calculated from parameter-updating or evidence-
updating, the replication Bayes factor can produce a paradoxical result whenever
the data from a replication attempt strongly indicate that the result is in the di-
rection opposite of the one obtained in the original experiment. Here we illustrate
the paradox and explain its resolution.

For concreteness, assume that the original experiment is the first study of Kru-
penye et al. (2016), where 20 out of 30 apes first looked at the target (see Fig. 9.1).
Now imagine a hypothetical replication in which only 5 out of 50 apes look at the
target, contradicting the direction of the original e↵ect. One may intuit that
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9. Replication Bayes Factors from Evidence Updating

this disappointing result indicates compelling evidence against the proponent’s
alternative hypothesis as given by the posterior distribution from Fig. 9.1. Sur-
prisingly, however, Fig. 9.5 indicates that the Bayes factor is 35.6 in favour of the
proponent’s alternative hypothesis.

0 0.2 0.4 0.6 0.8 1

0.0

2.0

4.0

6.0

8.0

10.0

12.0

D
en

si
ty

Population proportion 

BF10 = 35.624
BF01 = 0.028

median = 0.316
95% CI: [0.222, 0.421]

data|H1

data|H0

Posterior
Prior

Figure 9.5: A replication paradox. In the first experiment by Krupenye et al.
(2016), 20 out of 30 apes (i.e., ⇡ 67%) had looked at the target first; in a hypo-
thetical replication experiment, only 5 out of 50 apes did so (i.e., 10%). The e↵ect
in the hypothetical replication attempt goes in the direction opposite to that of
the original study, and yet the replication Bayes factor indicates strong support
in favour of the proponent’s alternative hypothesis. Figure from JASP.

The key insight is to realise that the replication Bayes factor –just as other
Bayes factors– quantifies relative evidence. With only 5 out of 50 looks at the
target, the null hypothesis utterly fails to account for the data. The proponent’s
H

r

as specified by the dotted line in Fig. 9.5 also predicts these data poorly but
not across all of its parameter space; indeed, H

r

has some prior mass on values of
✓ below 0.5. This resolves the paradox. The surprise at the support for the propo-
nent’s hypothesis (when the replication results contra-indicate the direction found
in the original study) reflects the implicit notion that the proponent’s hypothesis
ought to have a direction. Specifically, in the Krupenye et al. (2016) example
the authors clearly had a direction in mind when they discussed their findings.
Consider the same test but now impose the restriction that ✓ � .5. The result is
shown in Fig. 9.6; now the Bayes factor is 72 in favour of the null hypothesis.

Generally we advocate the use of order-restrictions to create more informative
tests of the underlying theory (e.g., Matzke et al., 2015b). However, it should be
kept in mind that such order restrictions blind the researcher to the possibility
that the e↵ect might actually go in the direction opposite to that postulated
by theory. When the data suggest that this may indeed be the case, follow-
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Figure 9.6: A replication paradox resolved. In the first experiment by Krupenye
et al. (2016), 20 out of 30 apes (i.e., ⇡ 67%) had looked at the target first; in a
hypothetical replication experiment, only 5 out of 50 apes did so (i.e., 10%). The
e↵ect in the hypothetical replication attempt goes in the direction opposite to
that of the original study. By imposing an order-restriction and allowing ✓ to take
on only values larger than 0.5, the replication Bayes factor now indicates strong
support in favour of the skeptic’s null hypothesis. Figure from JASP.

up experiments may instantiate this novel prediction as a new hypothesis and
examine its adequacy.
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Chapter 10

Analytic Posteriors for Pearson’s
Correlation Coe�cient

Abstract

Pearson’s correlation is one of the most common measures of linear de-
pendence. Recently, Bernardo (2015) introduced a flexible class of priors to
study this measure in a Bayesian setting. For this large class of priors we
show that the (marginal) posterior for Pearson’s correlation coe�cient and
all of the posterior moments are analytic. Our results are available in the
open-source software package JASP.

Keywords: Bivariate normal distribution, hypergeometric functions, refer-
ence priors.

10.1 Introduction

Pearson’s product-moment correlation coe�cient ⇢ is a measure of the linear de-
pendency between two random variables. Its sampled version, commonly denoted
by r, has been well-studied by the founders of modern statistics such as Galton,
Pearson, and Fisher. Based on geometrical insights Fisher (1915, 1921) was able to
derive the exact sampling distribution of r, and established that this sampling dis-
tribution converges to a normal distribution as the sample size increases. Fisher’s
study of the correlation has led to the discovery of variance-stabilising transforma-
tions, su�ciency (Fisher, 1920), and, arguably, the maximum likelihood estimator
(Fisher, 1922; Stigler, 2007). Similar e↵orts were made in Bayesian statistics which
focus on inferring the unknown ⇢ from the data that were actually observed. This
type of analysis requires the statistician to (i) choose a prior on the parameters,

This chapter is published online as: Ly, A., Marsman, M., and Wagenmakers, E.–J. (2017).
Analytic posteriors for Pearson’s correlation coe�cient. Statistica Neerlandica. doi: http://

dx.doi.org/10.1111/stan.12111.
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10. Analytic Posteriors for Pearson’s Correlation Coefficient

thus, also on ⇢, and to (ii) calculate the posterior. Here we derive analytic posteri-
ors for ⇢ given a large class of priors that include the recommendations of Je↵reys
(1961), Lindley (1965), Bayarri (1981), and, more recently, Berger and Sun (2008)
and Berger et al. (2015). Je↵reys’s work on the correlation coe�cient can also be
found in the second edition of his book (Je↵reys, 1961), originally published in
1948; see Robert et al. (2009) for a modern re-read of Je↵reys’s work. An ear-
lier attempt at a Bayesian analysis of the correlation coe�cient can be found in
Je↵reys (1935). Before presenting the results, we first discuss some notations and
recall the likelihood for the problem at hand.

10.2 Notation and result

Let (X
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, X
2

)0 have a bivariate normal distribution with mean µ = (µ
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)0 and
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Pearson’s correlation coe�cient ⇢ measures the linear association between X
1

and
X

2

. In brief, the model is parameterised by the five unknowns ✓ = (µ
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Bivariate normal data consisting of n pairs of observations can be su�ciently
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likelihood function
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For inference we use the following class of priors
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where ⌘ denotes the hyperparameters, that is, ⌘ = (↵,�, �, �). This class of priors
is inspired by the one José Bernardo used in his talk on reference priors for the
bivariate normal distribution at the “11th International Workshop on Objective
Bayes Methodology in honor of Susie Bayarri”. This class of priors contains certain
recommended priors as special cases.

If we set ↵ = 1,� = � = � = 0 in Eq. (10.2.3), we retrieve the prior that
Je↵reys recommended for both estimation and testing (Je↵reys, 1961, pp. 174–
179 and 289–292). This recommendation is not the prior derived from Je↵reys’s
rule based on the Fisher information (e.g., Ly et al., 2017c), as discussed in Berger
and Sun (2008). With ↵ = 1,� = � = � = 0, thus, a uniform prior on ⇢,
Je↵reys showed that the marginal posterior for ⇢ is approximately proportional to
h
a

(n, r | ⇢), where

h
a

(n, r | ⇢) = (1� ⇢2)
n�1

2 (1� ⇢r)
3�2n

2 ,

represents the ⇢-dependent part of the likelihood Eq. (10.2.2) with ✓
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=
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1

, µ
2

,�
1

,�
2

) integrated out. For n large enough, the function h
a

is a good
approximation to the true reduced likelihood h

�,�

given below.1

If we set ↵ = � = � = � = 0 in Eq. (10.2.3), we retrieve Lindley’s reference
prior for ⇢. Lindley (1965, pp. 214–221) established that the posterior of tanh�1(⇢)
is asymptotically normal with mean tanh�1(r) and variance n�1, which relates
the Bayesian method of inference for ⇢ to that of Fisher. In Lindley’s (1965, p.
216) derivation it is explicitly stated that the likelihood with ✓

0

integrated out
cannot be expressed in terms of elementary functions. In his analysis, Lindley
approximates the true reduced likelihood h

�,�

with the same h
a

that Je↵reys used
before. Bayarri (1981) furthermore showed that with the choice � = � = 0 the
marginalisation paradox (Dawid et al., 1973) is avoided.

In their overview, Berger and Sun (2008) showed that for certain a, b with
↵ = b/2� 1, � = 0, � = a� 2 and � = b� 1 the priors in Eq. (10.2.3) correspond
to a subclass of the generalised Wishart distribution. Furthermore, a right-Haar
prior (e.g., Sun and Berger, 2007) is retrieved when we set ↵ = � = 0, � =
�1, � = 1 in Eq. (10.2.3). This right-Haar prior then has a posterior that can be
constructed through simulations. That is, by simulating from a standard normal
distribution and two chi-squared distributions (Berger and Sun, 2008, Table 1).
This constructive posterior also corresponds to the fiducial distribution for ⇢ (e.g,
Fraser, 1961, Hannig et al., 2006). Another interesting case is given by ↵ = 0,� =
1, � = � = 0, which corresponds to the one-at-a-time reference prior for �

1

and
�
2

, see also Je↵reys (1961, p. 187).
The analytic posteriors for ⇢ follow directly from exact knowledge of the re-

duced likelihood h
�,�

(n, r | ⇢), rather than its approximation used in previous work.
We give full details, because we did not encounter this derivation in earlier work.

Theorem 10.2.1 (The reduced likelihood h
�,�

(n, r | ⇢)). If |r|< 1, n > � +1 and
n > �+1, then the likelihood f(d | ✓) times the prior Eq. (10.2.3) with the common
parameters ✓

0

= (µ
1

, µ
2

,�
1

,�
2

) integrated out is a function f
�,�

that factors as

f
�,�

(d | ⇢) = p
�,�

(d
0

)h
�,�

(n, r | ⇢). (10.2.4)

1We thank an anonymous reviewer for clarifying how Je↵reys derived this approximation.
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The first factor is the marginal likelihood with ⇢ fixed at zero, which does not
depend on r nor on ⇢, that is,
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). We refer to the second factor as the reduced likeli-
hood, a function of ⇢ which is given by a sum of an even and an odd function, that
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where
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notes Gauss’ hypergeometric function. ⇧

Proof. To derive f
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(d | ⇢) we have to perform three integrals: (i) with respect to
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where we abbreviated f(d |�
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. The factor
p
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(d
0

) follows directly by setting ⇢ to zero in Eq. (10.2.8) and two independent
gamma integrals with respect to �

1

and �
2

resulting in Eq. (10.2.5). These gamma
integrals cannot be used when ⇢ is not zero. For f

�,�

(d | ⇢) which is a function of
⇢, we use results from special functions theory.
(ii) For the second integral, we collect only that part of Eq. (10.2.8) that involves
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The assumption n > � + 1 and the substitution u = ��1

1

allow us to solve this
integral using Lemma 10.A.1, which we distilled from the Bateman manuscript

project (Bateman et al., 1954) with a = ns
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and where
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denotes the confluent hypergeometric function. The functions
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Hence, the last integral with respect to �
2

only involves the functions k and l.

The assumption n > � + 1 and the substitution t = ns
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After we combine the results we see that f
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Hence, f
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This main theorem confirms Lindley’s insights; h
�,�

(n, r | ⇢) is indeed not ex-
pressible in terms of elementary functions and the prior on ⇢ is updated by the
data only through its sampled version r and the sample size n. As a result, the
marginal likelihood for data d then factors into p
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(⇢)d⇢ is the normalising constant of the
marginal posterior of ⇢. More importantly, the fact that the reduced likelihood is
the sum of an even and an odd function allows us to fully characterise the poste-
rior distribution of ⇢ for the priors Eq. (10.2.3) in terms of its moments. These
moments are easily computed, as the prior ⇡
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(⇢) itself is symmetric around zero.
Furthermore, the prior ⇡

↵,�

(⇢) can be normalised as

⇡
↵,�

(⇢) =
(1� ⇢2)↵�1(1 + ⇢2)

�

2

B( 1
2

,↵)
2

F
1

(� �

2

, 1

2

; 1

2

+ ↵ ; �1)
, (10.2.18)

where B(u, v) = �(u)�(v)

�(u+v)

denotes the beta function. The case with � = 0 is

also known as the (symmetric) stretched beta distribution on (�1, 1) and leads to
Lindley’s reference prior when we ignore the normalisation constant, i.e., B( 1

2

,↵),
and, subsequently, let ↵! 0.

Corollary 10.2.1 (Characterisation of the marginal posteriors of ⇢). If n >
�+��2↵+1, then the main theorem implies that whenever the marginal likelihood
with all the parameters integrated out factors as p
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defines the normalising constant of the marginal posterior for ⇢. Observe that the
integral involving B
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is zero, because B
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is odd on (�1, 1). More generally, the
kth posterior moment of ⇢ is
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These posterior moments define the series
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The series defined in Eq. (10.2.21) are hypergeometric when � is a non-negative
integer. ⇧

Proof. The series E
↵,�

(⇢k |n, r ; �, �) result from term-wise integration of the hy-
pergeometric functions in A

�,�

and B
�,�

. The assumption n > �+��2↵+1 and the
substitution x = ⇢2 allows us to solve these integrals using Eq. (3.197.8) in Grad-
shteyn and Ryzhik (2007, p. 317) with their ↵̃ = 1, u = 1, � = �
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when k is odd. A
direct application of the ratio test shows that the series converge when |r|< 1.

10.3 Analytic posteriors for the case � = 0

For most of the priors discussed above we have � = 0, which leads to the following
simplification of the posterior.

Corollary 10.3.1 (Characterisation of the marginal posteriors of ⇢, when � = 0).
If n > � + � � 2↵+ 1 and |r|< 1, then the marginal posterior for ⇢ is
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where p
↵

(n, r ; �, �) refers to the normalising constant of the (marginal) posterior
of ⇢, which is given by
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More generally, when � = 0, the kth posterior moment is
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when k is odd. ⇧

Proof. The assumption n > �+��2↵+1 and the substitution x = ⇢2 allows us to
use Eq. (7.513.12) in Gradshteyn and Ryzhik (2007, p. 814) with µ = ↵+ n�����1

2

and ⌫ = 1
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+ k

2

when k is even, while we use ⌫ = 1
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when k is odd. The
normalising constant of the posterior p

↵

(n, r ; �, �) is a special case with k = 0.

The marginal posterior for ⇢ updated from the generalised Wishart prior, the
right-Haar prior and Je↵reys’s recommendation then follow from a direct sub-
stitution of the values for ↵, � and � as discussed under Eq. (10.2.3). Lindley’s
reference posterior for ⇢ is given by
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2 ,

which follows from Eq. (10.3.1) by setting � = � = 0 and, subsequently, letting
↵! 0.

Lastly, for those who wish to sample from the posterior distribution, we sug-
gest the use of an independence-chain Metropolis algorithm (IMH; Tierney, 1994)
with Lindley’s normal approximation of the posterior of tanh�1(⇢) as the proposal.
This method could be used when Pearson’s correlation is embedded within a hi-
erarchical model, as the posterior for ⇢ will then be a full conditional distribution
within a Gibbs sampler. For ↵ = 1, � = � = � = 0, n = 10 observations and
r = 0.6, the acceptance rate of the IMH algorithm was already well above 75%,
suggesting a fast convergence of the Markov chain. For n larger, the acceptance
rate further increases. The R code for the independence-chain Metropolis algo-
rithm can be found on the first author’s home page. In addition, this analysis is
also implemented in the open-source software package JASP.
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10.A A lemma distilled from the Bateman Project

Lemma 10.A.1. For a, c > 0 the following equality holds
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which define the even and odd solutions to Weber’s di↵erential equation in the
variable z = bp

2a

respectively. ⇧

Proof. By Bateman et al. (1954, p. 313, Eq. 13) we note that,

Z 1

0

uc�1 exp
⇣

� au2 � bu
⌘

du = (2a)
�c

2 �(c) exp
⇣ b2

8a

⌘

D�c

⇣ bp
2a

⌘

, (10.A.3)

where D
�

(z) is Whittaker’s (1902) parabolic cylinder function (Abramowitz and
Stegun, 1964). By virtue of Eq. (4) on p. 117 of Bateman et al. (1953), we
can decompose D

�

(z) into a sum of an even and odd function. Replacing this
decomposition for D

�

(z) in Eq. (10.A.3) and an application of the duplication
formula of the gamma function yields the statement.
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Chapter 11

Analytic Posteriors for the Binomial
Rate Parameters, and the Odds

Ratio

Abstract

We present analytic posteriors for a binomial rate parameter and the
odds ratio. Both expressions involve hypergeometric functions and can be
used to derive Bayes factors for these scenarios.

Keywords: Bayesian inference, hypergeometric functions.

11.1 Introduction

This chapter contains derivations of analytic posteriors for the rate of a binomial
distribution and the odds ratio.

11.2 Binomial distribution

11.2.1 A localised prior for the binomial rate parameter

Definition 11.2.1 (Localised beta prior). We say that ✓ has a beta distribution
localised at ✓

0

if its density is given by

⇡
⌘

(✓) = 1

B(↵,�)

✓↵�1(1� ✓)��1

| {z }

Beta(✓ ;↵,�)

( 1�✓0
✓0

)↵(1� [2� 1

✓0
]✓)�(↵+�), (11.2.1)

where ⌘ is shorthand for the parameter vector ⌘ = (↵,�, ✓
0

) and where Beta(✓ ; ↵,�)
refers to the (standard) two-parameter beta distribution. ⇧

With ✓
0

= 1/2 we retrieve the (standard) beta Beta(✓ ; ↵,�). We choose to
write the last term as [1 � ✓ + ✓( 1�✓0

✓0
)] = (1 � [2 � 1

✓0
]✓) due to its relation with

the hypergeometric function.
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Theorem 11.2.1 (Marginal likelihood of a binomially distributed random variable
with the beta prior localised at ✓

0

). The localised beta prior has the following
marginal likelihood

p
⌘

(d) =

✓

n

y

◆

B(↵+ y,� + n� y)

B(↵,�) (11.2.2)

⇥( 1�✓0
✓0

)↵
2

F
1

(↵+ �,↵+ y ; ↵+ � + n ; 2� 1

✓0
),

where d refers to the data y and n and where

2

F
1

(u, v ; w ; z) =
1
X

k=0

(u)
k

(v)
k

(w)
k

k!
zk, (11.2.3)

is Gauss’ hypergeometric function (Oberhettinger, 1972, Section 15), where (u)
k

=
�(u+k)

�(u)

denotes Pochhammer’s raising factorial. ⇧

Proof. Writing p
⌘

(;) = B(↵,�)( 1�✓0
✓0

)�↵ for the normalisation constant of the
prior combined with u

1

= y + ↵, u
2

= n� y + �, v = ↵ + �, and by definition of
the marginal likelihood, we have

p
⌘

(;)p
⌘

(d) =

✓

n

y

◆

Z

1

0

✓u1�1(1� ✓)u2�1(1� ✓[2� 1

✓0
])�vd✓, (11.2.4)

=

✓

n

y

◆

B(u
1

, u
2

)
2

F
1

(v, u
1

; u
1

+ u
2

; 2� 1

✓0
). (11.2.5)

The last equality follows from Euler’s integral representation of the hypergeometric
function (Abramowitz and Stegun, 1964, p. 558).

Corollary 11.2.1 (Localised beta posterior and its characterisation). The poste-
rior is

⇡
⌘

(✓ | d) = ⇡
↵,�

(✓ | d)
(1� [2� 1

✓0
]✓)�(↵+�)

2

F
1

(↵+ �,↵+ y ; ↵+ � + n ; 2� 1

✓0
)
, (11.2.6)

where

⇡
↵,�

(✓ | d) = ✓y+↵�1(1� ✓)n�y+��1

B(↵+ y,� + n� y)
, (11.2.7)

is the posterior based on the standard beta prior. The last term of the localised
posterior ⇡

⌘

(✓ | d) can be thought of as a “skewness” term due to the localisation.
The kth posterior moment is

E
⌘

(✓k | d) = B(↵+ y + k,� + n� y)

B(↵+ y,� + n� y)
(11.2.8)

⇥ 2

F
1

(↵+ �,↵+ y + k ; ↵+ � + n+ k ; 2� 1

✓0
)

2

F
1

(↵+ �,↵+ y ; ↵+ � + n ; 2� 1

✓0
)

,

=
(↵+ y)

k

(↵+ � + n)
k

2

F
1

(↵+ �,↵+ y + k ; ↵+ � + n+ k ; 2� 1

✓0
)

2

F
1

(↵+ �,↵+ y ; ↵+ � + n ; 2� 1

✓0
)

,

where E
⌘

(· | d) refers to the expectation with respect to the posterior ⇡
⌘

(✓ | d). ⇧
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11.2. Binomial distribution

Proof. The statements follow directly from the proof given above with u
1

= y +
↵+ k.

Remark 11.2.1. The normalisation constant p
⌘

(;) can be retrieved from p
⌘

(d)
by taking y = n = 0, that is, the normalisation constant can also be expressed as
a hypergeometric function. Consequently, the localised prior can be viewed as a
partially conjugate prior for the binomial distribution by which we mean that the
prior and posterior are of the same form, but that only some of its parameters need
updating. More specifically, to update the prior to a posterior, only the exponents
of ✓ and (1 � ✓) need to be changed, and, subsequently, one of the upper and the
lower terms of the hypergeometric function

2

F
1

. ⇧

Proof. The definition of the normalisation constant of the prior and Eq. (11.2.5)
implies that

p
⌘

(;) =
Z

✓↵�1(1� ✓)��1(1� ✓[2� 1

✓0
])�(↵+�)d✓, (11.2.9)

= B(↵,�)
2

F
1

(↵,↵+ � ; ↵+ � ; 2� 1

✓0
), (11.2.10)

which should su�ce for the proof. Note that one of the upper and the lower term of
the hypergeometric function are the same, which implies that it can be simplified.
Indeed, by Eq. (15.4.6) of Olver et al. (2010, p. 386), or just the definition of
Gauss’ hypergeometric function, we have

2

F
1

(↵,↵+ � ; ↵+ � ; 2� 1

✓0
) = (1� [2� 1

✓0
])�↵ = ( 1�✓0

✓0
)�↵, (11.2.11)

which completes the proof.

Corollary 11.2.2 (Min-sided prior, marginal likelihood, posterior and its char-
acterisation). By construction, the prior associated to the min-sided hypothesis
H� : ✓ 2 (0, ✓

0

) is

⇡(�)

⌘

(✓) =
( 1�✓0

✓0
)↵

B( 1
2

; ↵,�)
✓↵�1(1� ✓)��1(1� ✓[2� 1

✓0
])�(↵+�)1

(0,✓0]
(✓), (11.2.12)

where B( 1
2

; ↵,�) is the incomplete beta integral evaluated at a half. The min-sided
marginal likelihood is

p(�)

⌘

(d) =
✓y
0

(1� ✓
0

)↵

B( 1
2

; ↵,�)(y + ↵)

✓

n

y

◆

(11.2.13)

⇥AF
1

(y + ↵ ; 1� � � n+ y,↵+ � ; y + ↵+ 1 ; ✓
0

, 2✓
0

� 1),

where

AF
1

(u ; v
1

, v
2

; w ; x, y) =
1
X

m=0

1
X

n=0

(u)
m+n

(v
1

)
m

(v
2

)
n

m!n! (w)
m+n

xmyn, (11.2.14)
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is known as Appell’s hypergeometric function of the first kind. As such, the min-
sided posterior is

⇡(�)

⌘

(✓ | d) = y + ↵

✓↵+y

0

✓y+↵�1(1� ✓)n�y+��1(1� [2� 1

✓0
]✓)�(↵+�)1

(0,✓0]
(✓)

.

AF
1

(y + ↵ ; 1� � � n+ y,↵+ � ; y + ↵+ 1 ; ✓
0

, 2✓
0

� 1). (11.2.15)

Lastly, the kth posterior moment is

E(�)

⌘

(✓k | d) = y + ↵

y + ↵+ k
✓k
0

(11.2.16)

⇥AF
1

(y + ↵+ k ; 1� � � n+ y,↵+ � ; y + ↵+ 1 + k ; ✓
0

, 2✓
0

� 1)

AF
1

(y + ↵ ; 1� � � n+ y,↵+ � ; y + ↵+ 1 ; ✓
0

, 2✓
0

� 1)

where E(�)

⌘

(· | d) is the expectation with respect to the min-sided posterior. ⇧

Proof. To simplify matters we write p(�)

⌘

(;) = B( 1
2

; ↵,�)( 1�✓0
✓0

)�↵ for the nor-
malisation constant of the prior. The integral of interest is then of the form

p(�)

⌘

(;)p(�)

⌘

(d) =

✓

n

y

◆

Z

✓0

0

✓u�1(1� ✓)�v1(1� [2� 1

✓0
]✓)�v2d✓, (11.2.17)

where u = y+↵+ k, v
1

= 1�n+ y� �, v
2

= ↵+ �. Using the change of variable
t = ✓/✓

0

, thus,
R

d✓ =
R

✓
0

dt we can rewrite the integral as

p(�)

⌘

(;)p(�)

⌘

(d) =

✓

n

y

◆

✓u
0

Z

1

0

tu�1(1� ✓
0

t)�v1(1� [2✓
0

� 1]t)�v2dt, (11.2.18)

=

✓

n

y

◆

✓u
0

u
AF

1

(u ; v
1

, v
2

; u+ 1 ; ✓
0

, 2✓
0

� 1), (11.2.19)

where the latter equality is an (Euler) integral representation of Appell’s hyperge-
ometric function due to u = y+↵+k being positive, see Eq. (3.211) of Gradshteyn
and Ryzhik (2007, p. 318) and Bailey (1964, p. 77). Entering the terms u, v

1

, v
2

with k = 0 yields the marginal likelihood, and, subsequently, the posterior and
the posterior moments.

Remark 11.2.2. The normalisation constant p
⌘

(;) can be written as an Appell
function AF

1

, which implies that the min-sided localised prior can be thought of
as a partially conjugate prior for the binomial distribution by which we mean that
the prior and posterior are of the same form, but that only some of its parameters
are updated. More specifically, to update the prior, only the exponents of the ✓ and
(1 � ✓) terms need updating. Similarly, only the Pochhammer coe�cients in the
Appell series need to be updated for the normalisation constant of the posterior. ⇧

Proof. By definition of the normalisation constant of the min-sided prior, the
transformation t = ✓

✓0
and Eq. (11.2.19) we have

p(�)

⌘

(;) =
Z

✓0

0

✓↵�1(1� ✓)��1(1� [2� 1

✓0
])�(↵+�)d✓ (11.2.20)

=
✓↵
0

↵
AF

1

(↵ ; 1� �,↵+ � ; ↵+ 1 ; ✓
0

, 2✓
0

� 1). (11.2.21)
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11.2. Binomial distribution

This should su�ce for the statement. As a sanity check we note that the lower
term of this Appell function is the sum of two of its upper terms, that is, ↵+1 =
↵ + � + 1 � �, which allows us to use Eq. (16.16.1) of Olver et al. (2010, p. 414)
resulting in

p(�)

⌘

(;) = ✓

↵

0
↵

[1� (2✓
0

� 1)]�↵

2

F
1

(↵, 1� � ; ↵+ 1 ; ✓0�2✓0+1

1�2✓0+1

), (11.2.22)

= ( 1�✓0
✓0

)↵ 2

�↵

↵

2

F
1

(↵, 1� � ; ↵+ 1 ; 1

2

)
| {z }

B(

1
2 ;↵,�)

, (11.2.23)

due to the relation between the incomplete beta function and Gauss’ hypergeo-
metric function, that is, Eq. (8.17.7) of Olver et al. (2010, p. 183).

Corollary 11.2.3 (Plus-sided prior, marginal likelihood and posterior). By con-
struction the prior associated to the plus-sided hypothesis H

+

: ✓ 2 (✓
0

, 1) is

⇡(+)

⌘

(✓) =
1

p(+)(;)✓
↵�1(1� ✓)��1(1� ✓[2� 1

✓0
])�(↵+�)1

(✓0,1]
(✓), (11.2.24)

where p(+)

⌘

(;) = [B(↵,�)�B( 1
2

; ↵,�)]( 1�✓0
✓0

)�↵ denotes the normalisation constant
of the prior. The plus-sided marginal likelihood is

p(+)

⌘

(d) =

✓

n

y

◆

✓y�1

0

(1� ✓
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)n�y
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⇥AF
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✓0
, 2✓0�1
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As such, the plus-sided posterior is

⇡(+)

⌘
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0
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Lastly, the kth posterior moment is

E(+)
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0
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(11.2.27)

where E(+)

⌘

(· | d) is the expectation with respect to the plus-sided posterior. ⇧

Proof. To simplify matters we write p(+)

⌘

(;) = [B(↵,�)� B( 1
2

; ↵,�)]( 1�✓0
✓0

)�↵ for
the normalisation constant of the prior. With v
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v
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Using the change of variable x = (✓ � ✓
0

)/(1� ✓
0

), thus,
R

d✓ =
R

(1� ✓
0

)dx this
integral is then

p(+)

⌘

(;)p(+)

⌘
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✓

n

y

◆

2�v2✓�v1
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(11.2.30)
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, 2✓0�1
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),

where the latter equality is an (Euler) integral representation of Appell’s hyperge-

ometric function due to w
1

= n� y + � > 0. The normalisation constant p(+)

⌘

(;)
follows from setting n = y = k = 0, the marginal likelihood follows from setting
k = 0.

Corollary 11.2.4 (The two-sided Bayes factor and its relationship to the one-sided
Bayes factors). Let f(d | ✓

0

) =
�

n

y

�

✓y
0

(1�✓
0

)n�y and define the two-sided Bayes fac-

tor as BF
10 ; ⌘
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⌘

(d)

f(d | ✓0) , then this two-sided Bayes factor is a convex combina-
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where p
⌘

(;), p(�)

⌘

(;), p(+)

⌘

(;) are the normalisation constants of the two-sided, min-
sided and plus-sided priors. For the localised prior this implies that
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For symmetric priors, thus, ↵ = � = a, the relationship simplifies to

BF
10 ; a,✓0(d) =

1

2

BF�0 ; a,✓0(d) +
1

2

BF
+0 ; a,✓0(d), (11.2.33)

and this holds for any ✓
0

. ⇧

Proof. Writing ⇡
u

(✓) for the unnormalised (two-sided) prior, that is, ⇡
u

(✓) =
p
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(;)⇡
⌘

(✓) we now have
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dividing both sides by f(d | ✓
0

) now yields the result.
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Corollary 11.2.5 (Sums of Appell functions of the first kind). Note that we have
shown that certain Gauss’ hypergeometric functions can be written as a sum of
two Appell functions of the first kind, that is,

g(u
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2

, v, ✓
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) = B(u
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, u
2

)
2

F
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) (11.2.37)

where

g(u
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✓0
; 2✓0�1

2✓0
)

is the sum of Appell functions of the first kind. ⇧

Proof. The assertion follows from the three calculations given above with u =
u
1

, v
1

= 1 � u
2

, v
2

= v in Eq. (11.2.21) and v
1

= 1 � u
1

, w
1

= u
2

, v
2

= v in
Eq. (11.2.30).

We have shown how to obtain analytic results by using a localised beta prior
on ✓. This prior is related to the so-called generalised beta prime distribution.

Definition 11.2.2 (Generalised beta prime distribution). We say that a random
variable ⇣ has a generalised beta prime distribution and write

⇣ ⇠ genBetaPrime(↵,�, u, v), (11.2.39)

if the density of ⇣ at the outcome z is given by

f
⇣

(z) =
v�↵u

B(↵,�)
|u|z↵u�1

(1 + ( z
v

)u)↵+�

, (11.2.40)

where 0 < z and the parameters ↵,�, v are positive. ⇧

Example 11.2.1 (Localised beta prior and the generalised beta prime distri-
bution). Let ✓ be distributed as a beta distribution B(↵,�) localised at ✓

0

, then
the odds form of ✓, that is, ⇣ = ✓

1�✓

is distributed as a generalised beta prime

distribution ⇣ ⇠ genBetaPrime(↵,�, 1, ✓0
1�✓0

). ⇧

Proof. The result follows from first rewriting the localised beta as
Z

⇡
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and the replacement ✓ = z

1+z

, z
0

= ✓0
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, thus,
R

d✓ =
R

(1 + z)�2dz.
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11.3 Products of generalised beta prime distributions and
the odds ratio

Theorem 11.3.1 (Products of generalised beta prime distributions). Let ⇣
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⇠
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1

) and ⇣
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generalised beta prime distributions with common shape u. The density of the
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equivalent results can also be derived using Kummer’s 24 solutions, thus, Klein’s
4-group. ⇧
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and the first equation of the assertion follows after rearranging the terms in Ĉ.
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A

A not A Row total

B Y
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Y
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Table 11.1: The focus is on the (in)dependence between A and B.

On the other hand, using Eq. (3.197.1) of Gradshteyn and Ryzhik (2007, p. 317)
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and the second equation of the assertion follows after rearranging the terms in Ĉ.
The third and the fourth equation can be derived analogously by considering the
product convolution in terms of f
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f
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)f

⇣1(z1)dz1 instead.

Example 11.3.1 (Odds ratio). Let the data Y be arranged in a 2⇥2 contingency
table, see Table 11.1. When the A assignment is independent on the B assign-
ment, we have P (A,B) = P (A)P (B). If this independence relationship is perfectly
mimicked in the data we have P (Y

11

) = P (Y
.1

)P (Y
1.

). The (sample) odds ratio in
a 2-by-2 contingency table is a measure of deviation of independence and defined
as O = Y11Y22

Y12Y21
.

In a Bayesian setting we are also interested in the implied deviation of inde-
pendence on the population level. For this type of inference we have to (1) assume
a model that specifies how the observed data are related to the unobserved param-
eters, and (2) a prior on the parameter, which allows for probabilistic statements
about the parameter given the data. A general model for the data is Y
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)
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all independent of each other. A computationally convenient
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Analogous to the sample we define the (population) odds ratio as ⌦ = �11
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.
Note that the two ratios are distributed as generalised beta prime distributions
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respectively. As such, ⌦ is distributed according to Eq. (11.3.1). Thus,
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the Odds Ratio

where ↵
i.

denotes the ith row sum, ↵
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the jth column sum and ↵
..
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of the ↵
ij

parameters and where C = �11�22
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Proof. Theorem 11.3.2 below implies that �
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is indeed a generalised beta
prime distribution and the result follows from Theorem 11.3.1.

Theorem 11.3.2 (Ratios of gammas). Let X ⇠ Gam(↵
x

,�
x

) and Y ⇠ Gam(↵
y

,�
y

)

be independent, then Z = X/Y ⇠ genBetaPrime(↵
x

,↵
y

, 1, �

y

�

x

). ⇧

Proof. By the convolution theorem for independent ratios we have f
Z

(z) =
R

yf
X

(zy)f
Y

(y)dy, thus, with C = �

↵

x

x

�(↵

x

)

�

↵

y

y

�(↵

y

)

and ↵
.

= ↵
x

+ ↵
y

we have

f
Z

(z) = C

Z

y(zy)↵x

�1e��

x

zyy↵y

�1e��

y

ydy, (11.3.10)

= Cz↵x

�1

Z

y↵.

�1e�(�

x

z+�

y

)ydy, (11.3.11)

= Cz↵x

�1�(↵
.

)(�
x

z + �
y

)�(↵

.

), (11.3.12)

=
(�y

�

y

)�↵

x

B(↵
x

,↵
y

)
z↵x

�1

h

1 +
z

�
y

/�
x

i�(↵

x

+↵

y

)

, (11.3.13)

which is exactly what we wanted to show.

Corollary 11.3.1 (Analytic posterior for the odds ratio). The analytic posterior
for the odds ratio is Eq. (11.3.9) with ↵

ij

replaced by ↵
ij

+ y
ij

. ⇧

11.4 Concluding remarks

We hope that these analytic results provide further insights to posteriors and
Bayes factors for the test of two proportions, and the 2-by-2 odds ratio.
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Chapter 12

A Tutorial on Bridge Sampling

Abstract

The marginal likelihood plays an important role in many areas of Bayesian
statistics such as parameter estimation, model comparison, and model aver-
aging. In most applications, however, the marginal likelihood is not analyt-
ically tractable and must be approximated using numerical methods. Here
we provide a tutorial on bridge sampling (Bennett, 1976; Meng and Wong,
1996), a reliable and relatively straightforward sampling method that al-
lows researchers to estimate the marginal likelihood for models of varying
complexity. First, we introduce bridge sampling and three related sampling
methods using the beta-binomial model as a running example. We then ap-
ply bridge sampling to estimate the marginal likelihood for the Expectancy
Valence (EV) model, a popular model for reinforcement learning. Our re-
sults indicate that bridge sampling provides accurate estimates for both a
single participant and a hierarchical version of the EV model. We conclude
that bridge sampling is an attractive method for mathematical psychologists
who typically aim to approximate the marginal likelihood for a limited set
of possibly high-dimensional models.

Keywords: Bayes factor, hierarchical model, marginal likelihood, normal-
ising constant, predictive accuracy, reinforcement learning.

12.1 Introduction

Bayesian statistics has become increasingly popular in mathematical psychology
(Andrews and Baguley, 2013; Bayarri et al., 2016; Poirier, 2006; Vanpaemel, 2016;
Verhagen et al., 2015; Wetzels et al., 2016). The Bayesian approach is conceptually

This chapter is published as: Gronau, Q. F., Sarafoglou, A., Matzke, D. M., Ly, A., Boehm,
U., Marsman, M., Leslie, D. S., Forster, J. J., Wagenmakers, E.J., & Steingroever, H. (2017)
A tutorial on bridge sampling. Journal of Mathematical Psychology, 81, 80–91. doi: https://

doi.org/10/1016/j.jmp.2017.09.005 Also available as arXiv preprint, arXiv:1705.01064.
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12. A Tutorial on Bridge Sampling

simple, theoretically coherent, and easily applied to relatively complex problems.
These problems include hierarchical modelling (Matzke et al., 2015a; Matzke and
Wagenmakers, 2009; Rouder and Lu, 2005; Rouder et al., 2005, 2007) or the
comparison of non-nested models (Lee, 2008; Pitt et al., 2002; Shi↵rin et al., 2008).
Three major applications of Bayesian statistics concern parameter estimation,
model comparison, and Bayesian model averaging. In all three areas, the marginal
likelihood –that is, the probability of the observed data given the model of interest–
plays a central role (see also Gelman and Meng, 1998).

First, in parameter estimation, we consider a single model and aim to quantify
the uncertainty for a parameter of interest ✓ after having observed the data d.
This is realised by means of a posterior distribution that can be obtained using
Bayes theorem, as

⇡(✓ | d) = f(d | ✓) ⇡(✓)
R

f(d | ✓) ⇡(✓)d✓ =

likelihood

z }| {

f(d | ✓)
prior

z}|{

⇡(✓)

p(d)
|{z}

marginal likelihood

. (12.1.1)

Here, the marginal likelihood of the data p(d) ensures that the posterior distri-
bution ⇡(✓ | d) is a proper probability density function (pdf) in the sense that
it integrates to one. This illustrates why in parameter estimation the marginal
likelihood is referred to as a normalising constant.

Second, in model comparison, we considerm 2 N number of competing models,
and are interested in the relative plausibility of a particular model M

i

, where
i = 1, 2, . . . ,m, given the prior model probability and the evidence from the data
d (see three special issues on this topic in the Journal of Mathematical Psychology :
Mulder and Wagenmakers, 2016; Myung et al., 2000b; Wagenmakers and Waldorp,
2006a). This relative plausibility is quantified by the so-called posterior model
probability P (M

i

| d) of model M
i

given the data d (Berger and Molina, 2005)

P (M
i

| d) = p(d |M
i

)P (M
i

)
P

m

j=1

p(d |M
j

)P (M
j

)
, (12.1.2)

where p(d |M
j

) denotes the marginal likelihood of model M
j

, and where the de-
nominator is the sum of the marginal likelihood times the prior model probability
of all m models. In model comparison, the marginal likelihood for a specific model
is also referred to as the model evidence (Didelot et al., 2011), the integrated likeli-
hood (Kass and Raftery, 1995), and the predictive likelihood of the model (Gamer-
man and Lopes, 2006, Chapter 7). As a function of the data it is also known as the
predictive probability of the data (Kass and Raftery, 1995), or the prior predictive
density (Ntzoufras, 2009). Note that computationally the marginal likelihood of
Eq. (12.1.2) is the same as the marginal likelihood of Eq. (12.1.1). However, for
the latter equation we dropped the model index because in parameter estimation
we consider only one model.

If only two models M
1

and M
2

are considered, Eq. (12.1.2) can be used to
quantify the relative posterior model plausibility of model M

1

compared to model
M

2

. This relative plausibility is given by the ratio of the posterior probabilities
of both models, and is referred to as the posterior model odds
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P (M
1

| d)
P (M

2

| d)
| {z }

Posterior model odds

=
p(d |M

1

)

p(d |M
2

)
| {z }

BF12(d)

P (M
1

)

P (M
2

)
| {z }

Prior model odds

. (12.1.3)

Eq. (12.1.3) illustrates that the posterior model odds are the product of two factors:
The right most factor is the ratio of the prior probabilities of the models also known
as the prior model odds. The factor in the middle is the ratio of the marginal
likelihoods —the so-called Bayes factor (Etz and Wagenmakers, 2017; Je↵reys,
1961; Ly et al., 2016a, 2016b; Robert, 2016). The Bayes factor plays an important
role in model comparison and is referred to as the “standard Bayesian solution to
the hypothesis testing and model selection problems” (Lewis and Raftery, 1997,
p. 648) and “the primary tool used in Bayesian inference for hypothesis testing
and model selection” (Berger, 2006, p. 378).

Third, the marginal likelihood plays an important role in Bayesian model av-
eraging (BMA; Hoeting et al., 1999) where aspects of parameter estimation and
model comparison are combined. As in model comparison, BMA considers sev-
eral models; however, it does not aim to identify a single best model. Instead, it
fully acknowledges model uncertainty. Model averaged parameter inference can be
obtained by combining, across all models, the posterior distribution of the param-
eter of interest weighted by each model’s posterior model probability, and as such
depends on the marginal likelihood of the models. This procedure assumes that
the parameter of interest has identical interpretation across the di↵erent models.
Model averaged predictions can be obtained in a similar manner.

A problem that arises in all three areas –parameter estimation, model com-
parison, and BMA– is that an analytical expression of the marginal likelihood can
be obtained only for certain restricted examples. This is a pressing problem in
Bayesian modelling, and in particular in mathematical psychology where models
can be non-linear and equipped with a large number of parameters, especially
when the models are implemented in a hierarchical framework. Such a frame-
work incorporates both commonalities and di↵erences between participants of one
group by assuming that the model parameters of each participant are drawn from
a group-level distribution (for advantages of the Bayesian hierarchical framework
see Ahn et al., 2011; Navarro et al., 2006; Rouder and Lu, 2005; Rouder et al.,
2005, 2008; Scheibehenne and Pachur, 2015; Shi↵rin et al., 2008; Wetzels et al.,
2010b). For instance, consider a four-parameter Bayesian hierarchical model with
four group-level distributions each characterised by two parameters and a group
size of 30 participants; this then results in 30⇥ 4 individual-level parameters and
2 ⇥ 4 group-level parameters for a total of 128 parameters. In sum, even simple
models quickly become complex once hierarchical aspects are introduced and this
frustrates the derivation of the marginal likelihood.

To overcome this problem, several Monte Carlo sampling methods have been
proposed to approximate the marginal likelihood. In this tutorial we focus on
four such methods: the bridge sampling estimator (Bennett, 1976; Chapter 5 of
Chen et al., 2012; Meng and Wong, 1996), and its three commonly used special
cases—the naive Monte Carlo estimator, the importance sampling estimator, and
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the generalised harmonic mean estimator (for alternative methods see Gamerman
and Lopes, 2006, Chapter 7; and for alternative approximation methods relevant
to model comparison and BMA, see Carlin and Chib (1995) and Green (1995).1 As
we will illustrate throughout this tutorial, the bridge sampler is accurate, e�cient,
and relatively straightforward to implement (e.g., DiCiccio et al., 1997; Frühwirth-
Schnatter, 2004; Meng and Wong, 1996).

The goal of this tutorial is to bring the bridge sampling estimator to the at-
tention of mathematical psychologists. We aim to explain this estimator and
facilitate its application by suggesting a step-by-step implementation scheme. To
this end, we first show how bridge sampling and the three special cases can be
used to approximate the marginal likelihood in a simple beta-binomial model.
We begin with the naive Monte Carlo estimator and progressively work our way
up –via the importance sampling estimator and the generalised harmonic mean
estimator– to the most general case considered: the bridge sampling estimator.
This order was chosen such that key concepts are introduced gradually and esti-
mators are of increasing complexity and sophistication. The first three estimators
are included in this tutorial with the sole purpose of facilitating the reader’s un-
derstanding of bridge sampling. In the second part of this tutorial, we outline
how the bridge sampling estimator can be used to derive the marginal likelihood
for the Expectancy Valence (EV; Busemeyer and Stout, 2002) model, a popular,
yet relatively complex reinforcement-learning model for the Iowa gambling task
(Bechara et al., 1994). We apply bridge sampling to both an individual-level and
a hierarchical implementation of the EV model.

Throughout the chapter, we use the software package R to implement the
bridge sampling estimator for the various models. The interested reader is invited
to reproduce our results by downloading the code and all relevant materials from
our Open Science Framework folder at osf.io/f9cq4.

12.2 Four sampling methods to approximate the marginal
likelihood

In this section we outline four standard methods to approximate the marginal like-
lihood. For more detailed explanations and derivations, we recommend Ntzoufras
(2009, Chapter 11) and Gamerman and Lopes (2006, Chapter 7); a comparative
review of the di↵erent sampling methods is presented in DiCiccio et al. (1997).

For concreteness let Y represent the number of correct responses given by a
participant in n test items. We assume that Y follows a binomial distribution
given by

f(d | ✓) =
✓

n

y

◆

✓y(1� ✓)n�y, (12.2.1)

where d refers to the number of successes y and n the number of trials, thus,
y = 0, 1, . . . , n and n 2 N. Data are assumed to be known. For instance, suppose

1The appendix gives a derivation showing that the first three estimators are indeed special
cases of the bridge sampler.
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our participant answered y = 2 items correctly in n = 10 trials and plugging these
observations into Eq. (12.2.1) yields a function of ✓, i.e,

f(d | ✓) =
✓

10

2

◆

✓2(1� ✓)8. (12.2.2)

Such a function is in general known as a likelihood function. The parameter
✓ 2 (0, 1) can be thought of as the participant’s latent ability, which is unknown.
To learn ✓ we assign it a so-called prior distribution ⇡(✓). The prior can be thought
of as our knowledge about the participant’s ability before we observe the data. For
the running example it is computationally convenient to choose a so-called beta
distribution for ✓ with ↵,� > 0, that is,

⇡(✓) = Beta(✓; ↵,�) =
1

B(↵,�)✓
↵�1(1� ✓)��1, (12.2.3)

where B(↵,�) is the beta function defined as B(↵,�) = �(↵)�(�)

�(↵+�)

, and where �(n) =

(n � 1)! whenever n 2 N. To ease the exposition, we set ↵ = � = 1. This choice
corresponds to the uniform prior on ✓, which is depicted as the dotted line in
Fig. 12.1. The uniform prior on ✓ is interpreted as each value of ✓ being equally
probable.2

Using Bayes rule we can update our prior knowledge about the participant’s
latent ability ✓ into a posterior as

⇡(✓ | d) = f(d | ✓)⇡(✓)
p(d)

, (12.2.4)

where the marginal likelihood p(d) is defined as

p(d)
|{z}

Marginal likelihood

=

Z

f(d | ✓)
| {z }

likelihood

⇡(✓)
|{z}

prior

d✓. (12.2.5)

The marginal likelihood makes the posterior for ✓ a proper probability function so
that it integrates to one, which is why p(d) is also referred to as the normalising
constant of the posterior. In general, we cannot perform this integral analytically
and have to resort to numerical methods such as the bridge sampler, instead.

The running example, however, is chosen in such a way that both the posterior
and the target of estimation p(d) =

R

f(d | ✓)⇡(✓)d✓ can be calculated explicitly.
Filling in the binomial likelihood and the beta prior, we see that for the running
example the posterior is proportional to

⇡(✓ | d) / ✓y+↵�1(1� ✓)n�y+��1. (12.2.6)

Note that this expression is of the same form as the beta distribution given in
Eq. (12.2.3). Consequently, the posterior for ✓ is also a beta distribution, namely

⇡(✓ | d) = Beta(✓ | y + ↵, n� y + �) =

�

n

y

�

✓y+↵�1(1� ✓)n�y+��1

p(d)
, (12.2.7)

2But see Ly et al. (2017c).

175



12. A Tutorial on Bridge Sampling
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Figure 12.1: Prior and posterior distribution for the rate parameter ✓ from the
beta-binomial model. The Beta(✓ ; 1, 1) prior on the parameter ✓ is represented
by the dotted line; the Beta(✓ ; 3, 9) posterior distribution is represented by the
solid line and was obtained after having observed y = 2 correct responses out of
n = 10 trials.

see the full curve in Fig. 12.1. The denominator is the marginal likelihood and
given by

p(d) =

Z

1

0

f(d | ✓)⇡(✓) d✓ =
Z

1

0

✓

n

y

◆

✓y+↵�1(1� ✓)n�y+��1d✓ (12.2.8)

=

✓

n

y

◆

B(y + ↵, n� y + �). (12.2.9)

For ↵ = � = 1 and the observations y = 2 out of n = 10, we get

p(d) =

✓

10

2

◆

B(3, 9) = 1

11
⇡ 0.0909, (12.2.10)

the target of the four estimation methods.

12.2.1 Method 1: The naive Monte Carlo estimator of the
marginal likelihood

The simplest method to approximate the marginal likelihood is provided by the
naive Monte Carlo estimator (Hammersley and Handscomb, 1964; Raftery and
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Banfield, 1991). This method uses the standard definition of the marginal likeli-
hood, Eq. (12.2.5), and relies on viewing integrals as sums. The integral implies
that the marginal likelihood p(d) is a weighted average of the likelihood where the
weights correspond to the prior distribution for the parameters. In other words,
the marginal likelihood is the expected value of the likelihood with respect to the
prior, that is,

p(d) = E
prior

[f(d | ✓)]. (12.2.11)

To estimate this population mean, we use a sample mean by sampling, say, K
samples from the prior and subsequently average the values of the integrand, the
likelihood, at these K samples. This yields the naive Monte Carlo estimator p̂

1

(d)

p̂
1

(d) =
1

K

K

X

i=1

f(d | ✓̃
i

)

| {z }

Average likelihood

, ✓̃
i

⇠ ⇡(✓)
| {z }

samples from the

prior distribution

. (12.2.12)

for the target p(d).

12.2.1.1 Running example

To obtain the naive Monte Carlo estimate of the marginal likelihood in our running
example, we need K samples from the Beta(✓ ; 1, 1) prior distribution for ✓. For
illustrative purposes, we limit the number of samples toK = 12 whereas in practice
one should take K to be very large. To do so in R, we use the command

priorSamples <- rbeta(n=12, shape=1, shape=1)

and we obtained the following samples

{✓̃
1

, ✓̃
2

, . . . , ✓̃
12

} = {0.58, 0.76, 0.03, 0.93, 0.27, 0.97, 0.45, 0.46, 0.18, 0.64, 0.06, 0.15}.

We use the tilde to make explicit that these values for ✓ are sampled. All sampled
values are represented by the grey dots in Fig. 12.2. Following Eq. (12.2.12), the
next step is to evaluate the likelihood, Eq. (12.2.1), at each sampled value ✓̃

i

,
weight these values by 1/K, and sum them to obtain the average likelihood p̂

1

(d),
thus,

p̂
1

(d) =
1

12

12

X

i=1

f(d | ✓̃
i

) =
1

12

12

X

i=1

✓

n

y

◆

✓̃y
i

(1� ✓̃
i

)n�y, (12.2.13)

=
1

12

✓

10

2

◆

(0.582(1� 0.58)8 + . . .+ 0.152(1� 0.15)8), (12.2.14)

= 0.0945, (12.2.15)

where in the second line we filled in y = 2 and n = 10. To evaluate the likeli-
hood for the first posterior sample ✓̃

1

= 0.58 we use the command dbinom(x=2,

size=10, prob=0.58), while the estimate p̂
1

(d) is obtained from the command
1/12*sum(dbinom(x=2, size=10, prob=priorSamples)) in R.
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Figure 12.2: Illustration of the naive Monte Carlo estimator for the beta-binomial
example. The dotted line represents the prior distribution and the solid line rep-
resents the posterior distribution that was obtained after having observed y = 2
correct responses out of n = 10 trials. The grey dots represent the K = 12 samples
{✓̃

1

, ✓̃
2

, . . . , ✓̃
12

} randomly drawn from the Beta(✓ ; 1, 1) prior.

12.2.2 Method 2: The importance sampling estimator of the
marginal likelihood

The naive Monte Carlo estimator introduced in the last section performs well if the
prior and posterior distribution have a similar shape and strong overlap. However,
the estimator is unstable if the posterior distribution is peaked relative to the prior
(Gamerman and Lopes, 2006; Ntzoufras, 2009). In such a situation, most of the
sampled values for ✓, say, 98 out ofK = 100, result in likelihood values close to zero
and contribute only minimally to the estimate. This means that those few samples
that result in high likelihood values, say, 2 out of K = 100, dominate the estimate
of the marginal likelihood, which in e↵ect results in high variance of the estimator
(Newton and Raftery, 1994; Pajor, 2016).3 The importance sampling estimator,
on the other hand, overcomes this shortcoming by boosting sampled values in
regions of the parameter space where the integrand of Eq. (12.2.5) is large. This

3The interested reader is referred to Pajor (2016) for a recent improvement on the calcu-
lation of the naive Monte Carlo estimator. The proposed improvement involves trimming the
prior distribution in such a way that regions with low likelihood values are eliminated, thereby
increasing the accuracy and e�ciency of the estimator.
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12.2. Four sampling methods to approximate the marginal likelihood

is realised by using samples from a so-called importance density g
IS

(✓) instead of
the prior distribution. The advantage of sampling from an importance density is
that values for ✓ that result in high likelihood values are sampled most frequently,
whereas values for ✓ with low likelihood values are sampled only rarely.

To derive the importance sampling estimator, the definition of the marginal
likelihood, Eq. (12.2.5), is once again used as the starting point. The trick is to
multiply and divide by the importance density g

IS

(✓) as follows

p(d) =

Z

f(d | ✓) ⇡(✓)d✓ =
Z

f(d | ✓)⇡(✓)gIS(✓)
g
IS

(✓)
d✓ =

Z

f(d | ✓)⇡(✓)
g
IS

(✓)
g
IS

(✓)d✓,

= E
g

IS

(✓)



f(d | ✓)⇡(✓)
g
IS

(✓)

�

. (12.2.16)

In other words, the marginal likelihood is the expected value of the ratio f(d | ✓)⇡(✓)
g

IS

(✓)

with respect to the importance density g
IS

(✓). To estimate the population mean

E
g

IS

(✓)

h

f(d | ✓)⇡(✓)
g

IS

(✓)

i

, we use a sample mean by sampling K samples from g
IS

(✓)

and subsequently average the values of the integrand at these K samples. This
yields the importance estimator p̂

2

(d)

p̂
2

(d) =
1

K

K

X

i=1

f(d | ✓̃
i

)⇡(✓̃
i

)

g
IS

(✓̃
i

)
| {z }

average adjusted likelihood

, ✓̃
i

⇠ g
IS

(✓).
| {z }

samples from the

importance density

(12.2.17)

Choosing a suitable importance density is crucial and should (1) be easy to eval-
uate; (2) have the same domain as the posterior distribution; (3) closely resemble
the posterior distribution, and (4) have fatter tails than the posterior distribution
(Neal, 2001; Vandekerckhove et al., 2015). The latter criterion ensures that values
in the tails of the distribution cannot misleadingly dominate the estimate (Neal,
2001).4

12.2.2.1 Running example

To obtain the importance sampling estimate of the marginal likelihood for our
running example, we first need to choose an importance density g

IS

(✓). An im-
portance density that fulfils the four above mentioned desiderata is a mixture
between (i) a first rough approximation of the posterior based on the posterior
samples, and (ii) a uniform density across the range of ✓ (Vandekerckhove et al.,
2015).

4To illustrate the need for an importance density with fatter tails than the posterior dis-
tribution, imagine you sample from the tail region of an importance density with thinner tails.
In this case, the numerator in Eq. (12.2.17) would be substantially larger than the denomina-
tor resulting in a very large ratio. Since this specific ratio is only one component of the sum
displayed in Eq. (12.2.17), this component would dominate the importance sampling estimate.
Hence, thinner tails of the importance density run the risk of producing unstable estimates across
repeated computations. In fact, the estimator may have infinite variance (e.g., Ionides, 2008;
Owen and Zhou, 2000).
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The rough approximation of the posterior leads to an importance density that
closely resemble the posterior distribution, while the uniform distribution secures
that the importance density has the same range as posterior. By mixing these two
distributions we get an importance sampler that has thick enough tails. For the
rough approximation we use a beta distribution, because we can sample from it
easily.

The relative impact of the uniform density is quantified by a mixture weight �
that ranges between 0 and 1. The larger �, the higher the influence of the uniform
density resulting in a less peaked distribution with thick tails. If � = 1, the
importance density simplifies to the uniform distribution on [0, 1],5 and if � = 0
the importance density simplifies to the rough first approximation to the posterior
distribution.

First, we have to sample K = 12 samples from the posterior distribution. Pos-
terior samples can be obtained without knowing the normalising constant p(d)
using so-called Markov chain Monte Carlo (MCMC) methods that are made ac-
cessible through software packages such as WinBUGS, JAGS and Stan. These
MCMC methods exploit the fact that the posterior is known up to a constant
whenever the observations are given, the likelihood is chosen, and a prior is spec-
ified, see for instance Ntzoufras (2009) and Robert (2015) for an introduction.

For the running example, however, we do not need WinBUGS, JAGS or Stan,
as we can generate posterior samples directly in R. Recall that for the data at hand,
the posterior distribution is proportional to the beta distribution Beta(✓ ; 3, 9) and
to obtain, say, K = 12 posterior samples we use the R command rbeta(n=12,

shape1=3, shape1=9), which for us resulted in

{✓̊
1

, ✓̊
2

, . . . , ✓̊
12

} ={0.22, 0.16, 0.09, 0.35, 0.06, 0.27, 0.26, 0.41, 0.20, 0.43, 0.21, 0.12}.

We use ✓̊
i

to refer to the ith sample from the posterior distribution to distinguish
it from the previously used ✓̃

i

—the ith sample from a distribution other than the
posterior distribution, such as a prior distribution or an importance density.

Second, as a first approximation to the posterior we use a beta distribution
fitted to these posterior samples using the methods of moments. Recall that a beta
distributed random variable X ⇠ Beta(↵,�) has a mean of E(X) = ↵/(↵+�) and

a variance of V (X) = ↵�/[(↵+�)2(↵+�+1)]. Filling in the mean ¯̊✓ = 0.232 and
variance of s2

˚

✓

= 0.014 of our posterior sample {✓̊
1

, . . . , ✓̊
12

} and solving for ↵ and
�, we retrieve the parameters

↵̂ = ¯̊✓
⇣

¯̊✓(1� ¯̊✓)

s2
˚

✓

� 1
⌘

= 0.232
⇣0.232(1� 0.232)

0.0142
� 1
⌘

= 2.673,

�̂ = (1� ¯̊✓)
⇣

¯̊✓(1� ¯̊✓)

s2
˚

✓

� 1
⌘

= (1� 0.232)
⇣0.232(1� 0.232)

0.0142
� 1
⌘

= 8.865.

5In our running example, the importance sampling estimator then reduces to the naive Monte
Carlo estimator.
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12.2. Four sampling methods to approximate the marginal likelihood

As such, we use the beta distribution B(✓ ; 2.673, 8.865) as the first component in
the importance sampler.

Third, we choose a mixture weight. With a mixture weight of � = 0.30 on
the uniform component –a choice that was made to ensure that, visually, the
tails of the importance density are clearly thicker than the tails of the posterior
distribution– we obtain the following importance density

�Beta(✓; 1, 1) + (1� �)Beta(✓; ↵̂, �̂) = .3 + .7 Beta(✓; 2.673, 8.865). (12.2.18)

Note that the importance distribution is a mixture of the prior and the fitted beta
distribution, both from which we can easily draw samples from. This importance
density is represented by the dashed line in Fig. 12.3. The figure also shows the
posterior distribution (solid line). As is evident from the figure, the beta mixture
importance density resembles the posterior distribution, but has fatter tails.

In general, it is advised to choose the mixture weight on the uniform component
� small enough to make the estimator e�cient, yet large enough to produce fat
tails to stabilise the estimator. A suitable mixture weight can be realised by
gradually decreasing the mixture weight and investigating whether stability is
still guaranteed (i.e., robustness analysis).

Fourth, to draw one sample from the importance density we first draw a dummy
variable Z that takes on the value 1 with 30% chance and 0 otherwise. If Z = 1
we draw from the uniform distribution, otherwise we draw from the fitted beta
distribution. For K = 12 the R code simplifies to

K <- 12

numFittedBeta <- rbinom(n=1, size=K, prob=0.3)

postSamples <- c(rbeta(n=numFittedBeta, shape1=2.673, shape2=8.865),

rbeta(n=K-numFittedBeta, shape1=1, shape2=1))

which for us resulted in

{✓̃
1

, ✓̃
2

, . . . , ✓̃
12

} ={0.11, 0.07, 0.33, 0.25, 0.41, 0.39, 0.25, 0.13, 0.64, 0.26, 0.74, 0.92}.

These samples are represented by the grey dots in Fig. 12.3. The final step is to
compute the average adjusted likelihood, i.e., f(d | ✓)⇡(✓)

g

IS

(✓)

, at the K = 12 samples.
This yields the following importance sampling estimate for the marginal likelihood

p̂
2

(d) =
1

12

12

X

i=1

f(d | ✓̃
i

) ⇡(✓̃
i

)

.3 + .7 Beta(✓̃
i

; 2.673, 8.865)

=
1

12

 

�

10

2

�

0.112(1� 0.11)8 ⇥ 1

.3 + .7 Beta(0.11; 2.673, 8.865)
+ . . .+

�

10

2

�

0.922(1� 0.92)8 ⇥ 1

.3 + .7 Beta(0.92; 2.673, 8.865)

!

=
1

12

✓

10

2

◆

(0.0021 + . . .+ 4.7⇥ 10�9)

= 0.0829. (12.2.19)

where the .3 in the numerator is multiplied with the density of the prior, which
is one for every ✓. To evaluate the density of the beta density at the first value
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Figure 12.3: Illustration of the importance sampling estimator for the beta-
binomial model. The dashed line represents our beta mixture importance density
and the solid grey line represents the posterior distribution that was obtained after
having observed y = 2 correct responses out of n = 10 trials. The grey dots repre-
sent the K = 12 samples {✓̃

1

, ✓̃
2

, . . . , ✓̃
12

} randomly drawn from our beta mixture
importance density.

of the importance density, say, ✓̃
i

= 0.11 we use the command dbeta(x=0.11,

shape1=2.673, shape2=8.865) in R.

12.2.3 Method 3: The generalised harmonic mean estimator of
the marginal likelihood

Just as the importance sampling estimator, the generalised harmonic mean estima-
tor focuses on regions of the parameter space where the integrand of Eq. (12.2.5)
is large by using an importance density g

IS

(✓) (Gelfand and Dey, 1994).6 How-
ever, in contrast to the importance sampling estimator, the generalised harmonic
mean estimator requires an importance density with thinner tails for an analogous
reason as in importance sampling.

To derive the generalised harmonic mean estimator, also known as recip-
rocal importance sampling estimator (Frühwirth-Schnatter, 2004), we integrate

6Note that the generalised harmonic mean estimator is a more stable version of the harmonic
mean estimator (Newton and Raftery, 1994). A problem of the harmonic mean estimator is that
it is dominated by the samples that have small likelihood values.
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1/p(d) = ⇡(✓ | d)
f(d | ✓)⇡(✓) with respect to a proposal density g

IS

(✓) that integrates to
one, that is,

1

p(d)
=

Z

1

p(d)
g
IS

(✓)d✓ =

Z

⇡(✓ | d)
f(d | ✓)⇡(✓)gIS(✓)d✓ =

Z

g
IS

(✓)

f(d | ✓)⇡(✓)⇡(✓ | d)d✓

= E
post



g
IS

(✓)

f(d | ✓)⇡(✓)

�

, (12.2.20)

which in turn leads to

p(d) =

✓

E
post



g
IS

(✓)

f(d | ✓)⇡(✓)

�◆�1

. (12.2.21)

In other words, the reciprocal of the marginal likelihood is the expected value of
the ratio g

IS

(✓)

f(d | ✓)⇡(✓) with respect to the posterior. To estimate the population mean

E
post

h

g

IS

(✓)

f(d | ✓)⇡(✓)

i

, we use a sample mean by samplingK samples from the posterior

and subsequently average the values of the integrand at these K samples. This
yields the generalised harmonic mean estimator p̂

3

(d) (Gelfand and Dey, 1994),
where

p̂
3

(d) =

0

B

B

B

B

@

1

K

K

X

j=1

importance density

z }| {

g
IS

(✓̊
j

)

f(d | ✓̊
j

)
| {z }

likelihood

⇡(✓̊
j

)
| {z }

prior

1

C

C

C

C

A

�1

, ✓̊
j

⇠ ⇡(✓ | d)
| {z }

samples from the

posterior distribution

. (12.2.22)

Note that the generalised harmonic mean estimator –in contrast to the importance
sampling estimator– evaluates samples from the posterior distribution. Conse-
quently, the sum in Eq. (12.2.22) will contain relatively few terms with ✓̊

j

coming
from the tail of the posterior. To avoid having the estimator p̂

3

(d) miss out on the
contribution of the integrand for ✓ from the tail, we require that for these values
of ✓ that the ratio g

IS

(✓)

f(d | ✓)⇡(✓) itself is already small. This condition implies that

g
IS

(✓) < f(d | ✓)⇡(✓) / ⇡(✓ | d) for ✓ in the tail of the posterior.
Thus, an importance density for the generalised harmonic mean estimator

should (1) have thinner tails than the posterior distribution (Newton and Raftery,
1994; DiCiccio et al., 1997), (2) be easy to evaluate, (3) have the same domain as
the posterior distribution, and (4) closely resemble the posterior distribution.

12.2.3.1 Running example

To obtain a generalised harmonic mean estimate of p(d), we need to choose a
suitable importance density. The trick is to transform the parameters onto the real
line and use a normal distribution fitted to the posterior samples as the importance
density. First, we draw K = 12 samples from the posterior distribution. Reusing
the samples from the last section, we obtain

{✓̊
1

, ✓̊
2

, . . . , ✓̊
12

} ={0.22, 0.16, 0.09, 0.35, 0.06, 0.27, 0.26, 0.41, 0.20, 0.43, 0.21, 0.12}.
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Second, to fit a normal distribution to the posterior samples, we probit transform
the posterior samples ⇠̊

j

= ��1(✓̊
j

) that range over the entire real line.7 For
the first sample, we use the command qnorm(0.22) in R. Applying this to our
particular posterior samples ✓̊

1

, . . . , ✓̊
12

yields

{⇠̊
1

, ⇠̊
2

, . . . , ⇠̊
12

} ={�0.77,�0.99,�1.34,�0.39,�1.55,�0.61,�0.64,�0.23,

� 0.84,�0.18,�0.81,�1.17}.

These probit-transformed samples are represented by the grey dots in Fig. 12.4.
Third, we search for the normal distribution that provides the best fit to the

probit-transformed posterior samples ⇠̊
j

. Using the method of moments, we obtain
µ̂ = �0.793 and �̂ = 0.423. Note that the choice of a normal importance density
justifies step 2; the probit transformation (or an equivalent transformation) was
required to match the range of the posterior distribution to the one of the normal
distribution.

Finally, as importance density we choose a normal distribution with mean
µ = �0.793 and standard deviation � = 0.423/1.5. The additional division by 1.5
ensures that the importance density has thinner tails than the probit-transformed
posterior distribution (for a discussion of alternative importance densities see Di-
Ciccio et al., 1997). We decided to divide �̂ by 1.5 for illustrative purposes only.
Our importance density is displayed in Fig. 12.4 (dashed line) together with the
probit-transformed posterior distribution (solid line).

A generalised harmonic mean estimate can now be obtained using either the
original posterior samples ✓̊

j

or the probit-transformed samples ⇠̊
j

. Here we choose
for the latter option (see also Overstall and Forster, 2010). Incorporating our
specific importance density and a correction for using the probit-transformation,
Eq. (12.2.22) becomes8

p̂
3

(d) =

0

B

B

B

B

B

B

B

@

1

K

K

X

j=1

importance density

z }| {

1

�̂
�
⇣ ⇠̊

j

� µ̂

�̂

⌘

f
⇣

d |�
⇣

⇠̊
j

)
⌘

| {z }

likelihood

�(⇠̊
j

)
| {z }

prior

1

C

C

C

C

C

C

C

A

�1

, ⇠̊
j

= ��1(✓̊
j

) and ✓̊
j

⇠ ⇡(✓ | d).
| {z }

probit-transformed samples

from the posterior distribution

(12.2.23)

Note that �(⇠̊
j

) = ✓̊
j

, thus, to evaluate the likelihood, we can simply use the

untransformed sample ✓̊
j

, but to evaluate the importance density and the prior,

we have to use the probit-transformed samples ⇠̊
j

instead. For the particular

samples ⇠̊
1

, ⇠̊
2

, . . . , ⇠̊
12

obtained above, we can now use the generalised harmonic

7Other transformation are conceivable (e.g., logit transformation).
8A detailed explanation is provided in the appendix. Note that using the original posterior

samples ✓̊
j

would involve transforming the importance density (e.g., the normal density on ⇠) to
the (0, 1) interval.
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Figure 12.4: Illustration of the generalised harmonic mean estimator for the beta-
binomial model. The solid line represents the probit-transformed Beta(✓ ; 3, 9)
posterior distribution that was obtained after having observed y = 2 correct re-
sponses out of n = 10 trials, and the dashed line represents the importance density
N (⇠ ; µ = �0.793,� = 0.423/1.5). The grey dots represent the K = 12 probit-
transformed posterior samples.

mean estimator to calculate the following estimate for p(d)

p̂
3

(d) =

0

@

1

12

12

X

j=1

1

0.423/1.5

�
⇣

˚

⇠

j

+0.793

0.423/1.5

⌘

f(d |�(⇠̊
j

))�(⇠̊
j

)

1

A

�1

(12.2.24)

=

0

@

1

12

0

@

1

0.423/1.5

�
⇣

�0.77+0.793

0.423/1.5

⌘

�

10

2

�

0.222(1� 0.22)8 �(�0.77)
+ . . .+

1

0.423/1.5

�
⇣

�1.17+0.793

0.423/1.5

⌘

�

10

2

�

0.122(1� 0.12)8 �(�1.17)

1

A

1

A

�1

=

 

1

12

1
�

10

2

� (716.81 + . . .+ 556.38)

!�1

= 0.092.

For the first posterior sample ⇠̊
1

= �0.77, thus, ✓̊
1

= 0.22 in the original param-
eterisation, we evaluate the numerator using the R command dnorm(x=-0.77,

mean=0.793, sd=0.423/1.5), the prior using dnorm(x=-0.77), and the likeli-
hood using dbinom(x=2, size=10, prob=0.22).
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12.2.4 Method 4: The bridge sampling estimator of the
marginal likelihood

As became evident in the last two sections, both the importance sampling esti-
mator and the generalised harmonic mean estimator for p(d) impose strong con-
straints on the tail behaviour of the importance density relative to the posterior
distribution. These conditions make the choice for a suitable importance density
complicated, especially when ✓ is high dimensional. The bridge sampler, on the
other hand, alleviates such requirements (e.g., Frühwirth-Schnatter, 2004).

The bridge sampler was originally developed to directly estimate the Bayes
factor, that is, the ratio of the marginal likelihoods of two models M

1

and M
2

(e.g., Je↵reys, 1961; Kass and Raftery, 1995). However, in this tutorial, we use a
version of bridge sampling that allows us to approximate the marginal likelihood
of a single model (for an earlier application see for example Overstall and Forster,
2010). This version is based on the following identity

1 =

R

f(d | ✓)⇡(✓)h(✓)g(✓)d✓
R

f(d | ✓)⇡(✓)h(✓)g(✓)d✓ , (12.2.25)

where g(✓) is known as the proposal distribution and h(✓) the so-called bridge
function. Multiplying both sides of Eq. (12.2.25) by the marginal likelihood p(d)
leads to

p(d) =

R

f(d | ✓)⇡(✓)h(✓)g(✓)d✓
Z

f(d | ✓)⇡(✓)
p(d)

h(✓)g(✓)d✓
=

R

f(d | ✓)⇡(✓)h(✓)
h(✓)g(✓)

proposal

distribution

z}|{

g(✓) d✓

⇡(✓ | d)
| {z }

posterior

distribution

d✓

=
E
g(✓)

[f(d | ✓)⇡(✓)h(✓)]
E
post

[h(✓)g(✓)]
. (12.2.26)

Hence, the marginal likelihood is the expected value E
g(✓)

[f(d | ✓)⇡(✓)h(✓)] with
respect to the proposal density g(✓) divided by the expected value E

post

[h(✓)g(✓)]
with respect to the posterior distribution. To estimate the population mean of the
numerator, we use a sample mean by generating K

2

samples from the proposal
distribution and average the integrand f(d | ✓)⇡(✓)h(✓) at these samples. Anal-
ogously, to estimate the population mean of the denominator, we use a sample
mean by generating K

1

samples from the posterior distribution and average the
integrand h(✓)g(✓) at these samples. This yields the bridge sampling estimator
p̂(d)

p̂(d) =

1

K2

K2
P

i=1

f(d | ✓̃
i

)⇡(✓̃
i

)h(✓̃
i

)

1

K1

K1
P

j=1

h(✓̊
j

)g(✓̊
j

)

, ✓̃
i

⇠ g(✓)
| {z }

samples from the

proposal distribution

, ✓̊
j

⇠ ⇡(✓ | d).
| {z }

samples from the

posterior distribution

(12.2.27)
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Conceptually, the proposal distribution is similar to an importance density, it
should resemble the posterior distribution, and should have su�cient overlap with
the posterior distribution. In fact, we follow Overstall and Forster (2010) and
use a normal distribution fitted to probit-transformed samples as the proposal
distribution as in the case for the generalised harmonic mean estimator. In our
experience, this choice for the proposal distribution works well for a wide range of
scenarios. However, this proposal distribution might produce unstable estimates
in case of high-dimensional posterior distributions that clearly do not follow a
multivariate normal distribution. In such cases, it might be advisable to consider
more sophisticated versions of bridge sampling (e.g., Frühwirth-Schnatter, 2004;
Meng and Schilling, 2002; Wang and Meng, 2016).

12.2.4.1 Choosing the optimal bridge function

In this tutorial we use the bridge function from Meng and Wong (1996) defined as

h(✓) = C
1

q
1

f(d | ✓)⇡(✓) + q
2

p(d)g(✓)
, (12.2.28)

where q
1

= K1
K2+K1

, q
2

= K2
K2+K1

, and C a constant; its particular value is not
required because h(✓) appears in both the numerator and the denominator of
Eq. (12.2.27) and therefore cancels. This particular bridge function is referred to
as the “optimal bridge function” because Meng and Wong (1996, p. 837) proved
that it minimises the relative mean-squared error, Eq. (12.2.34).

Eq. (12.2.28) shows that the optimal bridge function depends on the marginal
likelihood p(d) which is the very entity we want to estimate. We can resolve this
issue by applying an iterative scheme that updates an initial guess of the marginal
likelihood until the estimate of the marginal likelihood has converged according
to a predefined tolerance level. To do so, we insert the expression for the optimal
bridge function, Eq. (12.2.28), into Eq. (12.2.27) as was discussed in Meng and
Wong (1996). The formula to approximate the marginal likelihood on iteration
t+ 1 is then specified as

p̂(d)(t+1) =

1

K2

K2
X

i=1

f(d | ˜✓
i

)⇡(

˜

✓

i

)

q1f(d | ˜✓
i

)⇡(

˜

✓

i

)+q2p̂(d)
(t)

g(

˜

✓

i

)

1

K1

K1
X

j=1

g(

˚

✓

j

)

q1f(d |˚✓
j

)⇡(

˚

✓

j

)+q2p̂(d)
(t)

g(

˚

✓

j

)

, (12.2.29)

✓̃
i

⇠ g(✓)
| {z }

samples from the

proposal distribution

, ✓̊
j

⇠ ⇡(✓ | d)
| {z }

samples from the

posterior distribution

, (12.2.30)

where p̂(d)(t) denotes the estimate of the marginal likelihood on iteration t of
the iterative scheme. Note that Eq. (12.2.29) illustrates why bridge sampling is
robust to the tail behaviour of the proposal distribution relative to the posterior
distribution; the di↵erence to the importance sampling and generalised harmonic
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mean estimator is that, in the case of the bridge sampling estimator, samples from
the tail region cannot inflate individual summation terms and thus dominate the
estimate. This is because both sums displayed in Eq. (12.2.29) involve a ratio that
has a sum in the denominator. Nevertheless it should be noted that the posterior
distribution and the proposal distribution need to have su�cient overlap. In the
extreme scenario of no overlap the bridge sampling estimator is not defined because
both sums of Eq. (12.2.29) would be zero.

To simplify matters, we multiply the numerator of the right side of Eq. (12.2.29)

by 1/g(

˜

✓

i

)

1/g(

˜

✓

i

)

, the denominator by 1/g(

˚

✓

j

)

1/g(

˚

✓

j

)

, and define l
1,j

:= f(d |˚✓
j

)⇡(

˚

✓

j

)

g(

˚

✓

j

)

with sam-

ples ✓̊
j

from the posterior as in the generalised harmonic mean estimator, and

l
2,i

:= f(d | ˜✓
i

)⇡(

˜

✓

i

)

g(

˜

✓

i

)

with samples ✓̃
i

from the proposal distribution as in importance

sampling. Once we calculated the values l
1,j

and l
2,i

for j = 1, 2, . . . ,K
1

and
i = 1, 2, . . . ,K

2

respectively, we obtain the formula for the iterative scheme of the
bridge sampling estimator p̂

4

(d)(t+1) at iteration t+ 1 (Meng and Wong, 1996, p.
837), that is,

p̂
4

(d)(t+1) =

1

K2

K2
X
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i
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=

1

K2

K2
X

i=1

l2,i

q1l2,i+q2p̂4(d)
(t)

1

K1

K1
X

j=1

1

q1l1,j+q2p̂4(d)
(t)

, ✓̃
i

⇠ g(✓)
| {z }

samples from the

proposal distribution

, ✓̊
j

⇠ ⇡(✓ | d)
| {z }

samples from the

posterior distribution

.

Eq. (12.2.31) suggests that, in order to obtain a bridge sampling estimate of the
marginal likelihood, a number of requirements need to be fulfilled. First, we need
K

2

samples from the proposal distribution g(✓) and K
1

samples from the posterior
distribution ⇡(✓ | d). Second, for all K

2

samples from the proposal distribution, we
evaluate l

2,i

. This involves obtaining the value of the unnormalised posterior (i.e.,
the product of the likelihood times the prior) and of the proposal distribution
for all samples. Third, we evaluate l

1,j

for all K
1

samples from the posterior
distribution. This is analogous to evaluating l

2,i

. Fourth, we need to choose the
number of samples K

1

and K
2

for the constants q
1

and q
2

. Fifth, we need an initial
guess of the marginal likelihood p̂

4

(d). Since some of these five requirements can
be obtained easier than others, we will point out possible challenges.

A first challenge is that using a suitable proposal distribution may involve
transforming the posterior samples. Consequently, we have to determine how
the transformation a↵ects the definition of the bridge sampling estimator for the
marginal likelihood, Eq. (12.2.31).

A second challenge is how to use theK
1

samples from the posterior distribution.
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12.2. Four sampling methods to approximate the marginal likelihood

One option is to use all K
1

samples for both fitting the proposal distribution and
for computing the numerator of the bridge estimator. However, Overstall and
Forster (2010) showed that such a procedure may result in an underestimation
of the marginal likelihood. To obtain more reliable estimates they propose to
divide the posterior samples into two parts; the first part is used to obtain the
best-fitting proposal distribution in the numerator of p̂(d), and the second part
is used to compute the bridge sampling estimate, thus, the denominator of p̂(d).
Throughout this tutorial, we use two equally large parts. In the remainder we
therefore state that we draw 2K

1

samples from the posterior distribution. Out of
these 2K

1

posterior samples, we use samples with even index numbers for the first
part; posterior samples with odd index numbers constitute the second part.

To summarise, the discussion of the requirements and challenges encountered
in bridge sampling illustrated that the bridge sampling estimator imposes less
strict requirements on the proposal distribution than the importance sampling
and generalised harmonic mean estimator and allows for an almost automatic
application due to the default choice of the bridge function, see also the R package
bridgesampling by the first author.

12.2.4.2 Running example

2. Choose proposal distribution	

3. If necessary,  
    transform posterior samples	

9. Run iterative scheme (Eq. 12.2.31) 	

First batch of K1 samples 	 Second batch of K1 samples 	
	

5. Draw K2 samples from fiGed 
    proposal distribution	

7. If necessary,  
    transform posterior samples	

4. Fit proposal distribution to 
    posterior samples	

1. Draw 2K1 samples from  
    posterior distribution	

8. Calculate l1,j for all K1 samples 
    from the posterior distribution	

6. Calculate l2,i for all K2 samples  
    from the proposal distribution	

Figure 12.5: Schematic illustration of the steps involved in constructing a bridge
sampling estimator for the marginal likelihood.

To obtain a bridge sampling estimate of the marginal likelihood in the beta-
binomial example, we follow the eight steps illustrated in Fig. 12.5:

1. We draw 2K
1

= 24 samples from the Beta(✓ ; 3, 9) posterior distribution for
✓.
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Using the R command rbeta(n=24, shape1=3, shape2=9), we obtained
the following sample of 24 values

{✓̊
1

, ✓̊
2

, . . . , ✓̊
24

} ={0.22, 0.16, 0.09, 0.35, 0.06, 0.27, 0.26, 0.41, 0.20, 0.43,
0.21, 0.12, 0.15, 0.21, 0.24, 0.18, 0.12, 0.22, 0.15, 0.22,

0.23, 0.26, 0.29, 0.28}.

Note that the first 12 samples equal the ones used in the last section.

2. We choose a proposal distribution.
Here we opt for an approach that can be easily generalised to models with
multiple parameters and select a normal distribution as the proposal distri-
bution g(✓).9

3. We transform the first batch of K
1

posterior samples.
Since we use a normal proposal distribution, we have to transform the poste-
rior samples from the rate scale to the real line so that the range of the poste-
rior distribution matches the range of the proposal distribution. This can be
achieved by probit-transforming the posterior samples, that is, ⇠̊

j

= ��1(✓̊
j

)
with j 2 {2, 4, . . . , 24}. Using the R command qnorm(p=firstBatch) we
obtained

{⇠̊
2

, ⇠̊
4

, . . . , ⇠̊
24

} ={�0.99,�0.39,�0.61,�0.23,�0.18,�1.17,�0.81,

� 0.92,�0.77,�0.77,�0.64,�0.58}.

4. We fit the proposal distribution to the first batch of K
1

probit-transformed
posterior samples.
For the proposal distribution we use a normal distribution fitted with the
method of moments. After probit-transforming the first batch of K

1

and
applying the R commands mean and sd, we retrieve µ̂ = �0.672 and �̂ =
0.298. We therefore use g(⇠) = 1

0.298

�( ⇠+0.672

0.298

) as the proposal density.

5. We draw K
2

samples from the proposal distribution.
In R we use the command rnorm(n=12, mean=-0.672, sigma=0.298) to
sample from the fitted normal proposal and obtained

{⇠̃
1

, ⇠̃
2

, . . . , ⇠̃
12

} ={�0.90,�0.55,�1.16,�0.53,�0.45,�0.60,�0.63,�0.48,

� 0.69,�1.20,�0.65,�0.79}.

6. We calculate l
2,i

for all K
2

samples from the proposal distribution.
For this step we evaluate the likelihood and prior at the samples ⇠̃

i

for all
i = 1, 2, . . . ,K

2

. Recall that the prior was specified in the original parame-
terisation ✓, while the samples from the proposal ⇠ range over the real line.
The uniform prior in terms of ✓ implies a standard normal prior in terms of
⇠ due to the change-of-variables rule, see Appendix 12.C.

9There exist several candidates for the proposal distribution. Alternative proposal distri-
butions are, for example, the importance density that we used for the importance sampling
estimator or for the generalised harmonic mean estimator
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12.2. Four sampling methods to approximate the marginal likelihood

As the likelihood function is also specified in terms of the original parameters
✓, we first transform the samples ⇠̃ from the proposal distribution that range
over the real line to the original parameterisation resulting in ✓̃

i

= �(⇠̃).

Thus, to calculate l
2,i

for all i = 1, 2, . . . ,K
2

we evaluate the likelihood with
the sample in the original parameterisation ✓̃

i

, while we use the samples ⇠̃
i

to evaluate the normal proposal density and the prior. This can be done in
R with the functions dbinom and dnorm respectively.

7. We transform the second batch of the K
1

posterior samples.
As in step 2, we use the probit transformation and obtained

{⇠̊
1

, ⇠̊
3

, . . . , ⇠̊
23

} ={�0.77,�1.34,�1.55,�0.64,�0.84,�0.81,

� 1.04,�0.71,�1.17,�1.04,�0.74,�0.55}.

8. We calculate l
1,j

for the second batch of K
1

probit-transformed samples from
the posterior distribution.
This is analogous to step 6. We plug in the probit-transformed samples
⇠̊
j

into the prior and the proposal density in terms of ⇠, while we use the

untransformed samples ✓̊
j

for the likelihood.

9. We run the iterative scheme, Eq. (12.2.31), until our predefined tolerance
criterion is reached.
With l

1,j

and l
2,i

at hand we can now run the iterative scheme. As tolerance
criterion we choose |p̂

4

(d)(t+1) � p̂
4

(d)(t)| /p̂
4

(d)(t+1)  10�10. This requires
an initial guess for the marginal likelihood p̂

4

(d)(0) which we set to 0.10

The simplicity of the beta-binomial model allows us to calculate a bridge
sampling estimate for the p(d) by hand. To determine p̂

4

(d)(t+1) according to
Eq. (12.2.31), we need to calculate the constants q

1

and q
2

. Since K
1

= K
2

= 12,
we obtain q

1

= q
2

= 0.5. In addition, we need to calculate l
2,i

for i = 1, 2, . . . , 12 for
all samples from the fitted normal proposal distribution, and l

1,j

for j = 1, 3, . . . , 23
for the second batch of the probit-transformed samples from the posterior distri-
bution. Here we show how to calculate l

2,1

and l
1,1

using the first sample from the
proposal distribution ⇠̃

1

= �0.9, thus, ✓̃
1

= 0.18, and the posterior distribution,
thus, ✓̊

1

= 0.22, thus, ⇠̊
1

= �0.77, respectively

l
2,1

=
f(d | ✓̃

1

)�(⇠̃
1

)

g(⇠̃
1

)
=

 

�

10

2

�

0.182(1� 0.18)8 · 0.27
1

0.298

�(�0.90+0.672

0.298

)

!

= 0.080,

l
1,1

=
f(d | ✓̊

1

)�(⇠̊
1

)

g(⇠̊
1

)
=

�

10

2

�

0.222(1� 0.22)8 · 0.30
1

0.298

�
��0.77+0.672

0.298

� = 0.070.

10A better initial guess can be obtained from the generalised harmonic mean estimator ex-
plained in the previous section. In our experience, however, the exact choice of the initial value
does not seem to influence the convergence of the bridge sampler much.
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For p̂
4

(d)(t+1), we then get

p̂
4

(d)(t+1) =

1

K2

K2
X

i=1

l
2,i

q
1

l
2,i

+ q
2

p̂
4

(d)(t)

1

K1

K1
X

j=1

1

q
1

l
1,2j�1

+ q
2

p̂
4

(d)(t)

, (12.2.32)

=

1

12

⇣

0.080

0.5·0.080+0.5·p̂4(d)
(t) + . . .+ 0.071

0.5·0.085+0.5·p̂4(d)
(t)

⌘

1

12

⇣

1

0.5·0.070+0.5·p̂4(d)
(t) + . . .+ 1

0.5·0.068+0.5·p̂4(d)
(t)

⌘ . (12.2.33)

Using p̂
4

(d)(0) = 0, we obtain as updated estimate of the marginal likelihood
p̂
4

(d)(1) = 0.091. This iterative procedure has to be repeated until our predefined
tolerance criterion is reached. For our running example, this criterion is reached
after six iterations. We now obtain p̂

4

(d)(6) = 0.0894 as a bridge sampling estimate
of the marginal likelihood p(d).

12.2.5 Interim summary

So far we used the beta-binomial model to illustrate the computation of four dif-
ferent estimators of the marginal likelihood. These four estimators were discussed
in order of increasing sophistication, such that the first three estimators provided
the proper context for understanding the fourth—the bridge sampler. This esti-
mator is the focus in the remainder of this tutorial. The goal of the next sections
is to demonstrate that bridge sampling is particularly suitable to estimate the
marginal likelihood of popular models in mathematical psychology. Importantly,
bridge sampling may be used to obtain accurate estimates of the marginal likeli-
hood of hierarchical models (for a detailed comparison of bridge sampling versus
its special cases see Frühwirth-Schnatter, 2004; Sinharay and Stern, 2005).

12.2.6 Assessing the accuracy of the bridge sampling estimator

In this section we show how to quantify the accuracy of the bridge estimator. A
straightforward approach would be to apply the bridge estimator multiple times
and investigate the variability of the marginal likelihood estimate. In practice,
however, this solution is often impractical due to the substantial computational
burden of obtaining the posterior samples and evaluating the relevant quantities
in the bridge sampling procedure.

Frühwirth-Schnatter (2004) proposed an alternative approach that approxi-
mates the estimator’s expected relative mean-squared error

RE2 =
E[(p̂

4

(d)� p(d))2]

p(d)2
(12.2.34)

The derivation of this approximate relative mean-squared error by Frühwirth-
Schnatter takes into account that the samples from the proposal distribution
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g(✓) are independent, whereas the MCMC samples from the posterior distribu-
tion ⇡(✓ | d) may be autocorrelated. The approximate relative mean-squared error
is given by

dRE
2

=
1

K
2

V
g(✓)

[r
1

(✓)]

E2

g(✓)

[r
1

(✓)]
+
⇢
r2(0)

K
1

V
post

[r
2

(✓)]

E2

post

[r
2

(✓)]
, (12.2.35)

where r
1

(✓) = ⇡(✓ | d)
q1⇡(✓ | d)+q2g(✓)

, r
2

(✓) = g(✓)

q1⇡(✓ | d)+q2g(✓)
, and where V

g(✓)

[r
1

(✓)] =
R

(r
1

(✓)� E[r
1

(✓)])2g(✓)d✓ denotes the variance of r
1

(✓) with respect to the pro-
posal distribution g(✓) (the variance V

post(✓)

[r
2

(✓)] is defined analogously), and
⇢
r2(0) corresponds to the normalised spectral density of the autocorrelated pro-

cess r
2

(✓) at the frequency 0.
In practice, we approximate the unknown variances and expected values by

the corresponding sample variances and means. Hence, for evaluating the variance
and expected value with respect to g(✓), we use the K

2

samples for ✓̃
i

from the
proposal distribution. To evaluate the variance and expected value with respect
to the posterior distribution, we use the second batch of K

1

samples ✓̊
j

from the
posterior distribution which we also use in the iterative scheme for computing the
marginal likelihood. Because the posterior samples are obtained via an MCMC
procedure and are, hence, autocorrelated, the second term in Eq. (12.2.35) is
adjusted by the normalised spectral density (for details see Frühwirth-Schnatter,
2004). The spectral density at frequency zero can be estimated by first fitting
an autoregressive model using the spectrum0.ar() function as implemented in
the coda R package (Plummer et al., 2006). To evaluate the normalised posterior
density which appears in the numerator of r

1

(✓) and the denominator of both
r
1

(✓) and r
2

(✓), we use the bridge sampling estimate as normalising constant.
Note that, under the assumption that the bridge sampling procedure p̂

4

(d) is an
unbiased estimator of the marginal likelihood p(d), the square root of the expected
relative mean-squared error, Eq. (12.2.34), can be interpreted as the coe�cient of
variation (i.e., the ratio of the standard deviation and the mean; Brown, 1998).
In the remainder of this chapter, we report the coe�cient of variation to quantify
the accuracy of the bridge sampling estimator.

12.3 Case study: Bridge sampling for reinforcement
learning models

In this section, we illustrate the computation of the marginal likelihood using
bridge sampling in the context of a published data set (Busemeyer and Stout,
2002) featuring the Expectancy Valence (EV) model—a popular reinforcement
learning model for the Iowa gambling task (IGT; Bechara et al., 1994). We first
introduce the task and the model, and then use bridge sampling to estimate the
marginal likelihood of the EV model implemented in both an individual-level and
a hierarchical Bayesian framework. For the individual-level framework, we com-
pare estimates obtained from bridge sampling to importance sampling estimates
published in Steingroever et al. (2016b). For the hierarchical framework, we com-
pare our results to estimates from the Savage-Dickey density ratio test (Dickey,
1971; Dickey and Lientz, 1970; Wagenmakers et al., 2010; Wetzels et al., 2010a).
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12.3.1 The Iowa gambling task

In this section we describe the IGT (see also Steingroever et al., 2013a, 2013b,
2013c, 2014, 2016a, 2016b). Originally, Bechara et al. (1994) developed the IGT to
distinguish decision-making strategies of patients with lesions to the ventromedial
prefrontal cortex from the ones of healthy controls (see also Bechara et al., 1998,
1999, 2000). During the last decades, the scope of application of the IGT has in-
creased tremendously covering clinical populations with, for example, pathological
gambling tendencies (Cavedini et al., 2002b), obsessive-compulsive disorder (Cave-
dini et al., 2002a), psychopathic tendencies (Blair et al., 2001), and schizophrenia
(Bark et al., 2005; Martino et al., 2007).

The IGT is a card game that requires participants to choose, over several
rounds, cards from four di↵erent decks in order to maximise their long-term net
outcome Bechara et al. (1994, 1997). The four decks di↵er in their payo↵s, and two
of them result in negative long-term outcomes (i.e., the bad decks), whereas the
remaining two decks result in positive long-term outcomes (i.e., the good decks).
After each choice, participants receive feedback on the rewards and losses (if any)
associated with that card, as well as their running tally of net outcomes over
all trials so far. Unbeknownst to the participants, the task (typically) contains
N = 100 trials.

Table 12.1: Summary of the payo↵ scheme of the traditional IGT as developed by
Bechara et al. (1994)

Deck A Deck B Deck C Deck D
Bad deck Bad deck Good deck Good deck
with fre- with infre- with fre- with infre-

quent losses quent losses quent losses quent losses
Reward/trial 100 100 50 50
Number of losses/10 cards 5 1 5 1
Loss/10 cards �1250 �1250 �250 �250
Net outcome/10 cards �250 �250 250 250

A question is whether and to what extent participants eventually learn to
prefer the good decks that allow them to maximise their long-term net outcome.
The good decks are typically labelled as decks C and D, whereas the bad decks
are labelled as decks A and B. Table 12.1 presents a summary of the traditional
payo↵ scheme as developed by Bechara et al. (1994). This table illustrates that
decks A and B yield high constant rewards, but even higher unpredictable losses,
thus, a negative long-term net outcome. Decks C and D, on the other hand, yield
low constant rewards, but even lower unpredictable losses: hence, the long-term
net outcome is positive. In addition to the di↵erent payo↵ magnitudes, the decks
also di↵er in the frequency of losses: decks A and C yield frequent losses, while
decks B and D yield infrequent losses.
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Table 12.2: Example data of chosen decks y
n

and experienced payo↵s x
n

for n = 10
trials.

Trial n 1 2 3 4 5 6 7 8 9 10
y
n

D C B A D C B A B B
x
n

50 50 100 100 50 50 100 100 100 -1250

12.3.2 The Expectancy Valence model

In this section, we describe the EV model (see also Steingroever et al., 2013b, 2014,
2016a, 2016b). Originally proposed by Busemeyer and Stout (2002), the EV model
is arguably the most popular model for the IGT (for references see Steingroever
et al., 2013b, and for alternative IGT models see Ahn et al., 2008; Dai et al., 2015;
Steingroever et al., 2014; Worthy et al., 2013; Worthy and Maddox, 2014).

The model specifies how previous experienced payo↵s a↵ect the participant’s
next choice in the IGT through the interaction of three model parameters ✓ =
(w, a, c) that represent distinct psychological processes. In essence, the partici-
pant’s next choice at trial n + 1 depends on her expected utility for each deck
based on the previous n trials and her willingness to exploit this knowledge. It
is assumed that the deck with the highest expected utility at the trial n has the
largest probability to be chosen in the next trial. The participant’s expected
utilities evolve over time and depend on previously choices yn = (y

1

, y
2

, . . . , y
n

)
through the subsequently observed payo↵s xn = (x

1

, x
2

, . . . , x
n

), such as the ones
depicted in Table 12.2. The model assumes that the participant summarises the
experienced payo↵s for each deck y 2 Y = {A, B, C, D} with a weighted mean of
the experienced wins W

n

(y) and losses L
n

(y) to obtain the utility v
n

(y |w) where

v
n

(y |w) = (1� w)W
n

(y) + wL
n

(y). (12.3.1)

Hence, at any trial n there are four utilities v
n

(y |w). The weight that the par-
ticipant assigns to losses relative to rewards is referred to as the attention weight
parameter w. A small value of w, that is, w < 0.5, is characteristic for decision
makers who put more weight on immediate rewards and can thus be described as
reward-seeking, whereas a large value of w, that is, w > 0.5, is characteristic for
decision makers who put more weight on the immediate losses and can, thus, be
described as loss averse (Ahn et al., 2008; Busemeyer and Stout, 2002).

The actually observed utility v
n

(y |w) corresponding to the chosen deck y at
trial n after observing the payo↵ x

n

might be higher or lower than what the
decision maker expected about deck y. We write Ev

n�1

(y |w) for the expected
utility of deck y extracted from information up to and including trail n�1. That is,
before the participant has made her choice Y

n

= y and before she is presented with
the payo↵ x

n

at trial n. If the observed utility v
n

(y |w) is higher (lower) than what
was expected Ev

n�1

(y |w), then the expected utility for deck y is shifted upwards
(downwards) for the next trial n + 1. This learning process is described by the
delta learning rule, also known as the Rescorla-Wagner rule (Rescorla and Wagner,

195



12. A Tutorial on Bridge Sampling

1972) and formalised as

Ev
n

(y |w, a) = Ev
n�1

(y |w) + a[v
n

(y |w)� Ev
n�1

(y |w)], for y 2 Y, (12.3.2)

where the parameter a quantifies the memory for rewards and losses. A value of
a close to zero indicates slow forgetting and weak recency e↵ects, whereas a value
of a close to one indicates rapid forgetting and strong recency e↵ects.

We set Ev
0

(y |w) = 0 for every deck y to convey that the participant has no
prior knowledge about the payo↵s of the decks. Furthermore, we assume that
at trial n only the expected utility of the chosen deck is updated and that the
expected utility of the decks that are not chosen stay untouched. Consequently,
Eq. (12.3.2) implies that the expected utility of each deck remains zero until the
first time the deck is chosen. For instance, for the example data in Table 12.2 the
expected utility of deck A is zero, until n = 4. The change of expected utility for
deck A then plays a role relative to the expected utilities of decks B, C and D in
the next trials. This value of the updated expected utility for deck A remains the
same from trial n+1 = 5 up to trial 8, but before she is presented with the payo↵
at trial 8.

We assume that the probability with which the participant chooses deck y at
trial n+ 1 is given by the following softmax choice rule11

Pr(Y
n+1

= y |xn, ✓) =
eu(n)·Ev

n

(y |w,a)

X

y2Y
eu(n)·Ev

n

(y |w,a)

, for y 2 Y. (12.3.3)

The function u measures how sensitive the participant is to the expected utilities
collected up to trial n for the decision at trial n+ 1. Values of u(n) close to zero
indicate random choice behaviour (i.e., strong exploration), whereas large values
of u(n) indicate choice behaviour that is strongly determined by the expected
utilities (i.e., strong exploitation). We parameterise the between trial-dependent
sensitivity function u(n) with the following function

u(n) = (n/10)c, for n = 1, 2, . . . , N, (12.3.4)

where c 2 [�5, 5]. For positive c, successive choices become less random and
more determined by the expected deck utilities; if c is negative, successive choices
become more random and less determined by the expected deck utilities, a pattern
that is clearly non-optimal. We restricted the consistency parameter c of the EV
model to the range [�2, 2] instead of the proposed range [�5, 5] (Busemeyer and
Stout, 2002). This modification improved the estimation of the EV model and
prevented the choice rule from producing numbers that exceed machine precision
(see also Steingroever et al., 2014).

In sum, to specify how past experience is processed for the choice in the next
trial the EV model uses three parameters ✓ = (w, a, c): (1) the attention weight

11This rule is also known as the ratio-of-strength choice rule (Luce, 1959). Furthermore, we
wrote Y

n+1

for the random choice the participant will make before seeing the payo↵ x
n+1

. After
we observed x

n+1

, we write y
n+1

for the deck that is chosen to convey that it is not random
anymore.
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parameter w 2 [0, 1] quantifies the weight of losses over rewards at each trial n,
(2) the updating parameter a 2 [0, 1] determines how the the observed utility
v
n

(y |w) of the choosing deck y a↵ects the expected utility for the next trial, and
(3) the response consistency parameter c 2 [�2, 2] determines the balance between
exploitation and exploration.

12.3.3 Data

We applied bridge sampling to a data set published by Busemeyer and Stout
(2002). The data set consists of S = 30 healthy participants each contributing
N = 100 IGT card selections (see Busemeyer and Stout for more details on the
data sets).12

12.3.4 Application of bridge sampling to an individual-level
implementation of the EV model

In this section we describe how we use bridge sampling to estimate the marginal
likelihood of an individual-level implementation of the EV model. This implemen-
tation estimates model parameters for each participant separately. We therefore
have as many data sets d

1

, d
2

, . . . , d
S

as there are participants. Accordingly, we
also obtain a marginal likelihood of the EV model for every participant. The like-
lihood of the sth participant follows from plugging in the sequence of observed
choices yN

s

and payo↵s xN

s

into Eq. (12.3.3) gradually resulting in

f(d
s

| ✓
s

) = Pr(Y
s,1

= y
s,1

|x0, ✓
s

)⇥ Pr(Y
s,2

= y
s,2

|x1

s

, ✓
s

) (12.3.5)

⇥Pr(Y
s,3

= y
s,3

|x2

s

, ✓
s

)⇥ · · ·⇥ Pr(Y
s,N

= y
s,N

|xN�1

s

, ✓
s

), (12.3.6)

where x0 = 0 resulting in Ev
0

(y) = 0 for every deck y = A, B, C, D, and ✓
s

=
(w

s

, a
s

, c
s

) as before. For each individual s we use the uniform priors w
s

⇠ U [0, 1],
a
s

⇠ U [0, 1], c
s

⇠ U [�2, 2]. As a result, we have

p(d
s

| Ind
s

) =

Z Z Z

f(d
s

|w
s

, a
s

, c
s

)
1

4
dw

s

da
s

dc
s

, (12.3.7)

for every participant s, see Steingroever et al. (2016b) for more details on this
prior choice and model implementations.

12.3.4.1 Schematic execution of the bridge sampler

To obtain a bridge sampling estimate of the marginal likelihood for the sth partic-
ipant where s = 1, 2, . . . , 30 we follow the steps outlined in Fig. 12.5. We proceed
as follows:

1. For each parameter, we draw 2K
s,1

samples from the posterior distribution.
We use the posterior samples from Steingroever et al. (2016b) who fit an
individual-level implementation of the EV model separately to the data of

12Note that we excluded three participants due to incomplete choice data.
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each participant in Busemeyer and Stout (2002). For each participant we
have at least 5, 000 posterior samples; whenever this number of samples was
insu�cient to ensure convergence of the Hamiltonian Monte Carlo (HMC)
chains, Steingroever et al. (2016b) repeated the fitting routine with 5, 000
additional samples. Steingroever et al. (2016b) confirmed convergence of
the HMC chains by reporting that all R̂ statistics were below 1.05. The
posterior samples were split into two batches each consisting of K

s,1

number
of samples.

2. We choose a proposal distribution.
We generalise our approach from the running example and use a multivariate
normal distribution as a proposal distribution.

3. We transform the first batch of K
s,1

posterior samples.
Since we use a multivariate normal distribution as a proposal distribution,
we transform all posterior samples to the real line using the probit function,
that is, we obtain ⇠̊

s,j

= (!̊
s,j

, ↵̊
s,j

, �̊
s,j

) 2 R3, where !̊
s,j

= ��1(ẘ
s,j

),
↵̊
s,j

= ��1(̊a
s,j

), �̊
s,j

= ��1((̊c
s,j

+ 2) / 4) for j = 2, 4, . . . , 2K
1

.

4. We fit the proposal distribution to the first batch of K
1

probit-transformed
posterior samples.
We use method-of-moment estimates and use the mean vector and the co-
variance matrix obtained from the first batch of K

s,1

probit-transformed
posterior samples to specify our multivariate normal proposal distribution.

5. We draw K
s,2

samples from the proposal distribution.
We use R to randomly draw K

2

samples from the proposal distribution
obtained in step 4.

6. We calculate l
s,2,i

for all K
s,2

samples from the proposal distribution.
For this step we evaluate the likelihood and prior at the samples ⇠̃

s,i

for
all i = 1, 2, . . . ,K

s,2

. Recall that the prior was specified in the original
parameterisation, while the samples range over the real line. The uniform
priors in terms of ✓ change into standard normal priors in terms of ⇠ due to
the change-of-variables rule as before, see Appendix 12.C and Appendix 12.D
for a more detailed explanation.

As the likelihood function is specified in terms of the parameters ✓
s

, we first
transform the proposal samples that range over the real line to the original
parameterisation resulting in ✓̃

s,i

= (w̃
s,i

, ã
s,i

, c̃
s,i

), where w̃
s,i

= �(!̃
s,i

),
ã
s,i

= �(↵̃
s,i

) and c̃
s,i

= 4�(�̃
s,i

)� 2.

Thus, to calculate l
s,2,i

for all i = 1, 2, . . . ,K
s,2

we evaluate the likelihood
with the sample in the original parameterisation ✓̃

s,i

, while we use the sam-
ples ⇠̃

s,i

to evaluate the multivariate normal proposal density and the prior,
that is,

f(d
s

| w̃
s,i

, ã
s,i

, c̃
s,i

)

⇡(

˜

⇠

s,i

)

z }| {

�(!̃
s,i

)�(↵̃
s,i

)�(�̃
s,i

)

g(!̃
s,i

, ↵̃
s,i

, �̃
s,i

)
, (12.3.8)
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where � denotes the standard normal density.

7. We transform the second batch of K
s,1

posterior samples.
This is analogous to step 2.

8. We calculate l
s,1,j

for the second batch of K
s,1

probit-transformed samples
from the posterior distribution.
This is analogous to step 6. We plug in the probit-transformed samples
⇠̊
s,j

into the prior and the proposal density in terms of ⇠
s

, while we use the

untransformed samples ✓̊
s,j

for the likelihood.

9. We run the iterative scheme, Eq. (12.2.31), until our predefined tolerance
criterion is reached.
With l

s,1,j

and l
s,2,i

at hand we can now run the iterative scheme. We
use the same tolerance criterion and initialisation p̂

4

(d)0 = 0 as in running
example. Once convergence is reached, we obtain an estimate of the marginal
likelihood for each participant, and derive the coe�cient of variation for each
participant using Eq. (12.2.35). The largest coe�cient of variation is 1.94%
suggesting that the bridge sampler has low variance.13

12.3.4.2 Assessing the accuracy of our implementation

To assess the accuracy of our implementation, we compared the marginal likeli-
hood estimates obtained with our bridge sampler to the estimates obtained with
importance sampling (Steingroever et al., 2016b). Fig. 12.6 shows the logarithm
of the marginal likelihoods p(d

1

| Ind
1

), p(d
2

| Ind
2

), . . . , p(d
S

| Ind
S

) for the S = 30
participants of Busemeyer and Stout (2002) obtained with bridge sampling (x-
axis) and importance sampling reported by Steingroever et al. (2016b; y-axis).
The two sets of estimates correspond almost perfectly. These results indicate a
successful implementation of the bridge sampler. Thus, this section emphasises
that both the importance sampler and bridge sampler can be used to estimate
the marginal likelihood for the data of individual participants. However, when
we want to estimate the marginal likelihood of a Bayesian hierarchical model, it
may be di�cult to find a suitable importance density. The bridge sampler, on the
other hand, can be applied more easily and more e�ciently.

12.3.5 Application of bridge sampling to a hierarchical
Implementation of the EV model

In this section we illustrate how bridge sampling is used to estimate the marginal
likelihood of a hierarchical EV model. This hierarchical implementation assumes
that the parameters w

s

, a
s

, and c
s

from each participant are drawn from three
separate group-level distributions. This model specification incorporates both the
di↵erences and the similarities between participants. We illustrate this application
with the data from Busemeyer and Stout (2002) as we have done before, but we
now also assume that these participants belong to one group.

13Note that this measure relates to the marginal likelihoods, not to the log marginal
likelihoods.
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Figure 12.6: Comparison of the log marginal likelihoods obtained with bridge
sampling (x-axis) and importance sampling reported by Steingroever et al. (2016b,
y-axis). The main diagonal indicates perfect correspondence between the two
methods.

This one group assumption is formalised using a hierarchical model, where
the sth participant’s parameters ✓

s

are drawn from a group distribution f(✓
s

| ⌘).
Given the group-level distribution f(✓

s

| ⌘) with group-level parameters ⌘, the data
of the individuals are conditionally independent which implies that the likelihood
is given by

f(d
all

| ✓
1

, . . . , ✓
S

, ⌘) =
S

Y

s=1

f(d
s

| ✓
s

)f(✓
s

| ⌘)d✓
s

, (12.3.9)

where f(d
s

| ✓
s

) is the likelihood of each individual as specified in Eq. (12.3.5).
We focus on the group-level parameters ⌘ for inference about the group. For a
posterior on ⌘, we have to choose a prior ⇡(⌘), and the resulting posterior has as
normalising constant

p(d
all

|Hier) =

Z

f(d
all

| ✓
1

, . . . , ✓
S

, ⌘)⇡(⌘)d⌘. (12.3.10)

We use bridge sampling to estimate p(d
all

|Hier).

12.3.5.1 Schematic execution of the bridge sampler

To compute the marginal likelihood, we again follow the steps outlined in Fig. 12.5,
with a few minor modifications.
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1. For each parameter, that is, all individual-level and group-level parameters,
we draw 2K

1

= 60, 000 samples from the posterior distribution.
To obtain the posterior samples, we fit a hierarchical Bayesian implementa-
tion of the EV model to the Busemeyer and Stout (2002) data set using the
JAGS software package (Plummer, 2003).14 Each participant’s parameters
are assumed to be drawn from a group-level distribution. As group-level
distribution we use a normal distribution characterised by the group-level
means and standard deviation parameters expressed in terms of the probit-
transformed parameters ⇠

s

= (!
s

,↵
s

, �
2

).15 More specifically, we assume
that the sth participant’s probit-transformed parameters are drawn from
the following distribution

f(⇠
s

| ⌘) = N (!
s

|µ
!

,�2

!

)N (↵
s

|µ
↵

,�2

↵

)N (�
s

|µ
�

,�2

�

), (12.3.11)

where ⌘ = (⌘
µ

, ⌘
�

) with ⌘
µ

= (µ
!

, µ
↵

, µ
�

) and ⌘
�

= (�
!

,�
↵

,�
�

). For
inference about these group-level parameters we use standard normal priors
on the group means and uniform priors between 0 and 1.5 on the group-level
standard deviations, that is, ⇡(⌘) = ⇡(⌘

µ

)⇡(⌘
�

), where

⇡(⌘
µ

) = N (µ
!

; 0, 1)N (µ
↵

; 0, 1)N (µ
�

; 0, 1), (12.3.12)

⇡(⌘
�

) = U(�
!

; 0, 1.5)U(�
↵

; 0, 1.5)U(�
�

; 0, 1.5). (12.3.13)

For a detailed explanation of the hierarchical implementation of the EV
model, see Wetzels et al. (2010b).
To reach convergence and reduce autocorrelation, we collect two MCMC
chains, each with 120, 000 samples from the posterior distributions after
having excluded the first 30, 000 samples as burn-in. Out of these 120, 000
samples per chain, we retained every 4th value yielding 30, 000 samples per
chain. This setting resulted in all R̂ statistics below 1.05 suggesting that
all chains have successfully converged from their starting values to their
stationary distributions. The resulting posterior samples of the six group-
level parameters ⌘ together with the three individual-level parameters ✓

s

for
every participant in the group of S = 30 individuals are used in the bridge
sampler to estimate the marginal likelihood p(d

all

|Hier).

2. We choose a proposal distribution.
We use a multivariate normal distribution as a proposal distribution.

3. We transform the first batch of K
1

posterior samples.
As before, we ensure that the range of the posterior distribution matches
the range of the proposal distribution by using the probit transformation
as described above. Hence, for the even samples of the posteriors j =
2, 4, . . . , 2K

1

and each s = 1, . . . , 30 we write ⇠̊
s,j

= (!̊
s,j

, ↵̊
s,j

, �̊
s,j

) for

the probit-transformed individual parameters, and ⇣̊
�,j

= (̊⌧
!,j

, ⌧̊
↵,j

, ⌧̊
�,j

) for
the the probit-transformed group-level standard deviations, where ⌧̊

!,j

=

14We used a model file that is an adapted version of the model file used by Ahn et al. (2011).
15As before we define !

s

= ��1(w
s

), ↵
s

= ��1(a
s

), �
s

= ��1((c
s

+ 2)/4)).
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��1((̊�
!,j

) / 1.5), ⌧̊
↵,j

= ��1((̊�
↵,j

) / 1.5), ⌧̊
�,j

= ��1((̊�
�,j

) / 1.5). The
group-level mean parameters do not have to be transformed because they
already range across the entire real line.

4. We fit the proposal distribution to the first batch of the K
1

probit-transformed
posterior samples.
We use method-of-moment estimates for the mean vector and the covariance
matrix obtained from the first batch of K

1

probit-transformed posterior
samples to specify our multivariate normal proposal distribution.

5. We draw K
2

samples from the proposal distribution.
We use R to randomly draw K

2

samples from the proposal distribution
fitted in step 4. For i = 1, 2, . . . ,K

2

we obtain group-level parameters ⌘̃
i

=
(⌘̃

µ,i

, ⇣̃
�,i

), and S = 30 number of individual-levels parameter each consisting
of ⇠̃

s,i

= (!̃
s,i

, ↵̃
s,i

, �̃
s,i

).

6. We calculate l
2,i

for all K
2

samples from the proposal distribution.
For this step we evaluate the prior, the group-level distribution at the sam-
ples ⌘̃

µ,i

, ⇣̃
�,i

and, subsequently, all individual-level likelihood functions at
the samples ⇠̃

1,i

, ⇠̃
2,i

, . . . , ⇠̃
S,i

for S = 30. As the prior on the group-level
means are already specified as normal distributions, we simply need to eval-
uate the normal density at the samples ⌘̃

µ,i

. On the other hand, the prior on
the group-level standard deviations were specified in the original parameter-
isation, while the samples ⇣̃

�,i

range over the real line. The uniform priors in
terms of the �s change into standard normal priors in terms of ⇣ due to the
change-of-variables rule as before, see Appendix 12.C and Appendix 12.E
for a more detailed explanation.

As the likelihood f(d
all

| ✓
1

, . . . ✓
S

, ⌘) and the group-level distribution are in
terms of the group-level �s and the original parameterisation ✓

s

, we trans-
form the proposal samples that range over the real line to the original param-
eterisation resulting in ⌘̃

�,i

= (�̃
!,i

, �̃
↵,i

, �̃
�,i

) for the group-level standard
deviations, and ✓̃

s,i

= (w̃
s,i

, ã
s,i

, c̃
s,i

), where w̃
s,i

= �(!̃
s,i

), ã
s,i

= �(↵̃
s,i

),
and c̃

s,i

= 4�(�̃
s,i

)� 2 for every individual s = 1, 2, . . . , 30.

Thus, to calculate l
2,i

for all i = 1, 2, . . . ,K
2

we evaluate the individual-level
likelihood functions with the sample in the original parameterisation ✓̃

s,i

and the argument of the group-level density with ⇠̃
s,i

for s = 1, 2, . . . , 30 and
group-level density parameters ⌘̃

µ,i

, the original parameterisation ⌘̃
�,i

and
the prior at ⌘̃

µ,i

and ⇣̃
�,i

, that is,

Q

S

s=1
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,

(12.3.14)

where the function g refers to the multivariate normal distribution obtained
in step 4.
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7. We follow steps 7 – 9, as outlined for the bridge sampler of the individual-
level implementation of the EV model.

This procedure yields a logarithm of the marginal likelihood of �3801.877 with a
coe�cient of variation of 10.53%.

12.3.5.2 Assessing the accuracy of our implementation

To investigate the accuracy of our implementation, we compare Bayes factors ob-
tained with bridge sampling to Bayes factors obtained from the Savage-Dickey
density ratio test (Dickey and Lientz, 1970; Dickey, 1971; for a tutorial, see Wa-
genmakers et al., 2010).

Recall that a Bayes factor is a ratio of two marginal likelihood functions. For
nested model comparisons with, say, a restricted model M

r

within the full model
M

f

, the Savage-Dickey density ratio16 implies that the Bayes factor can be com-
puted as a ratio of the prior divided by the posterior of the full model at the
restriction ✓ = ✓

0

, that is,

BF
fr

(d) =
p(d |M

f

)

p(d |M
r

)
=

⇡(✓ = ✓
0

|M
f

)

⇡(✓ = ✓
0

| d,M
f

)
. (12.3.15)

As the full model M
f

we take the EV model in which all group-level parameters
are free to vary. In what follows we also consider three restricted models each
with one of the three group-level mean parameters, that is, µ

!

, µ
↵

, and µ
�

, fixed
at a predefined value. These predefined values are choosing such that the Savage-
Dickey density ratio for the data at hand is one. To do so, we fit the full EV model
to the Busemeyer and Stout (2002) data set (i.e., step 1 of Section 12.3.5) and
then apply a nonparametric logspline density estimator (Stone et al., 1997) to the
posterior samples. Fig. 12.7 shows the posterior for µ

↵

as the full curve, while the
prior is shown as the dotted curve. Furthermore, Fig. 12.7 also shows that the prior
and posterior for µ

↵

evaluated at µ
↵,0

= �0.604 have the same value, i.e., the grey
dot. Hence, the Bayes factor computed using the Savage-Dickey method is one
when we compare the full model in which all parameters are free to vary against
the modelM

r2with µ
↵

fixed at µ
↵,0

. To compute the Bayes factor between the full
model and the artificially constructed model M

r2 with µ
↵,0

= �0.604 using bridge
sampling, we have to estimate the marginal likelihood of both M

f

and M
r2 . The

logarithm of the marginal likelihood M
f

was already computed in Section 12.3.5
and presented in the top row of Table 12.3. To estimate the marginal likelihood
of M

r2 we first need posterior samples of this restricted model for which we use
JAGS as before. This time however, we use the likelihood Eq. (12.3.9) with µ

↵

fixed at µ
↵,0

= �0.604 in the group distribution Eq. (12.3.11). As µ
↵

is known
and fixed within M

r2 , it is not random anymore, and therefore does not need a
prior. As such, for the restricted model M

r2 we use the priors

⇡(⌘
µ

) = N (µ
!

; 0, 1)N (µ
�

; 0, 1), (12.3.16)

⇡(⌘
�

) = U(�
!

; 0, 1.5)U(�
↵

; 0, 1.5)U(�
�

; 0, 1.5), (12.3.17)

16Under certain regularity conditions that are met in our example, see Marin and Robert
(2010); Verdinelli and Wasserman (1995); Wetzels et al. (2010a) for more details.
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Figure 12.7: Prior and posterior distributions of the group-level mean µ
↵

in the
Busemeyer and Stout (2002) data set. The figure shows the posterior distribution
(solid line) and the prior distribution (dotted line). The grey dot indicates the
intersection of the prior and the posterior distributions, for which the Savage-
Dickey density ratio equals 1.

Table 12.3: Bayes factors comparing the full EV model to the restricted EV
models, log marginal likelihoods, and coe�cient of variation (with respect to the
marginal likelihood) expressed as a percentage.

Model BF
fr

(d
all

) log marginal
likelihood

CV [%]

full model 1.000 �3801.877 10.53
restricted at µ

!

= �.334 0.729 �3801.561 14.21
restricted at µ

↵

= �0.604 0.826 �3801.686 9.99
restricted at µ

�

= 0.92 0.710 �3801.535 13.15

instead, which is simply the prior of the full model with the prior for the fixed pa-
rameter, in this case µ

↵

removed. With the posterior samples for the parameters
of M

r2 at hand we proceed the estimation procedure as described in Section 12.3.5
from step 2 onwards. This lead to an estimate of the logarithm of the marginal
likelihood p(d

all

|M
r2) of �3801.686 with a coe�cient of variation of 9.99%. Di-

viding the estimate of the marginal likelihood p(d
all

|M
f

) by the estimate of the
marginal likelihood of p(d

all

|M
r2) yields a Bayes factor BF

fr2(dall) = 0.826, see
the third row in Table 12.3. This table also shows two other restricted models:
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12.4. Discussion

M
r1 with µ

!

fixed at µ
!,0

= �.334, and M
r3 with µ

�

fixed at µ
�,0

= 0.92.
As before these restriction were chosen such that the Savage-Dickey density ratio
equals one. The corresponding Bayes factors were derived by dividing the esti-
mated marginal likelihood of the full model and the restricted model using the
bridge sampler. It is evident that Bayes factors derived from bridge sampling
closely approximate the Savage-Dickey density ratio of one. These results suggest
a successful implementation of the bridge sampler. This is also reflected by the
close match between the log marginal likelihoods of the four models presented in
the third column of Table 12.3.

Finally, we confirm that the bridge sampler has low variance; the coe�cient of
variation with respect to the marginal likelihood of the full model and the three
restricted models ranges between 9.99 and 14.21%.

12.4 Discussion

In this tutorial, we explained how bridge sampling can be used to estimate the
marginal likelihood of popular models in mathematical psychology. As a running
example, we used the beta-binomial model to illustrate step-by-step the bridge
sampling estimator. To facilitate the understanding of the bridge sampler, we
first discussed three of its special cases—the naive Monte Carlo estimator, the
importance sampling estimator, and the generalised harmonic mean estimator.
Consequently, we introduced key concepts that became gradually more compli-
cated and sophisticated. In the second part of this tutorial, we showed how bridge
sampling can be used to estimate the marginal likelihood of both an individual-
level and a hierarchical implementation of the EV model (Busemeyer and Stout,
2002) for the Iowa gambling task (Bechara et al., 1994). The running example
and the application of bridge sampling to the EV model demonstrated the positive
aspects of the bridge sampling estimator, that is, its accuracy, reliability, practical-
ity, and ease-of-implementation (DiCiccio et al., 1997; Frühwirth-Schnatter, 2004;
Meng and Wong, 1996).

The bridge sampling estimator is superior to the naive Monte Carlo estima-
tor, the importance sampling estimator, and the generalised harmonic mean es-
timator for several reasons. First, Meng and Wong (1996) showed that, among
the four estimators discussed in this chapter, the bridge sampler minimises the
mean-squared error because it uses the optimal bridge function. Second, in bridge
sampling, choosing a suitable proposal distribution is much easier than choosing a
suitable importance density for the importance sampling estimator or the gener-
alised harmonic mean estimator because bridge sampling is more robust to the tail
behaviour of the proposal distribution relative to the posterior distribution. This
advantage facilitates the application of the bridge sampler to higher dimensional
and complex models. This characteristic of the bridge sampler combined with the
popularity of higher dimensional and complex models in mathematical psychology
suggests that bridge sampling can advance model comparison exercises in many
areas of mathematical psychology (e.g., reinforcement-learning models, response
time models, multinomial processing tree models, etc.). Third, bridge sampling is
relatively straightforward to implement. In particular, our step-by-step procedure
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12. A Tutorial on Bridge Sampling

can be easily applied to other models with only minor changes of the code (i.e., the
unnormalised posterior and potentially the proposal function have to be adapted).

Despite the numerous advantages of the bridge sampler, the take-home message
of this tutorial is not that the bridge sampler should be used blindly. There exist a
large variety of methods to approximate the marginal likelihood that di↵er in their
e�ciency. The most appropriate method optimises the trade-o↵ between accuracy
and implementation e↵ort. This trade-o↵ depends on a number of aspects such
as the complexity of the model, the number of models under consideration, the
statistical experience of the researcher, and the time available. This suggests that
the choice of the method should be reconsidered each time a marginal likelihood
needs to be obtained. Obviously, when the marginal likelihood can be determined
analytically, bridge sampling is not needed at all. If the goal is to compare (at
least) two nested models, the Savage-Dickey density ratio test (Dickey and Lientz,
1970; Dickey, 1971) might be a better alternative. Note however that the Savage-
Dickey density ratio is not free of caveats –the full curve depicted in Fig. 12.7 is
just an estimate of the posterior and also subject to estimation error.17 If only an
individual-level implementation of a model is used, importance sampling may be
easier to implement and may require less computational e↵ort. If the goal is to
obtain the marginal likelihood of a large number of relatively simple models, the
product space or reversible jump method might be more appropriate (Carlin and
Chib, 1995; Green, 1995). If a researcher with a limited programming background
and/or little time resources wants to conduct a model comparison exercise, rough
approximations of the Bayes factor, such as the Bayesian information criterion,
might be more suitable (Schwarz, 1978). On the other hand, a researcher with an
extensive background in programming and mathematical statistics might consider
using path sampling—a generalisation of bridge sampling (Gelman and Meng,
1998).

To conclude, in this tutorial we showed that bridge sampling o↵ers a reliable
and easy-to-implement approach to estimate a model’s marginal likelihood, see
also bridgesampling R package of the first author. Bridge sampling can be prof-
itably applied to a wide range of problems in mathematical psychology involving
parameter estimation, model comparison, and Bayesian model averaging.

17In fact, uncertainty quantification of frequentist nonparametric methods has not yet become
satisfactory.
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12.A. The bridge sampling estimator as a general case of methods 1 – 3

12.A The bridge sampling estimator as a general case of
methods 1 – 3

Table 12.4 shows how the naive Monte Carlo, the importance sampling, and the
generalised harmonic mean estimators are special cases of the bridge sampling
estimator under specific choices of the bridge function h(✓) and the proposal dis-
tribution g(✓).18

Table 12.4: Summary of the bridge sampling estimators for the marginal likeli-
hood and its special cases: The naive Monte Carlo, importance sampling, and
generalised harmonic mean estimator

Method Estimator Samples Bridge function h(✓)

Bridge
sampling

1
K2

K2X

i=1

f(d | ✓̃
i

)⇡(✓̃
i

)h(✓̃
i

)

1
K1

K1X

j=1

h(✓̊
j

)g(✓̊
j

)

✓̃
i

⇠ g(✓) h(✓) = C

q1f(d | ✓)⇡(✓)+q2p(d)g(✓)

✓̊
j

⇠ ⇡(✓ | d)

Naive Monte
Carlo

1

K

KX

i=1

f(d | ✓̃
i

) ✓̃
i

⇠ ⇡(✓) h(✓) = 1

g(✓)

, g(✓) = ⇡(✓)

Importance
sampling

1

K

KX

i=1

f(d | ✓̃
i

) ⇡(✓̃
i

)

g
IS

(✓̃
i

)
✓̃
i

⇠ g
IS

(✓) h(✓) = 1

g

IS

(✓)

, g(✓) = g
IS

(✓)

Generalised
harmonic
mean

 
1

K

KX

i=1

g
IS

(✓̊
i

)

p(d | ✓̊
i

)⇡(✓̊
i

)

!�1

✓̊
i

⇠ ⇡(✓ | d) h(✓) = 1

f(d | ✓)⇡(✓)

, g(✓) = g
IS

(✓)

In the table above ⇡(✓) denotes the prior distribution, g
IS

(✓) the importance
density, ⇡(✓ | d) the posterior distribution, g(✓) the proposal distribution, h(✓) the
bridge function, and C a constant. The last column shows the bridge function
needed to obtain the special cases.

12.B Bridge sampling implementation: Avoiding
numerical issues

In order to avoid numerical issues, we rewrite Eq. (12.2.31) as

18Note that bridge sampling is also a general case of the Chib and Jeliazkov (2001) method of
estimating the marginal likelihood using the Metropolis-Hastings acceptance probability (Meng
and Schilling, 2002; Mira and Nicholls, 2004).
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p̂
4

(y)(t+1) =

1

K2

K2
P

i=1

l2,i

q1l2,i+q2p̂4(y)
(t)

1

K1

K1
P

j=1

1

q1l1,j+q2p̂4(y)
(t)

(12.B.1)

=

1

K2

K2
P

i=1

exp ( log(l2,i))
q1 exp ( log(l2,i))+q2p̂4(y)

(t)

1

K1

K1
P

j=1

1

q1 exp ( log(l1,j))+q2p̂4(y)
(t)

(12.B.2)

=

1

K2

K2
P

i=1

exp ( log(l2,i)) exp (�l

⇤)
q1 exp ( log(l2,i)) exp(�l

⇤
)+q2p̂4(y)

(t)
exp(�l

⇤
)

1

K1

K1
P

j=1

exp(�l

⇤
)

q1 exp ( log(l1,j)) exp(�l

⇤
)+q2p̂4(y)

(t)
exp(�l

⇤

(12.B.3)

=
1

exp(�l⇤)

1

K2

K2
P

i=1

exp ( log(l2,i)�l

⇤)
q1 exp ( log(l2,i)�l

⇤)+q2p̂4(y)
(t)

exp(�l

⇤
)

1

K1

K1
P

j=1

1

q1 exp ( log(l1,j)�l

⇤)+q2p̂4(y)
(t)

exp(�l

⇤
)

(12.B.4)

= exp(l⇤)

1

K2

K2
P

i=1

exp ( log(l2,i)�l

⇤)
q1 exp ( log(l2,i)�l

⇤)+q2p̂4(y)
(t)

exp(�l

⇤
)

1

K1

K1
P

j=1

1

q1 exp ( log(l1,j)�l

⇤)+q2p̂4(y)
(t)

exp(�l

⇤
)

. (12.B.5)

where l⇤ is a constant which we can choose in a way that keeps the terms in the
sums manageable. We used l⇤ = median(log(l

1,j

)). To further simplify matters,
we defined r̂(t) = p̂

4

(y)(t) exp(�l⇤) and multiply the above expressions by exp(�l⇤)
on both sides resulting in

r̂(t+1) =

1

K2

K2
P

i=1

exp ( log(l2,i)�l

⇤)
q1 exp ( log(l2,i)�l

⇤)+q2r̂
(t)

1

K1

K1
P

j=1

1

q1 exp ( log(l1,j)�l

⇤)+q2r̂
(t)

. (12.B.6)

Hence, we can run the iterative scheme with respect to r̂ which is more convenient
because it keeps the terms in the sums manageable. We obtain an estimate of
the marginal likelihood if we multiply r̂ by exp(l⇤). Equivalently, we obtain an
estimate of the logarithm of the marginal likelihood if we take the logarithm of r̂
and add l⇤.

12.C Correcting for the probit transformation

In this section we describe how the probit transformation a↵ects our expression of
the generalised harmonic mean estimator, Eq. (12.2.22), to yield Eq. (12.2.23). Re-
call that we derived the generalised harmonic mean estimator using the following
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equality

1

p(d)
=

Z

g
IS

(✓)

f(d | ✓)⇡(✓)⇡(✓ | d)d✓. (12.C.1)

For practical reasons, in the running example, we used a fitted normal distribution
in terms of the probit-transformed parameters ⇠ as importance density, that is,
g
IS

(⇠) = 1

�̂

�( ⇠�µ̂

�̂

). Note that this importance density is a function of ⇠, whereas
the general importance density g

IS

in Eq. (12.C.1) is specified in terms of ✓.
We now have two choices, we either (i) express the likelihood, prior and poste-

rior in terms of ⇠, or (ii) we express the importance sampler in terms of ✓ instead.
For (i) we recall that ✓ = �(⇠) and that the derivative of ✓ with respect to ⇠ is

then d✓
d⇠ = �(⇠). As such, we fill in ✓ = �(⇠) in the likelihood, prior, posterior and

R

d✓ =
R

�(⇠)d⇠ resulting in

p(d) =

0

B

B

B

B

B

B

B

@

E
post

2

6

6

6

6

6

6

6

4

importance density

z }| {

1

�̂
�

✓

⇠ � µ̂

�̂

◆

f(d |�(⇠))
| {z }

likelihood

⇡(�(⇠))�(⇠)
| {z }

prior

3

7

7

7

7

7

7

7

5

1

C

C

C

C

C

C

C

A

�1

, (12.C.2)

where the expectation is with respect to the posterior in terms of ⇠. Note that
�(⇠) = ✓, thus, we plugged in the untransformed ✓ in the likelihood, the prior
and multiply it with the standard normal density � to compensate for the probit-
transform. In the online-provided code, we use this approach (see also Overstall
and Forster, 2010). Note that in our running example with a uniform prior we
have ⇡(✓) = 1 for every ✓ 2 ⇥ and therefore ⇡(�(⇠)) = 1 for every ⇠ 2 R.

Alternatively, for (ii) we recall that the integral of importance density is given
by
R

g
IS

(⇠)d⇠ and that ⇠ = ��1(✓). The derivative of ⇠ with respect to ✓ is then
d⇠
d✓ = 1

�(✓)

due to the inverse function theorem. As such, we get the equivalent
expression

p(d) =

0

B

B

B

B

B

B

B

@

E
post

2

6

6

6

6

6

6

6

4

importance density

z }| {

1

�̂
�

✓

��1(✓)� µ̂

�̂

◆

1

�(��1(✓))

f(d | ✓)
| {z }

likelihood

⇡(✓)
|{z}

prior

3

7

7

7

7

7

7

7

5

1

C

C

C

C

C

C

C

A

�1

, (12.C.3)

where the expectation is with respect to the posterior in terms of ✓.
These two population means can be estimated by their respective sample
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means, that is,

p̂
3

(d) =

0

@

1

K

K

X

j=1

1

�̂

⇣

˚

⇠

j

�µ̂

�̂

⌘

f(d |�(⇠̊
j

))⇡(�(⇠̊
j

))�(⇠̊
j

)

1

A

�1

, ⇠̊
j

= ��1(✓⇤), ✓̊
j

⇠ ⇡(✓ | d),
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probit-transformed samples

from the posterior distribution

(12.C.4)

=
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�̂
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⇣
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�1
(

˚

✓

j
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�(��1
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˚

✓

j

))
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j
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)

1

C
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�1

, ✓̊
j

⇠ ⇡(✓ | d).
| {z }

samples from the

posterior distribution

(12.C.5)

which is a result of interpreting integration as glorified summation.

12.D Details on the application of bridge sampling to the
individual-level EV model

In this section, we provide more details on how we obtained the unnormalised
posterior distribution for a specific participant s, for s = 1, 2, . . . , 30, with choices
yN
s

= (y
s,1

, y
s,2

, . . . , y
s,N

) and corresponding payo↵s xN

s

= (x
s,1

, x
s,2

, . . . , x
s,N

).
As explained in Appendix 12.B, we run the iterative scheme with respect to r̂

to avoid numerical issues. Consequently, we have to compute log(l
1,j

) and log(l
2,i

).
We do so by transforming the priors specified with the original parameterisation
to the real line using the probit transform. For the parameters w

s

⇠ U [0, 1]
and a

s

⇠ U [0, 1] we get standard normal priors on !
s

and ↵
s

as was elaborated
on in Appendix 12.C. For the parameter c, the uniform prior U [�2, 2] implies

that
R

2

�2

⇡(c)dc =
R

2

�2

0.25 dc. To apply the change-of-variable rule we recall that
c = 4�(�) + 2 and subsequently take the derivative of c with respect to �, which

results in dc
d� = 4�(�) and, therefore,

R

dc = 4
R

�(�)d�. Hence, the uniform prior

on c in terms of � is also just the normal density.
As such, to calculate log(l

2,i

) with ⇠̃
s,i

for the ith sample from the proposal
distribution we get

log(l
2,i

) = log

 

f(d
s

| ✓̃
s,i

)⇡(✓̃
s,i

)�(⇠̃
s,i

)

g(⇠̃
s,i

)

!

, (12.D.1)

where ✓̃
s,i

refers to the sampled ⇠̃
s,i

transformed to the original parameterisa-
tion. Taking the logarithm simplifies matters as multiplication then becomes a
summation. That is,

log(l
2,i

) =

log f(d

s

| ˜✓
s,i

)

z }| {

N

X

n=1

logPr(y
s,n

|xn�1, ✓̃
s,i

)+ log �(!̃
s,i

) + log �(↵̃
s,i

) + log �(�̃
s,i

)

� log g(⇠̃
s,i

), (12.D.2)
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as a result of taking independent uniform priors on the parameters and because
log 1 = 0.

12.E Details on the application of bridge sampling to the
hierarchical EV model

Analogous to the last section, we explain here how we obtained the logarithm of
the unnormalised posterior for the hierarchical implementation of the EV model.
As in Appendix 12.D, we run the iterative scheme with respect to r̂ and, therefore,
compute log(l

1,j

) and log(l
2,i

) in terms of the probit-transformed parameters. The
priors on the group-level means are just standard normal, while the prior on the
group-level standard deviations were given in terms of the �s. These prior in
terms of the probit-transformed ⌧s are also standard normal, which can be derived
analogously to how we showed that the uniform prior of c on [�2, 2] results in a
standard normal density on �, see Appendix 12.D. As the hierarchical model also
incorporates a group-level distribution the logarithm of l

2,i

is now given by

log(l
2,i

) =
S

X

s=1

h

log f(d
s

| ✓̃
s,i

) + log f(⇠̃
s,i

| ⌘̃
µ,i

, ⌘̃
�,i

)
i

, (12.E.1)

+ log �(µ̃
!,i

) + log �(µ̃
↵,i

) + log �(µ̃
�,i

), (12.E.2)

+ log �(⌧̃
!,i

) + log �(⌧̃
↵,i

) + log �(⌧̃
�,i

)� log g(⇠̃
1,i
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, ⌘̃
i

), (12.E.3)

where log f(d
s

| ✓̃
s,i

) =
P

N

n=1

logPr(y
s,n

|xn�1, ✓̃
s,i

) and the logarithm of the
group-level distribution is
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+ log
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i

�̃
�,i

◆

(12.E.5)

Note that the hierarchical implementation implies that each draw from the pro-
posal g, say, the ith, consists of six group-level draws ⌘̃

µ,i

and ⇣̃
�,i

, and S = 30
individual-level ⇠̃

s,i

, each consisting of three parameters ⇠̃
s,i

= (!̃
s,i

, ↵̃
s,i

, �̃
s,i

). As
such, each draw of the proposal is a vector of length 96. To evaluate log l

2,i

we
transform these samples to the parameters in which the individual-level likelihood
and the group-level distribution are specified.
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Chapter 13

A Tutorial on Fisher Information

Abstract

In many statistical applications that concern mathematical psycholo-
gists, the concept of Fisher information plays an important role. In this tu-
torial we clarify the concept of Fisher information as it manifests itself across
three di↵erent statistical paradigms. Firstly, in the frequentist paradigm,
Fisher information is used to construct hypothesis tests and confidence
intervals using maximum likelihood estimators; secondly, in the Bayesian
paradigm, Fisher information is used to define a default prior; lastly, in the
minimum description length paradigm, Fisher information is used to mea-
sure model complexity.

Keywords: Confidence intervals, hypothesis testing, Je↵reys’s prior, mini-
mum description length, model complexity, model selection, statistical mod-
elling.

13.1 Introduction

Mathematical psychologists develop and apply quantitative models in order to de-
scribe human behaviour and understand latent psychological processes. Examples
of such models include Stevens’ law of psychophysics that describes the relation
between the objective physical intensity of a stimulus and its subjectively experi-
enced intensity (Stevens, 1957); Ratcli↵’s di↵usion model of decision making that
measures the various processes that drive behaviour in speeded response time
tasks (Ratcli↵, 1978); and multinomial processing tree models that decompose
performance in memory tasks into the contribution of separate latent mechanisms
(Batchelder and Riefer, 1980; Chechile, 1973).

This chapter is published as Ly, A., Marsman, M., Verhagen, A.J., Grasman, R.P.P.P.,
and Wagenmakers, E.–J. (2017). A tutorial on Fisher information. Journal of Mathematical

Psychology, 80, 40–55. doi: https://doi.org/10.1016/j.jmp.2017.05.006. Also available as
arXiv preprint, arXiv:1705.01064.
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When applying their models to data, mathematical psychologists may oper-
ate from within di↵erent statistical paradigms and focus on di↵erent substantive
questions. For instance, working within the classical or frequentist paradigm a re-
searcher may wish to test certain hypotheses or decide upon the number of trials
to be presented to participants in order to estimate their latent abilities. Working
within the Bayesian paradigm a researcher may wish to know how to determine
a suitable default prior on the parameters of a model. Working within the mini-
mum description length (MDL) paradigm a researcher may wish to compare rival
models and quantify their complexity. Despite the diversity of these paradigms
and purposes, they are connected through the concept of Fisher information.

Fisher information plays a pivotal role throughout statistical modelling, but
an accessible introduction for mathematical psychologists is lacking. The goal of
this tutorial is to fill this gap and illustrate the use of Fisher information in the
three statistical paradigms mentioned above: frequentist, Bayesian, and MDL.
This work builds directly upon the Journal of Mathematical Psychology tutorial
article by Myung (2003) on maximum likelihood estimation. The intended target
group for this tutorial are graduate students and researchers with an a�nity for
cognitive modelling and mathematical statistics.

To keep this tutorial self-contained we start by describing our notation and
key concepts. We then provide the definition of Fisher information and show how
it can be calculated. The ensuing sections exemplify the use of Fisher informa-
tion for di↵erent purposes. Section 13.2 shows how Fisher information can be
used in frequentist statistics to construct confidence intervals and hypothesis tests
from maximum likelihood estimators (MLEs). Section 13.3 shows how Fisher in-
formation can be used in Bayesian statistics to define a default prior on model
parameters. In Section 13.4 we clarify how Fisher information can be used to
measure model complexity within the MDL framework of inference.

13.1.1 Notation and key concepts

Before defining Fisher information it is necessary to discuss a series of fundamental
concepts such as the nature of statistical models, probability mass functions, and
statistical independence. Readers familiar with these concepts may safely skip to
the next section.

A statistical model is typically defined through a function f(x
i

| ✓) that rep-
resents how a parameter ✓ is functionally related to potential outcomes x

i

of a
random variable X

i

. For ease of exposition, we take ✓ to be one-dimensional
throughout this text. The generalisation to vector-valued ✓ can be found in Ap-
pendix 13.A, see also Myung and Navarro (2005).

As a concrete example, ✓ may represent a participant’s intelligence, X
i

a par-
ticipant’s (future) performance on the ith item of an IQ test, x

i

= 1 the potential
outcome of a correct response, and x

i

= 0 the potential outcome of an incorrect
response on the ith item. Similarly, X

i

is the ith trial in a coin flip experiment
with two potential outcomes: heads, x

i

= 1, or tails, x
i

= 0. Thus, we have
the binary outcome space X = {0, 1}. The coin flip model is also known as the
Bernoulli distribution f(x

i

| ✓) that relates the coin’s propensity ✓ 2 (0, 1) to land
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heads to the potential outcomes as

f(x
i

| ✓) = ✓xi(1� ✓)1�x

i , where x
i

2 X = {0, 1}. (13.1.1)

Formally, if ✓ is known, fixing it in the functional relationship f yields a function
p
✓

(x
i

) = f(x
i

| ✓) of the potential outcomes x
i

. This p
✓

(x
i

) is referred to as a
probability density function (pdf) when X

i

has outcomes in a continuous interval,
whereas it is known as a probability mass function (pmf) when X

i

has discrete
outcomes. The pmf p

✓

(x
i

) = P (X
i

= x
i

| ✓) can be thought of as a data generative
device as it specifies how ✓ defines the chance with which X

i

takes on a potential
outcome x

i

. As this holds for any outcome x
i

of X
i

, we say that X
i

is distributed
according to p

✓

(x
i

). For brevity, we do not further distinguish the continuous from
the discrete case, and refer to p

✓

(x
i

) simply as a pmf.
For example, when the coin’s true propensity is ✓⇤ = 0.3, replacing ✓ by ✓⇤ in

the Bernoulli distribution yields the pmf p
0.3

(x
i

) = 0.3xi0.71�x

i , a function of all
possible outcomes ofX

i

. A subsequent replacement x
i

= 0 in the pmf p
0.3

(0) = 0.7
tells us that this coin generates the outcome 0 with 70% chance.

In general, experiments consist of n trials yielding a potential set of outcomes
xn = (x

1

, . . . , x
n

) of the random vector Xn = (X
1

, . . . , X
n

). These n random
variables are typically assumed to be independent and identically distributed (iid).
Identically distributed implies that each of these n random variables is governed
by one and the same ✓, while independence implies that the joint distribution of
all these n random variables simultaneously is given by a product, that is,

f(xn | ✓) = f(x
1

| ✓)⇥ . . .⇥ f(x
n

| ✓) =
n

Y

i=1

f(x
i

| ✓). (13.1.2)

As before, when ✓ is known, fixing it in this relationship f(xn | ✓) yields the (joint)
pmf of Xn as p

✓

(xn) = p
✓

(x
1

)⇥ . . .⇥ p
✓

(x
n

) =
Q

n

i=1

p
✓

(x
i

).
In psychology the iid assumption is typically evoked when experimental data

are analysed in which participants have been confronted with a sequence of n
items of roughly equal di�culty. When the participant can be either correct or
incorrect on each trial, the participant’s performance Xn can then be related to
an n-trial coin flip experiment governed by one single ✓ over all n trials. The
random vector Xn has 2n potential outcomes xn. For instance, when n = 10, we
have 2n = 1,024 possible outcomes and we write Xn for the collection of all these
potential outcomes. The chance of observing a potential outcome xn is determined
by the coin’s propensity ✓ as

f(xn | ✓) = f(x
1

| ✓)⇥ . . .⇥ f(x
n

| ✓) = ✓
P

n

i=1 x

i(1� ✓)n�
P

n

i=1 x

i , (13.1.3)

where xn 2 Xn. When the coin’s true propensity ✓ is ✓⇤ = 0.6, replacing ✓ by ✓⇤ in
Eq. (13.1.3) yields the joint pmf p

0.6

(xn) = f(xn | ✓ = 0.6) = 0.6
P

n

i=1 x

i0.4n�
P

n

i=1 x

i .
The pmf with a particular outcome entered, say, xn = (1, 1, 1, 1, 1, 1, 1, 0, 0, 0) re-
veals that the coin with ✓⇤ = 0.6 generates this particular outcome with 0.18%
chance.
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13.1.2 Definition of Fisher information

In practice, the true value of ✓ is not known and has to be inferred from the
observed data. The first step typically entails the creation of a data summary.
For example, suppose once more that Xn refers to an n-trial coin flip experiment
and suppose that we observed xn

obs

= (1, 0, 0, 1, 1, 1, 1, 0, 1, 1). To simplify matters,
we only record the number of heads as Y =

P

n

i=1

X
i

, which is a function of the
data. Applying our function to the specific observations yields the realisation
y
obs

= Y (xn

obs

) = 7. Since the coin flips Xn are governed by ✓, so is a function of
Xn; indeed, ✓ relates to the potential outcomes y of Y as follows

f(y | ✓) =
✓

n

y

◆

✓y(1� ✓)n�y, where y 2 Y = {0, 1, . . . , n}, (13.1.4)

where
�

n

y

�

= n!

y!(n�y)!

enumerates the possible sequences of length n that consist of
y heads and n� y tails. For instance, when flipping a coin n = 10 times, there are
120 possible sequences of zeroes and ones that contain y = 7 heads and n� y = 3
tails. The distribution f(y | ✓) is known as the binomial distribution.

The summary statistic Y has n+1 possible outcomes, whereas Xn has 2n. For
instance, when n = 10 the statistic Y has only 11 possible outcomes, whereas Xn

has 1,024. This reduction results from the fact that the statistic Y ignores the
order with which the data are collected. Observe that the conditional probability
of the raw data given Y = y is equal to P (Xn |Y = y, ✓) = 1/

�

n

y

�

and that it
does not depend on ✓. This means that after we observe Y = y the conditional
probability of Xn is independent of ✓, even though each of the distributions of
Xn and Y separately do depend on ✓. We, therefore, conclude that there is no
information about ✓ left in Xn after observing Y = y (Fisher, 1920; Stigler, 1973).

More generally, we call a function of the data, say, T = t(Xn) a statis-
tic. A statistic is referred to as su�cient for the parameter ✓, if the expression
P (Xn |T = t, ✓) does not depend on ✓ itself. To quantify the amount of infor-
mation about the parameter ✓ in a su�cient statistic T and the raw data, Fisher
introduced the following measure.

Definition 13.1.1 (Fisher information). The Fisher information I
X

(✓) of a ran-
dom variable X about ✓ is defined as1

I
X

(✓) =

8

>

<

>

:

P

x2X

⇣

d
d✓ log f(x | ✓)

⌘

2

p
✓

(x) if X is discrete,
R

X

⇣

d
d✓ log f(x | ✓)

⌘

2

p
✓

(x)dx if X is continuous.
(13.1.6)

The derivative d
d✓ log f(x | ✓) is known as the score function, a function of x, and

describes how sensitive the model (i.e., the functional form f) is to changes in

1Under mild regularity conditions Fisher information is equivalently defined as

I
X

(✓) = �E
⇣ d2

d✓2
log f(X | ✓)

⌘
=

8
<

:
�P

x2X

⇣
d2

d✓2 log f(x | ✓)
⌘
p
✓

(x) if X is discrete,

� RX
⇣

d2

d✓2 log f(x | ✓)
⌘
p
✓

(x)dx if X is continuous.

(13.1.5)

where d2

d✓2 log f(x | ✓) denotes the second derivate of the logarithm of f with respect to ✓.
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13.2. The role of Fisher information in frequentist statistics

✓ at a particular ✓. The Fisher information measures the overall sensitivity of
the functional relationship f to changes of ✓ by weighting the sensitivity at each
potential outcome x with respect to the chance defined by p

✓

(x) = f(x | ✓). The
weighting with respect to p

✓

(x) implies that the Fisher information about ✓ is an
expectation.

Similarly, Fisher information I
X

n(✓) within the random vector Xn about ✓
is calculated by replacing f(x | ✓) with f(xn | ✓), thus, p

✓

(x) with p
✓

(xn) in the
definition. Moreover, under the assumption that the random vector Xn consists
of n iid trials of X it can be shown that I

X

n(✓) = nI
X

(✓), which is why I
X

(✓) is
also known as the unit Fisher information.2 Intuitively, an experiment consisting
of n = 10 trials is expected to be twice as informative about ✓ compared to an
experiment consisting of only n = 5 trials. ⇧

Intuitively, we cannot expect an arbitrary summary statistic T to extract more
information about ✓ than what is already provided by the raw data. Fisher infor-
mation adheres to this rule, as it can be shown that

I
X

n(✓) � I
T

(✓), (13.1.7)

with equality if and only if T is a su�cient statistic for ✓.

Example 13.1.1 (The information about ✓ within the raw data and a sum-
mary statistic). A direct calculation with a Bernoulli distributed random vector
Xn shows that the Fisher information about ✓ within an n-trial coin flip experi-
ment is given by

I
X

n(✓) = nI
X

(✓) = n
1

✓(1� ✓)
, (13.1.8)

where I
X

(✓) = 1

✓(1�✓)

is the Fisher information of ✓ within a single trial. As shown

in Fig. 13.1, the unit Fisher information I
X

(✓) depends on ✓. Similarly, we can
calculate the Fisher information about ✓ within the summary statistic Y by using
the binomial model instead. This yields I

Y

(✓) = n

✓(1�✓)

. Hence, I
X

n(✓) = I
Y

(✓)
for any value of ✓. In other words, the expected information in Y about ✓ is the
same as the expected information about ✓ in Xn, regardless of the value of ✓. ⇧

Observe that the information in the raw data Xn and the statistic Y are equal
for every ✓, and specifically also for its unknown true value ✓⇤. That is, there is
no statistical information about ✓ lost when we use a su�cient statistic Y instead
of the raw data Xn. This is particular useful when the data set Xn is large and
can be replaced by single number Y .

13.2 The role of Fisher information in frequentist statistics

Recall that ✓ is unknown in practice and to infer its value we might: (1) provide a
best guess in terms of a point estimate; (2) postulate its value and test whether this

2Note the abuse of notation – we dropped the subscript i for the ith random variable X
i

and
denote it simply by X instead.
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Figure 13.1: The unit Fisher information I
X

(✓) = 1

✓(1�✓)

as a function of ✓ within
the Bernoulli model. As ✓ reaches zero or one the expected information goes to
infinity.

value aligns with the data, or (3) derive a confidence interval. In the frequentist
framework, each of these inferential tools is related to the Fisher information and
exploits the data generative interpretation of a pmf. Recall that given a model
f(xn | ✓) and a known ✓, we can view the resulting pmf p

✓

(xn) as a recipe that
reveals how ✓ defines the chances with which Xn takes on the potential outcomes
xn.

This data generative view is central to Fisher’s conceptualisation of the maxi-
mum likelihood estimator (MLE; Fisher, 1912; Fisher, 1922; Fisher, 1925; LeCam,
1990; Myung, 2003). For instance, the binomial model implies that a coin with
a hypothetical propensity ✓ = 0.5 will generate the outcome y = 7 heads out of
n = 10 trials with 11.7% chance, whereas a hypothetical propensity of ✓ = 0.7 will
generate the same outcome y = 7 with 26.7% chance. Fisher concluded that an
actual observation y

obs

= 7 out of n = 10 is therefore more likely to be generated
from a coin with a hypothetical propensity of ✓ = 0.7 than from a coin with a
hypothetical propensity of ✓ = 0.5. Fig. 13.2 shows that for this specific observa-
tion y

obs

= 7, the hypothetical value ✓ = 0.7 is the maximum likelihood estimate;
the number ✓̂

obs

= 0.7. This estimate is a realisation of the maximum likelihood
estimator (MLE); in this case, the MLE is the function ✓̂ = 1

n

P

n

i=1

X
i

= 1

n

Y ,
i.e., the sample mean. Note that the MLE is a statistic, that is, a function of the
data.

13.2.1 Using Fisher information to design an experiment

Since Xn depends on ✓ so will a function of Xn, in particular, the MLE ✓̂. The
distribution of the potential outcomes of the MLE ✓̂ is known as the sampling
distribution of the estimator and denoted as f(✓̂

obs

| ✓). As before, when ✓⇤ is
assumed to be known, fixing it in f(✓̂

obs

| ✓) yields the pmf p
✓

⇤(✓̂
obs

), a function
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Figure 13.2: The likelihood function based on observing y
obs

= 7 heads in n = 10
trials. For these data, the MLE is equal to ✓̂

obs

= 0.7, see the main text for the
interpretation of this function.

of the potential outcomes of ✓̂. This function f between the parameter ✓ and the
potential outcomes of the MLE ✓̂ is typically hard to describe, but for n large
enough it can be characterised by the Fisher information.

For iid data and under general conditions,3 the di↵erence between the true ✓⇤

and the MLE converges in distribution to a normal distribution, that is,

p
n(✓̂ � ✓⇤)

D! N (0, I�1

X

(✓⇤)), as n ! 1. (13.2.1)

Hence, for large enough n, the “error” is approximately normally distributed4

(✓̂ � ✓⇤)
D⇡ N

⇣

0, 1/(nI
X

(✓⇤))
⌘

. (13.2.2)

This means that the MLE ✓̂ generates potential estimates ✓̂
obs

around the true
value ✓⇤ with a standard error given by the inverse of the square root of the Fisher
information at the true value ✓⇤, i.e., 1/

p

nI
X

(✓⇤), whenever n is large enough.

Note that the chances with which the estimates of ✓̂ are generated depend on the
true value ✓⇤ and the sample size n. Observe that the standard error decreases

3Basically, when the Fisher information exists for all parameter values. For details see the
advanced accounts provided by Bickel et al. (1993), Hájek (1970), Inagaki (1970), LeCam (1970)
and Appendix 13.E.

4Note that ✓̂ is random, while the true value ✓⇤ is fixed. As such, the error ✓̂ � ✓⇤ and

the rescaled error
p
n(✓̂ � ✓⇤) are also random. We used

D! in Eq. (13.2.1) to convey that
the distribution of the left-hand side goes to the distribution on the right-hand side. Similarly,
D⇡ in Eq. (13.2.2) implies that the distribution of the left-hand side is approximately equal to
the distribution given on the right-hand side. Hence, for finite n there will be an error due
to using the normal distribution as an approximation to the true sampling distribution. This
approximation error is ignored in the constructions given below, see Appendix 13.B.1 for a more
thorough discussion.
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when the unit information I
X

(✓⇤) is high or when n is large. As experimenters we
do not have control over the true value ✓⇤, but we can a↵ect the data generating
process by choosing the number of trials n. Larger values of n increase the amount
of information in Xn, heightening the chances of the MLE producing an estimate
✓̂
obs

that is close to the true value ✓⇤. The following example shows how this can
be made precise.

Example 13.2.1 (Designing a binomial experiment with the Fisher information).
Recall that the potential outcomes of a normal distribution fall within one standard
error of the population mean with 68% chance. Hence, when we choose n such
that 1/

p

nI
X

(✓⇤) = 0.1 we design an experiment that allows the MLE to generate
estimates within 0.1 distance of the true value with 68% chance. To overcome the
problem that ✓⇤ is not known, we solve the problem for the worst case scenario.
For the Bernoulli model this is given by ✓ = 1/2, the least informative case, see
Fig. 13.1. As such, we have 1/

p

nI
X

(✓⇤)  1/
p

nI
X

(1/2) = 1/(2
p
n) = 0.1,

where the last equality is the target requirement and is solved by n = 25.
This leads to the following interpretation. After simulating k = 100 data sets

xn

obs,1

, . . . , xn

obs,k

each with n = 25 trials, we can apply to each of these data sets

the MLE yielding k estimates ✓̂
obs,1

, . . . , ✓̂
obs,k

. The sampling distribution implies
that at least 68 of these k = 100 estimate are expected to be at most 0.1 distance
away from the true ✓⇤. ⇧

13.2.2 Using Fisher information to construct a null hypothesis
test

The (asymptotic) normal approximation to the sampling distribution of the MLE
can also be used to construct a null hypothesis test. When we postulate that
the true value equals some hypothesised value of interest, say, ✓⇤ = ✓

0

, a simple
plugin then allows us to construct a prediction interval based on our knowledge of
the normal distribution. More precisely, the potential outcomes xn with n large
enough and generated according to p

✓

⇤(xn) leads to potential estimates ✓̂
obs

that
fall within the range

 

✓⇤ � 1.96

r

1

n
I�1

X

(✓⇤), ✓⇤ + 1.96

r

1

n
I�1

X

(✓⇤)

!

, (13.2.3)

with (approximately) 95% chance. This 95%-prediction interval Eq. (13.2.3) allows
us to construct a point null hypothesis test based on a pre-experimental postulate
✓⇤ = ✓

0

.

Example 13.2.2 (A null hypothesis test for a binomial experiment). Under the
null hypothesis H

0

: ✓⇤ = ✓
0

= 0.5, we predict that an outcome of the MLE based on
n = 10 trials will lie between (0.19, 0.81) with 95% chance. This interval follows
from replacing ✓⇤ by ✓

0

in the 95%-prediction interval Eq. (13.2.3). The data
generative view implies that if we simulate k = 100 data sets each with the same
✓⇤ = 0.5 and n = 10, we would then have k estimates ✓̂

obs,1

, . . . , ✓̂
obs,k

of which
five are expected to be outside this 95% interval (0.19, 0.81). Fisher, therefore,

220



13.2. The role of Fisher information in frequentist statistics

classified an outcome of the MLE that is smaller than 0.19 or larger than 0.81
as extreme under the null and would then reject the postulate H

0

: ✓
0

= 0.5 at a
significance level of .05. ⇧

The normal approximation to the sampling distribution of the MLE and the
resulting null hypothesis test is particularly useful when the exact sampling dis-
tribution of the MLE is unavailable or hard to compute.

Example 13.2.3 (An MLE null hypothesis test for the Laplace model). Suppose
that we have n iid samples from the Laplace distribution

f(x
i

| ✓) = 1

2b
exp

✓

� |x
i

� ✓|
b

◆

, (13.2.4)

where ✓ denotes the population mean and the population variance is given by 2b2.
It can be shown that the MLE for this model is the sample median, ✓̂ = M̂ , and the
unit Fisher information is I

X

(✓) = b�2. The exact sampling distribution of the
MLE is unwieldy (Kotz et al., 2001) and not presented here. Asymptotic normality
of the MLE is practical, as it allows us to discard the unwieldy exact sampling
distribution and, instead, base our inference on a more tractable (approximate)
normal distribution with a mean equal to the true value ✓⇤ and a variance equal to
b2/n. For n = 100, b = 1 and repeated sampling under the hypothesis H

0

: ✓⇤ = ✓
0

,
approximately 95% of the estimates (the observed sample medians) are expected to
fall in the range (✓

0

� 0.196, ✓
0

+ 0.196). ⇧

13.2.3 Using Fisher information to compute confidence
intervals

An alternative to both point estimation and null hypothesis testing is interval
estimation. In particular, a 95%-confidence interval can be obtained by replacing
in the prediction interval Eq. (13.2.3) the unknown true value ✓⇤ by an estimate
✓̂
obs

. Recall that a simulation with k = 100 data sets each with n trials leads to
✓̂
obs,1

, . . . , ✓̂
obs,k

estimates, and each estimate leads to a di↵erent 95%-confidence
interval. It is then expected that 95 of these k = 100 intervals encapsulate the true
value ✓⇤.5 Note that these intervals are centred around di↵erent points whenever
the estimates di↵er and that their lengths di↵er, as the Fisher information depends
on ✓.

Example 13.2.4 (An MLE confidence interval for the Bernoulli model). When
we observe y

obs,1

= 7 heads in n = 10 trials, the MLE then produces the estimate

✓̂
obs,1

= 0.7. Replacing ✓⇤ in the prediction interval Eq. (13.2.3) with ✓⇤ = ✓̂
obs,1

yields an approximate 95%-confidence interval (0.42, 0.98) of length 0.57. On the
other hand, had we instead observed y

obs,2

= 6 heads, the MLE would then yield

✓̂
obs,2

= 0.6 resulting in the interval (0.29, 0.90) of length 0.61. ⇧

In sum, Fisher information can be used to approximate the sampling distri-
bution of the MLE when n is large enough. Knowledge of the Fisher information

5But see Brown et al. (2001).
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can be used to choose n such that the MLE produces an estimate close to the true
value, construct a null hypothesis test, and compute confidence intervals.

13.3 The role of Fisher information in Bayesian statistics

This section outlines how Fisher information can be used to define the Je↵reys’s
prior, a default prior commonly used for estimation problems and for nuisance
parameters in a Bayesian hypothesis test (e.g., Bayarri et al., 2012; Dawid, 2011;
Gronau et al., 2017a; Je↵reys, 1961; Liang et al., 2008; Li and Clyde, 2015; Ly
et al., 2016a, 2016b; Ly et al., 2017d; Ly et al., 2017e; Robert, 2016). To illustrate
the desirability of the Je↵reys’s prior we first show how the naive use of a uni-
form prior may have undesirable consequences, as the uniform prior depends on
the representation of the inference problem, that is, on how the model is parame-
terised. This dependence is commonly referred to as lack of invariance: di↵erent
parameterisations of the same model result in di↵erent posteriors and, hence, dif-
ferent conclusions. We visualise the representation problem using simple geometry
and show how the geometrical interpretation of Fisher information leads to the
Je↵reys’s prior that is parameterisation-invariant.

13.3.1 Bayesian updating

Bayesian analysis centres on the observations xn

obs

for which a generative model f is
proposed that functionally relates the observed data to an unobserved parameter
✓. Given the observations xn

obs

, the functional relationship f is inverted using
Bayes’ rule to infer the relative plausibility of the values of ✓. This is done by
replacing the potential outcome part xn in f by the actual observations yielding
a likelihood function f(xn

obs

| ✓), which is a function of ✓. In other words, xn

obs

is known, thus, fixed, and the true ✓ is unknown, therefore, free to vary. The
candidate set of possible values for the true ✓ is denoted by ⇥ and referred to
as the parameter space. Our knowledge about ✓ is formalised by a distribution
g(✓) over the parameter space ⇥. This distribution is known as the prior on ✓, as
it is set before any datum is observed. We can use Bayes’ theorem to calculate
the posterior distribution over the parameter space ⇥ given the data that were
actually observed as follows

g(✓ |Xn = xn

obs

) =
f(xn

obs

| ✓)g(✓)
R

⇥

f(xn

obs

| ✓)g(✓) d✓ . (13.3.1)

This expression is often verbalised as

posterior =
likelihood⇥ prior

marginal likelihood
. (13.3.2)

The posterior distribution is a combination of what we knew before we saw the data
(i.e., the information in the prior), and what we have learned from the observations
in terms of the likelihood (e.g., Lee and Wagenmakers, 2013). Note that the
integral is now over ✓ and not over the potential outcomes.
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Figure 13.3: Bayesian updating based on observations xn

obs

with y
obs

= 7 heads
out of n = 10 tosses. In the left panel, the uniform prior distribution assigns equal
probability to every possible value of the coin’s propensity ✓. In the right panel,
the posterior distribution is a compromise between the prior and the observed
data.

13.3.2 Failure of the uniform distribution on the parameter as
a non-informative prior

When little is known about the parameter ✓ that governs the outcomes of Xn, it
may seem reasonable to express this ignorance with a uniform prior distribution
g(✓), as no parameter value of ✓ is then favoured over another. This leads to the
following type of inference:

Example 13.3.1 (Uniform prior on ✓). Before data collection, ✓ is assigned a
uniform prior, that is, g(✓) = 1/V

⇥

with a normalisation constant of V
⇥

= 1 as
shown in the left panel of Fig. 13.3. Suppose that we observe coin flip data xn

obs

with y
obs

= 7 heads out of n = 10 trials. To relate these observations to the coin’s
propensity ✓ we use the Bernoulli distribution as our f(xn | ✓). A replacement of xn

by the data actually observed yields the likelihood function f(xn

obs

| ✓) = ✓7(1� ✓)3,
which is a function of ✓. Bayes’ theorem now allows us to update our prior to the
posterior that is plotted in the right panel of Fig. 13.3. ⇧

Note that a uniform prior on ✓ has the length, more generally, volume, of
the parameter space as the normalisation constant; in this case, V

⇥

= 1, which
equals the length of the interval ⇥ = (0, 1). Furthermore, a uniform prior can be
characterised as the prior that gives equal probability to all sub-intervals of equal
length. Thus, the probability of finding the true value ✓⇤ within a sub-interval
J
✓

= (✓
a

, ✓
b

) ⇢ ⇥ = (0, 1) is given by the relative length of J
✓

with respect to the
length of the parameter space, that is,

P
⇣

✓⇤ 2 J
✓

⌘

=

Z

J

✓

g(✓)d✓ =
1

V
⇥

Z

✓

b

✓

a

1d✓ =
✓
b

� ✓
a

V
⇥

. (13.3.3)

Hence, before any datum is observed, the uniform prior expresses the belief P (✓⇤ 2
J
✓

) = 0.20 of finding the true value ✓⇤ within the interval J
✓

= (0.6, 0.8). After
observing xn

obs

with y
obs

= 7 out of n = 10, this prior is updated to the posterior
belief of P (✓⇤ 2 J

✓

|xn

obs

) = 0.54, see the shaded areas in Fig. 13.3.
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Although intuitively appealing, it can be unwise to choose the uniform dis-
tribution by default, as the results are highly dependent on how the model is
parameterised. In what follows, we show how a di↵erent parameterisation leads
to di↵erent posteriors and, consequently, di↵erent conclusions.

Example 13.3.2 (Di↵erent representations, di↵erent conclusions). The propen-
sity of a coin landing heads up is related to the angle � with which that coin is bent.
Suppose that the relation between the angle � and the propensity ✓ is given by the
function ✓ = h(�) = 1

2

+ 1

2

(�
⇡

)3, chosen here for mathematical convenience.6 When
� is positive the tail side of the coin is bent inwards, which increases the coin’s
chances to land heads. As the function ✓ = h(�) also admits an inverse function
h�1(✓) = �, we have an equivalent formulation of the problem in Example 13.3.1,
but now described in terms of the angle � instead of the propensity ✓.

As before, in order to obtain a posterior distribution, Bayes’ theorem requires
that we specify a prior distribution. As the problem is formulated in terms of �,
one may believe that a non-informative choice is to assign a uniform prior g̃(�)
on �, as this means that no value of � is favoured over another. A uniform prior
on � is in this case given by g̃(�) = 1/V

�

with a normalisation constant V
�

= 2⇡,
because the parameter � takes on values in the interval � = (�⇡,⇡). This uniform
distribution expresses the belief that the true �⇤ can be found in any of the intervals
(�1.0⇡,�0.8⇡), (�0.8⇡,�0.6⇡), . . . , (0.8⇡, 1.0⇡) with 10% probability, because each
of these intervals is 10% of the total length, see the top-left panel of Fig. 13.4. For
the same data as before, the posterior calculated from Bayes’ theorem is given in
top-right panel of Fig. 13.4. As the problem in terms of the angle � is equivalent
to that of ✓ = h(�) we can use the function h to translate the posterior in terms
of � to a posterior on ✓, see the bottom-right panel of Fig. 13.4. This posterior on
✓ is noticeably di↵erent from the posterior on ✓ shown in Figure 13.3.

Specifically, the uniform prior on � corresponds to the prior belief P̃ (✓⇤ 2
J
✓

) = 0.13 of finding the true value ✓⇤ within the interval J
✓

= (0.6, 0.8). After
observing xn

obs

with y
obs

= 7 out of n = 10, this prior is updated to the posterior
belief of P̃ (✓⇤ 2 J

✓

|xn

obs

) = 0.29,7 see the shaded areas in Fig. 13.4. Crucially,
the earlier analysis that assigned a uniform prior to the propensity ✓ yielded a
posterior probability P (✓⇤ 2 J

✓

|xn

obs

) = 0.54, which is markedly di↵erent from the
current analysis that assigns a uniform prior to the angle �.

The same posterior on ✓ is obtained when the prior on � is first translated
into a prior on ✓ (bottom-left panel) and then updated to a posterior with Bayes’
theorem. Regardless of the stage at which the transformation is applied, the result-
ing posterior on ✓ di↵ers substantially from the result plotted in the right panel of
Fig. 13.3. ⇧

Thus, the uniform prior distribution is not a panacea for the quantification of
prior ignorance, as the conclusions depend on how the problem is parameterised.

6Another example involves the logit formulation of the Bernoulli model, that is, in terms of
� = log( ✓

1�✓

), where � = R. This logit formulation is the basic building block in item response
theory. We did not discuss this example as the uniform prior on the logit cannot be normalised
and, therefore, not easily represented in the plots.

7The tilde makes explicit that the prior and posterior are derived from the uniform prior
g̃(�) on �.
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Figure 13.4: Bayesian updating based on observations xn

obs

with y
obs

= 7 heads
out of n = 10 tosses when a uniform prior distribution is assigned to the the coin’s
angle �. The uniform distribution is shown in the top-left panel. Bayes’ theorem
results in a posterior distribution for � that is shown in the top-right panel. This
posterior g̃(� |xn

obs

) is transformed into a posterior on ✓ (bottom-right panel) using
✓ = h(�). The same posterior on ✓ is obtained if we proceed via an alternative
route in which we first transform the uniform prior on � to the corresponding prior
on ✓ and then apply Bayes’ theorem with the induced prior on ✓. A comparison to
the results from Fig. 13.3 reveals that posterior inference di↵ers notably depending
on whether a uniform distribution is assigned to the angle � or to the propensity
✓.

In particular, a uniform prior on the coin’s angle g̃(�) = 1/V
�

yields a highly
informative prior in terms of the coin’s propensity ✓. This lack of invariance
caused Karl Pearson, Ronald Fisher and Jerzy Neyman to reject 19th century
Bayesian statistics that was based on the uniform prior championed by Pierre-
Simon Laplace. This rejection resulted in, what is now known as, frequentist
statistics, see also Hald (2008), Lehmann (2011), and Stigler (1986).

13.3.3 A default prior by Je↵reys’s rule

Unlike the other fathers of modern statistical thoughts, Harold Je↵reys continued
to study Bayesian statistics based on formal logic and his philosophical convic-
tions of scientific inference (see, e.g., Aldrich, 2005; Etz and Wagenmakers, 2017;
Je↵reys, 1961; Ly et al., 2016a, 2016b; Robert et al., 2009; Wrinch and Je↵reys,
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Figure 13.5: For priors constructed through Je↵reys’s rule it does not matter
whether the problem is represented in terms of the angles � or its propensity ✓.
Thus, not only is the problem equivalent due to the transformations ✓ = h(�) and
its backwards transformation � = h�1(✓), the prior information is the same in
both representations. This also holds for the posteriors.

1919, 1921, 1923). Je↵reys concluded that the uniform prior is unsuitable as a
default prior due to its dependence on the parameterisation. As an alternative,
Je↵reys (1946) proposed the following prior based on Fisher information

g
J

(✓) =
1

V

p

I
X

(✓), where V =

Z

⇥

p

I
X

(✓)d✓, (13.3.4)

which is known as the prior derived from Je↵reys’s rule or the Je↵reys’s prior
in short. The Je↵reys’s prior is parameterisation-invariant, which implies that it
leads to the same posteriors regardless of how the model is represented.

Example 13.3.3 (Je↵reys’s prior). The Je↵reys’s prior of the Bernoulli model
in terms of � is

g
J

(�) =
3�2

V
p

⇡6 � �6
, where V = ⇡, (13.3.5)

which is plotted in the top-left panel of Fig. 13.5. The corresponding posterior is
plotted in the top-right panel, which we transformed into a posterior in terms of ✓
using the function ✓ = h(�) shown in the bottom-right panel.8

8The subscript J makes explicit that the prior and posterior are based on the prior derived
from Je↵reys’s rule, i.e., g

J

(✓) on ✓, or equivalently, g
J

(�) on �.
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Similarly, we could have started with the Je↵reys’s prior in terms of ✓ instead,
that is,

g
J

(✓) =
1

V
p

✓(1� ✓)
, where V = ⇡. (13.3.6)

The Je↵reys’s prior and posterior on ✓ are plotted in the bottom-left and the
bottom-right panel of Fig. 13.5, respectively. The Je↵reys’s prior on ✓ corresponds
to the prior belief P

J

(✓⇤ 2 J
✓

) = 0.14 of finding the true value ✓⇤ within the in-
terval J

✓

= (0.6, 0.8). After observing xn

obs

with y
obs

= 7 out of n = 10, this prior
is updated to the posterior belief of P

J

(✓⇤ 2 J
✓

|xn

obs

) = 0.53, see the shaded areas
in Fig. 13.5. The posterior is identical to the one obtained from the previously
described updating procedure that starts with the Je↵reys’s prior on � instead of
on ✓. ⇧

This example shows that the Je↵reys’s prior leads to the same posterior knowl-
edge regardless of how we as researcher represent the problem. Hence, the same
conclusions about ✓ are drawn regardless of whether we (1) use Je↵reys’s rule to
construct a prior on ✓ and update with the observed data, or (2) use Je↵reys’s
rule to construct a prior on �, update to a posterior distribution on �, which is
then transformed to a posterior on ✓.

13.3.4 Geometrical properties of Fisher information

In the remainder of this section we make intuitive that the Je↵reys’s prior is in
fact uniform in the model space. We elaborate on what is meant by model space
and how this can be viewed geometrically. This geometric approach illustrates
(1) the role of Fisher information in the definition of the Je↵reys’s prior, (2) the
interpretation of the shaded area, and (3) why the normalisation constant is V = ⇡,
regardless of the chosen parameterisation.

13.3.4.1 The model space M

Before we describe the geometry of statistical models, recall that a pmf can be
thought of as a data generating device of X, as the pmf specifies the chances with
which X takes on the potential outcomes 0 and 1. Each such pmf has to fulfil two
conditions: (i) the chances have to be non-negative, that is, 0  p(x) = P (X = x)
for every possible outcome x ofX, and (ii) to explicitly convey that there are w = 2
outcomes, and none more, the chances have to sum to one, that is, p(0)+p(1) = 1.
We call the largest set of functions that adhere to conditions (i) and (ii) the
complete set of pmfs P.

As any pmf from P defines w = 2 chances, we can represent such a pmf as
a vector in w dimensions. To simplify notation, we write p(X) for all w chances
simultaneously, hence, p(X) is the vector p(X) = [p(0), p(1)] when w = 2. The two
chances with which a pmf p(X) generates outcomes of X can be simultaneously
represented in the plane with p(0) = P (X = 0) on the horizontal axis and p(1) =
P (X = 1) on the vertical axis. In the most extreme case, we have the pmf
p(X) = [1, 0] or p(X) = [0, 1]. These two extremes are linked by a straight line in
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Figure 13.6: The true pmf of X with the two outcomes {0, 1} has to lie on the
line (left panel) or more naturally on the positive part of the circle (right panel).
The dot represents the pmf p

e

(X).

the left panel of Fig. 13.6. Any pmf –and the true pmf p⇤(X) of X in particular–
can be uniquely identified with a vector on the line and vice versa. For instance,
the pmf p

e

(X) = [1/2, 1/2] (i.e., the two outcomes are generated with the same
chance) is depicted as the dot on the line.

This vector representation allows us to associate to each pmf of X a norm,
that is, a length. Our intuitive notion of length is based on the Euclidean norm
and entails taking the root of the sums of squares. For instance, we can associate
to the pmf p

e

(X) the length kp
e

(X)k
2

=
p

(1/2)2 + (1/2)2 = 1/
p
2 ⇡ 0.71. On

the other hand, the length of the pmf that states that X = 1 is generated with
100% chance has length one. Note that by eye, we conclude that p

e

(X), the arrow
pointing to the dot in the left panel in Fig. 13.6 is indeed much shorter than the
arrow pointing to extreme pmf p(X) = [0, 1].

This mismatch in lengths can be avoided when we represent each pmf p(X)
by two times its square root instead (Kass, 1989), that is, by m(X) = 2

p

p(X) =

[2
p

p(0), 2
p

p(1)].9 A pmf that is identified as the vector m(X) is now two units

away from the origin, that is, km(X)k
2

=
p

m(0)2 +m(1)2 =
p

4(p(0) + p(1)) =
2. For instance, the pmf p

e

(X) is now represented as m
e

(X) ⇡ [1.41, 1.41]. The
model space M is the collection of all transformed pmfs and represented as the
surface of (the positive part of) a circle, see the right panel of Fig. 13.6.10 By
representing the set of all possible pmfs of X as vectors m(X) = 2

p

p(X) that
reside on the sphere M, we adopted our intuitive notion of distance. As a result,
we can now, by simply looking at the figures, clarify that a uniform prior on the
parameter space may lead to a very informative prior in the model space M.

9The factor two is used to avoid a scaling of a quarter, though, its precise value is not essential
for the ideas conveyed here. To simplify matters, we also call m(X) a pmf.

10Hence, the model space M is the collection of all functions on X such that (i) m(x) � 0 for

every outcome x of X, and (ii)
p

m(0)2 +m(1)2 = 2. This vector representation of all the pmfs
on X has the advantage that it also induces an inner product, which allows one to project one
vector onto another, see Rudin (1991, p. 4), van der Vaart (1998, p. 94) and Appendix 13.E.
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13.3.4.2 Uniform on the parameter space versus uniform on the
model space

As M represents the largest set of pmfs, any model defines a subset of M. Recall
that the function f(x | ✓) represents how we believe a parameter ✓ is functionally
related to an outcome x of X. For each ✓ this parameterisation yields a pmf
p
✓

(X) and, thus, also the vector m
✓

(X) = 2
p

p
✓

(X). We denote the resulting set
of vectors m

✓

(X) so created by M
⇥

. For instance, the Bernoulli model f(x | ✓) =
✓x(1�✓)1�x consists of pmfs given by p

✓

(X) = [f(0 | ✓), f(1 | ✓)] = [1�✓, ✓], which
we represent as the vectors m

✓

(X) = [2
p
1� ✓, 2

p
✓]. Doing this for every ✓ in

the parameter space ⇥ yields the candidate set of pmfs M
⇥

. In this case, we
obtain a saturated model, since M

⇥

= M, see the left panel in Fig. 13.7, where
the right most square on the curve corresponds to m

0

(X) = [2, 0]. By following
the curve in an anti-clockwise manner we encounter squares that represent the
pmfs m

✓

(X) corresponding to ✓ = 0.1, 0.2, . . . , 1.0 respectively. In the right panel
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Figure 13.7: The parameterisation in terms of propensity ✓ (left panel) and angle
� (right panel) di↵er from each other substantially, and from a uniform prior in the
model space. Left panel: The eleven squares (starting from the right bottom go-
ing anti-clockwise) represent pmfs that correspond to ✓ = 0.0, 0.1, 0.2, . . . , 0.9, 1.0.
The shaded area corresponds to the shaded area in the bottom-left panel of
Fig. 13.5 and accounts for 14% of the model’s length. Right panel: Similarly,
the eleven triangles (starting from the right bottom going anti-clockwise) repre-
sent pmfs that correspond to � = �1.0⇡,�0.8⇡,� . . . 0.8⇡, 1.0⇡.

of Fig. 13.7 the same procedure is repeated, but this time in terms of � at � =
�1.0⇡,�0.8⇡, . . . , 1.0⇡. Indeed, filling in the gaps shows that the Bernoulli model
in terms of ✓ and � fully overlap with the largest set of possible pmfs, thus,
M

⇥

= M = M
�

. Fig. 13.7 makes precise what is meant when we say that the
models M

⇥

and M
�

are equivalent; the two models define the same candidate
set of pmfs that we believe to be viable data generating devices for X.

However, ✓ and � represent M in a substantially di↵erent manner. As the
representation m(X) = 2

p

p(X) respects our natural notion of distance, we con-
clude, by eye, that a uniform division of ✓s with distance, say, d✓ = 0.1 does not
lead to a uniform partition of the model. More extremely, a uniform division of �
with distance d� = 0.2⇡ (10% of the length of the parameter space) also does not
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lead to a uniform partition of the model. In particular, even though the intervals
(�⇡,�0.8⇡) and (�0.2⇡, 0) are of equal length in the parameter space �, they do
not have an equal displacement in the model M

�

. In e↵ect, the right panel of
Fig. 13.7 shows that the 10% probability that the uniform prior on � assigns to
�⇤ 2 (�⇡,�0.8⇡) in parameter space is redistributed over a larger arc length of
the model M

�

compared to the 10% assigned to �⇤ 2 (�0.2⇡, 0). Thus, a uniform
distribution on � favours the pmfs m

�

(X) with � close to zero. Note that this
e↵ect is cancelled by the Je↵reys’s prior, as it puts more mass near the end points
compared to � = 0, see the top-left panel of Fig. 13.5. Similarly, the left panel
of Fig. 13.7 shows that the uniform prior g(✓) also fails to yield an equiprobable
assessment of the pmfs in model space. Again, the Je↵reys’s prior in terms of ✓
compensates for the fact that the interval (0, 0.1) as compared to (0.5, 0.6) in ⇥
is more spread out in model space. However, it does so less severely compared to
the Je↵reys’s prior on �. To illustrate, we added additional tick marks on the hor-
izontal axis of the priors in the left panels of Fig. 13.5. The tick mark at � = �2.8
and ✓ = 0.15 both indicate the 25% quantiles of their respective Je↵reys’s priors.
Hence, the Je↵reys’s prior allocates more mass to the boundaries of � than to the
boundaries of ✓ to compensate for the di↵erence in geometry, see Fig. 13.7. More
generally, the Je↵reys’s prior uses Fisher information to convert the geometry of
the model to the parameter space.

Note that because the Je↵reys’s prior is specified using the Fisher information,
it takes the functional relationship f(x | ✓) into account. The functional relation-
ship makes precise how the parameter is linked to the data and, thus, gives meaning
and context to the parameter. On the other hand, a prior on � specified without
taking the functional relationship f(x |�) into account is a prior that neglects the
context of the problem. For instance, the right panel of Fig. 13.7 shows that this
neglect with a uniform prior on � results in having the geometry of � = (�⇡,⇡)
forced onto the model M

�

.

13.3.5 Uniform prior on the model

Fig. 13.7 shows that neither a uniform prior on ✓, nor a uniform prior on � yields
a uniform prior on the model. Alternatively, we can begin with a uniform prior on
the model M and convert this into priors on the parameter spaces ⇥ and �. This
uniform prior on the model translated to the parameters is exactly the Je↵reys’s
prior.

Recall that a prior on a space S is uniform, if it has the following two defining
features: (i) the prior is proportional to one, and (ii) a normalisation constant
given by V

S

=
R

S

1ds that equals the length, more generally, volume of S. For
instance, a replacement of s by � and S by � = (�⇡,⇡) yields the uniform prior
on the angles with the normalisation constant V

�

=
R

�

1d� = 2⇡. Similarly,
a replacement of s by the pmf m

✓

(X) and S by the function space M
⇥

yields
a uniform prior on the model M

⇥

. The normalisation constant then becomes
a daunting looking integral in terms of displacements dm

✓

(X) between vectors
in model space M

⇥

. Fortunately, it can be shown, see Appendix 13.C, that V
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simplifies to

V =

Z

M⇥

1dm
✓

(X) =

Z

⇥

p

I
X

(✓)d✓. (13.3.7)

Thus, V can be computed in terms of ✓ by multiplying the distances d✓ in ⇥
by the root of the Fisher information. Heuristically, this means that the root
of the Fisher information translates displacements dm

✓

(X) in the model M
⇥

to
distances

p

I
X

(✓)d✓ in the parameter space ⇥.
Recall from Example 13.3.3 that regardless of the parameterisation, the nor-

malisation constant of the Je↵reys’s prior was ⇡. To verify that this is indeed the
length of the model, we use the fact that the circumference of a quarter circle with
radius r = 2 can also be calculated as V = (2⇡r)/4 = ⇡.

Given that the Je↵reys’s prior corresponds to a uniform prior on the model,
we deduce that the shaded area in the bottom-left panel of Fig. 13.5 with P

J

(✓⇤ 2
J
✓

) = 0.14, implies that the model interval J
m

=
⇣

m
0.6

(X),m
0.8

(X)
⌘

, the shaded

area in the left panel of Fig. 13.7, accounts for 14% of the model’s length. After
updating the Je↵reys’s prior with the observations xn

obs

consisting of y
obs

= 7 out
of n = 10 the probability of finding the true data generating pmf m⇤(X) in this
interval of pmfs J

m

is increased to 53%.
In conclusion, we verified that the Je↵reys’s prior is a prior that leads to the

same conclusion regardless of how we parameterise the problem. This property is
a direct result of shifting our focus from finding the true parameter value within
the parameter space to the proper formulation of the estimation problem –as
discovering the true data generating pmf m

✓

⇤(X) = 2
p

p
✓

⇤(X) in M
⇥

and by
expressing our prior ignorance as a uniform prior on the model M

⇥

.

13.4 The role of Fisher information in minimum
description length

In this section we graphically show how Fisher information is used as a measure of
model complexity and its role in model selection within the minimum description
length framework (MDL; de Rooij and Grünwald, 2011; Grünwald et al., 2005;
Grünwald, 2007; Myung et al., 2000c; Myung et al., 2006; Pitt et al., 2002).

The primary aim of a model selection procedure is to select a single model
from a set of competing models, say, models M

1

and M
2

, that best suits the
observed data xn

obs

. Many model selection procedures have been proposed in the
literature, but the most popular methods are those based on penalised maximum
likelihood criteria, such as the Akaike information criterion (AIC; Akaike, 1974;
Burnham and Anderson, 2002), the Bayesian information criterion (BIC; Raftery,
1995; Schwarz, 1978), and the Fisher information approximation (FIA; Grünwald,
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2007; Rissanen, 1996). These criteria are defined as follows

AIC =� 2 log f
j

(xn

obs

| ✓̂
j

(xn

obs

)) + 2d
j

, (13.4.1)

BIC =� 2 log f
j

(xn

obs

| ✓̂
j

(xn

obs

)) + d
j

log(n), (13.4.2)

FIA =� log f
j

(xn

obs

| ✓̂
j

(xn

obs

))
| {z }

Goodness-of-fit

+
d
j

2
log

n

2⇡
| {z }

Dimensionality

+ log

✓

Z

⇥

q

det IM
j

(✓
j

) d✓
j

◆

| {z }

Geometric complexity

,

where n denotes the sample size, d
j

the number of free parameters, ✓̂
j

the MLE,
IM

j

(✓
j

) the unit Fisher information, and f
j

the functional relationship between the
potential outcome xn and the parameters ✓

j

within modelM
j

.11 Hence, except for
the observations xn

obs

, all quantities in the formulas depend on the model M
j

. We
made this explicit using a subscript j to indicate that the quantity, say, ✓

j

belongs
to model M

j

.12 For all three criteria, the model yielding the lowest criterion value
is perceived as the model that generalises best (Myung and Pitt, 2016).

Each of the three model selection criteria tries to strike a balance between
model fit and model complexity. Model fit is expressed by the goodness-of-fit
terms, which involves replacing the potential outcomes xn and the unknown pa-
rameter ✓

j

of the functional relationships f
j

by the actually observed data xn

obs

,

as in the Bayesian setting, and the maximum likelihood estimate ✓̂
j

(xn

obs

), as in
the frequentist setting.

The positive terms in the criteria account for model complexity. A penali-
sation of model complexity is necessary, because the support in the data cannot
be assessed by solely considering goodness-of-fit, as the ability to fit observations
increases with model complexity (e.g., Roberts and Pashler, 2000). As a result,
the more complex model necessarily leads to better fits but may in fact overfit
the data. The overly complex model then captures idiosyncratic noise rather than
general structure, resulting in poor model generalisability (Myung et al., 2000c;
Wagenmakers and Waldorp, 2006b).

The focus in this section is to make intuitive how FIA acknowledges the trade-
o↵ between goodness-of-fit and model complexity in a principled manner by graph-
ically illustrating this model selection procedure, see also Balasubramanian (1996),
Kass (1989), Klaassen and Lenstra (2003), Myung et al. (2000a), and Rissanen
(1996). We exemplify the concepts with simple multinomial processing tree (MPT)
models (e.g., Batchelder and Riefer, 1999; Klauer and Kellen, 2011; Wu et al.,
2010). For a more detailed treatment of the subject we refer to Appendix 13.D,
de Rooij and Grünwald (2011), Grünwald (2007), Myung et al. (2006), and the
references therein.

11For vector-valued parameters ✓
j

, we have a Fisher information matrix and det IM
j

(✓
j

)
refers to the determinant of this matrix. This determinant is always non-negative, because
the Fisher information matrix is always a positive semidefinite symmetric matrix. Intuitively,
volumes and areas cannot be negative (Appendix 13.C.3.3).

12For the sake of clarity, we will use di↵erent notations for the parameters within the di↵erent
models. We introduce two models in this section: the model M

1

with parameter ✓
1

= # which
we pit against the model M

2

with parameter ✓
2

= ↵.
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13.4.0.1 The description length of a model

Recall that each model specifies a functional relationship f
j

between the poten-
tial outcomes of X and the parameters ✓

j

. This f
j

is used to define a so-called
normalised maximum likelihood (NML) code. For the jth model its NML code is
defined as

p
NML

(xn

obs

|M
j

) =
f
j

(xn

obs

| ✓̂
j

(xn

obs

))
P

x

n2Xn

f
j

(xn | ✓̂
j

(xn))
, (13.4.3)

where the sum in the denominator is over all possible outcomes xn in Xn, and
where ✓̂

j

refers to the MLE within model M
j

. The NML code is a relative
goodness-of-fit measure, as it compares the observed goodness-of-fit term against
the sum of all possible goodness-of-fit terms. Note that the actual observations
xn

obs

only a↵ect the numerator, by a plugin of xn

obs

and its associated maximum

likelihood estimate ✓̂(xn

obs

) into the functional relationship f
j

belonging to model
M

j

. The sum in the denominator consists of the same plugins, but for every possi-
ble realisation of Xn.13 Hence, the denominator can be interpreted as a measure of
the model’s collective goodness-of-fit or the model’s fit capacity. Consequently, for
every set of observations xn

obs

, the NML code outputs a number between zero and
one that can be transformed into a non-negative number by taking the negative
logarithm as14

� log p
NML

(xn

obs

|M
j

) = � log f
j

(xn

obs

| ✓̂
j

(xn

obs

)) + log
X

f
j

(xn | ✓̂
j

(xn))
| {z }

Model complexity

,

(13.4.4)

which is called the description length of model M
j

. Within the MDL framework,
the model with the shortest description length is the model that best describes
the observed data xn

obs

.
The model complexity term is typically hard to compute, but Rissanen (1996)

showed that it can be well-approximated by the dimensionality and the geometrical
complexity terms. That is,

FIA =� log f
j

(xn

obs

| ✓̂
j

(xn

obs

)) +
d
j

2
log

n

2⇡
+ log

✓

Z

⇥

q

det IM
j

(✓
j

) d✓
j

◆

,

is an approximation of the description length of model M
j

. The determinant is
simply the absolute value when the number of free parameters d

j

is equal to one.
Furthermore, the integral in the geometrical complexity term coincides with the
normalisation constant of the Je↵reys’s prior, which represented the volume of
the model. In other words, a model’s fit capacity is proportional to its volume in
model space as one would expect.

In sum, within the MDL philosophy, a model is selected if it yields the shortest
description length, as this model uses the functional relationship f

j

that best

13As before, for continuous data, the sum is replaced by an integral.
14Quite deceivingly the minus sign actually makes this measure positive, as � log(y) =

log(1/y) � 0 if 0  y  1.
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extracts the regularities from xn

obs

. As the description length is often hard to
compute, we approximate it with FIA instead (Heck et al., 2014). To do so, we
have to characterise (1) all possible outcomes of X, (2) propose at least two models
which will be pitted against each other, and (3) identify the model characteristics:
the MLE ✓̂

j

corresponding to M
j

, and its volume VM
j

. In the remainder of this
section we show that FIA selects the model that is closest to the data with an
additional penalty for model complexity.

13.4.1 A new running example and the geometry of a random
variable with w = 3 outcomes

To graphically illustrate the model selection procedure underlying MDL we intro-
duce a random variable X that has w = 3 number of potential outcomes.

Example 13.4.1 (A psychological task with three outcomes). In the training
phase of a source-memory task, the participant is presented with two lists of words
on a computer screen. List L is projected on the left-hand side and list R is
projected on the right-hand side. In the test phase, the participant is presented
with two words, side by side, that can stem from either list, thus, ll, lr, rl, rr. At
each trial, the participant is asked to categorise these pairs as either:

• L meaning both words come from the left list, i.e., “ll”,

• M meaning the words are mixed, i.e., “lr” or “rl”,

• R meaning both words come from the right list, i.e., “rr”.

For simplicity we assume that the participant will be presented with n test pairs
Xn of equal di�culty. ⇧

For the graphical illustration of this new running example, we generalise the
ideas presented in Section 13.3.4.1 from w = 2 to w = 3 dimensions. Recall that a
pmf of X with w number of outcomes can be written as a w-dimensional vector.
For the task described above we know that a data generating pmf defines the
three chances p(X) = [p(L), p(M), p(R)] with which X generates the outcomes
[L,M,R] respectively.15 As chances cannot be negative, (i) we require that 0 
p(x) = P (X = x) for every outcome x in X , and (ii) to explicitly convey that there
are w = 3 outcomes, and none more, these w = 3 chances have to sum to one, that
is,
P

x2X p(x) = 1. We call the largest set of functions that adhere to conditions
(i) and (ii) the complete set of pmfs P. The three chances with which a pmf p(X)
generates outcomes of X can be simultaneously represented in three-dimensional
space with p(L) = P (X = L) on the left most axis, p(M) = P (X = M) on the
right most axis and p(R) = P (X = R) on the vertical axis as shown in the left
panel of Fig. 13.8.16 In the most extreme case, we have the pmf p(X) = [1, 0, 0],
p(X) = [0, 1, 0] or p(X) = [0, 0, 1], which correspond to the corners of the triangle

15As before we write p(X) = [p(L), p(M), p(R)] with a capital X to denote all the w number
of chances simultaneously and we used the shorthand notation p(L) = p(X = L), p(M) = p(X =
M) and p(R) = p(X = R).

16This is the three-dimensional generalisation of Fig. 13.6.
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pR

pL

mL

pM

mR

mM

Figure 13.8: Every point on the sphere corresponds to a pmf of a categorical distri-
bution with w = 3 categories. In particular, the (red) dot refers to the pmf p

e

(x) =
[1/3, 1/3, 1/3], the circle represents the pmf given by p(X) = [0.01, 0.18, 0.81],
while the cross represents the pmf p(X) = [0.25, 0.5, 0.25].

indicated by pL, pM and pR, respectively. These three extremes are linked by a
triangular plane in the left panel of Fig. 13.8. Any pmf –and the true pmf p⇤(X)
in particular– can be uniquely identified with a vector on the triangular plane and
vice versa. For instance, a possible true pmf of X is p

e

(X) = [1/3, 1/3, 1/3] (i.e.,
the outcomes L,M and R are generated with the same chance) and depicted as a
(red) dot on the simplex.

This vector representation allows us to associate to each pmf ofX the Euclidean
norm. For instance, the representation in the left panel of Fig. 13.8 leads to an
extreme pmf p(X) = [1, 0, 0] that is one unit long, while p

e

(X) = [1/3, 1/3, 1/3] is
only

p

(1/3)2 + (1/3)2 + (1/3)2 ⇡ 0.58 units away from the origin. As before, we

can avoid this mismatch in lengths by considering the vectors m(X) = 2
p

p(X),
instead. Any pmf that is identified as m(X) is now two units away from the origin.
The model space M is the collection of all transformed pmfs and represented as
the surface of (the positive part of) the sphere in the right panel of Fig. 13.8. By
representing the set of all possible pmfs of X as m(X) = 2

p

p(X), we adopted
our intuitive notion of distance. As a result, the selection mechanism underlying
MDL can be made intuitive by simply looking at the forthcoming plots.
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ϑ

Rϑ

M1 − ϑ

1 − ϑ
Mϑ

L1 − ϑ

Individual−word strategy

M
α

1 − α

L0.5

R0.5

Only−mixed strategy

Figure 13.9: Two MPT models that theorise how a participant chooses the out-
comes L, M , or R in the source-memory task described in the main text. The left
panel schematically describes the individual-word strategy, while the right model
schematically describes the only-mixed strategy.

13.4.2 The individual-word and the only-mixed strategy

To ease the exposition, we assume that both words presented to the participant
come from the right list R, thus, “rr” for the two models introduced below. As
model M

1

we take the so-called individual-word strategy. Within this model
M

1

, the parameter is ✓
1

= #, which we interpret as the participant’s “right-list
recognition ability”. With chance # the participant then correctly recognises that
the first word originates from the right list and repeats this procedure for the
second word, after which the participant categorises the word pair as L,M , or
R, see the left panel of Fig. 13.9 for a schematic description of this strategy as
a processing tree. Fixing the participant’s “right-list recognition ability” # yields
the following pmf

f
1

(X |#) = [(1� #)2, 2#(1� #),#2]. (13.4.5)

For instance, when the participant’s true ability is #⇤ = 0.9, the three out-
comes [L,M,R] are then generated with the following three chances f

1

(X | 0.9) =
[0.01, 0.18, 0.81], which is plotted as a circle in Fig. 13.8. On the other hand, when
#⇤ = 0.5 the participant’s generating pmf is then f

1

(X |# = 0.5) = [0.25, 0.5, 0.25],
which is depicted as the cross in model space M. The set of pmfs so defined forms
a curve that goes through both the cross and the circle, see the left panel of
Fig. 13.10.

As a competing model M
2

, we take the so-called only-mixed strategy. For
the task described in Example 13.4.1, we might pose that participants from a
certain clinical group are only capable of recognising mixed word pairs and that
they are unable to distinguish the pairs “rr” from “ll” resulting in a random guess
between the responses L and R, see the right panel of Fig. 13.9 for the processing
tree. Within this model M

2

the parameter is ✓
2

= ↵, which is interpreted as the
participant’s “mixed-list di↵erentiability skill” and fixing it yields the following
pmf

f
2

(X |↵) = [(1� ↵)/2,↵, (1� ↵)/2]. (13.4.6)
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mL

mM

mR

mL

mM

mR

Figure 13.10: Left panel: The set of pmfs that are defined by the individual-
list strategy M

1

forms a curve that goes through both the cross and the circle,
while the pmfs of the only-mixed strategy M

2

correspond to the curve that goes
through both the cross and the dot. Right panel: The model selected by FIA can
be thought of as the model closest to the empirical pmf with an additional penalty
for model complexity. The selection between the individual-list and the only-mixed
strategy by FIA based on n = 30 trials is formalised by the additional curves –
the only-mixed strategy is preferred over the individual-list strategy, when the
observations yield an empirical pmf that lies between the two non-decision curves.
The top, middle and bottom squares corresponding to the data sets xn

obs,1

, xn

obs,2

and xn

obs,3

in Table 13.1, which are best suited toM
2

, either, andM
1

, respectively.
The additional penalty is most noticeable at the cross, where the two models
share a pmf. Observations with n = 30 yielding an empirical pmf in this area are
automatically assigned to the simpler model, i.e., the only-mixed strategy M

2

.

For instance, when the participant’s true di↵erentiability is ↵⇤ = 1/3, we have
f
2

(X | 1/3) = [1/3, 1/3, 1/3], which, as before, is plotted as the dot in Fig. 13.10.
On the other hand, when ↵⇤ = 0.5 the participant’s generating pmf is then given
by f

2

(X |↵ = 0.5) = [0.25, 0.5, 0.25], i.e., the cross. The set of pmfs so defined
forms a curve that goes through both the dot and the cross, see the left panel of
Fig. 13.10.

The plots show that the models M
1

and M
2

are neither saturated nor nested,
as the two models define proper subsets of M and only overlap at the cross.
Furthermore, the plots also show that M

1

and M
2

are both one-dimensional, as
each model is represented as a line in model space. Hence, the dimensionality terms
in all three information criteria are the same. Consequently, AIC and BIC will
only discriminate these two models based on goodness-of-fit alone. This particular
model comparison, thus, allows us to highlight the role Fisher information plays
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in the MDL model selection philosophy.

13.4.3 Model characteristics

13.4.3.1 The maximum likelihood estimators

For FIA we need to compute the goodness-of-fit terms, thus, we need to identify
the MLEs for the parameters within each model. For the models at hand, the
MLEs are

✓̂
1

= #̂ = (Y
M

+ 2Y
R

)/(2n) for M
1

, and ✓̂
2

= ↵̂ = Y
M

/n for M
2

, (13.4.7)

where Y
L

, Y
M

and Y
R

= n� Y
L

� Y
M

are the number of L,M and R responses in
the data consisting of n trials.

Estimation is a within model operation and it can be viewed as projecting
the so-called empirical (i.e., observed) pmf corresponding to the data onto the
model. For iid data with w = 3 outcomes the empirical pmf corresponding to xn

obs

is defined as p̂
obs

(X) = [y
L

/n, y
M

/n, y
R

/n]. Hence, the empirical pmf gives the
relative occurrence of each outcome in the sample. For instance, the observations
xn

obs

consisting of [y
L

= 3, y
M

= 3, y
R

= 3] responses correspond to the observed
pmf p̂

obs

(X) = [1/3, 1/3, 1/3], i.e., the dot in Fig. 13.10. Note that this observed
pmf p̂

obs

(X) does not reside on the curve of M
1

.
Nonetheless, when we use the MLE #̂ of M

1

, we as researchers bestow the
participant with a “right-list recognition ability” # and implicitly assume that she
used the individual-word strategy to generate the observations. In other words,
we only consider the pmfs on the curve of M

1

as viable explanations of how the
participant generated her responses. For the data at hand, we have the estimate
#̂
obs

= 0.5. If we were to generalise the observations xn

obs

underM
1

, we would then
plug this estimate into the functional relationship f

1

resulting in the predictive
pmf f

1

(X | #̂
obs

) = [0.25, 0.5, 0.25]. Hence, even though the number of L,M and
R responses were equal in the observations xn

obs

, under M
1

we expect that this
participant will answer with twice as many M responses compared to the L and
R responses in a next set of test items. Thus, for predictions, part of the data is
ignored and considered as noise.

Geometrically, the generalisation f
1

(X | #̂
obs

) is a result of projecting the ob-
served pmf p̂

obs

(X), i.e., the dot, onto the cross that does reside on the curve of
M

1

.17 Observe that amongst all pmfs on M
1

, the projected pmf is closest to
the empirical pmf p̂

obs

(X). Under M
1

the projected pmf f
1

(X | #̂
obs

), i.e., the
cross, is perceived as structural, while any deviations from the curve of M

1

is
labelled as noise. When generalising the observations, we ignore noise. Hence, by
estimating the parameter #, we implicitly restrict our predictions to only those
pmfs that are defined by M

1

. Moreover, evaluating the prediction at xn

obs

and,
subsequently, taking the negative logarithm yields the goodness-of-fit term; in this
case, � log f

1

(xn

obs

| #̂
obs

= 0.5) = 10.4.

17This resulting pmf f
1

(X | #̂
obs

) is also known as the Kullback-Leibler projection of the
empirical pmf p̂

obs

(X) onto the model M
1

. White (1982) used this projection to study the
behaviour of the MLE under model misspecification.
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Which part of the data is perceived as structural or as noise depends on the
model. For instance, when we use the MLE ↵̂, we restrict our predictions to the
pmfs of M

2

. For the data at hand, we get ↵̂
obs

= 1/3 and the plugin yields
f
2

(X | ↵̂
obs

) = [1/3, 1/3, 1/3]. Again, amongst all pmfs on M
2

, the projected pmf
is closest to the empirical pmf p̂

obs

(X). In this case, the generalisation under M
2

coincides with the observed pmf p̂
obs

(X). Hence, under M
2

there is no noise, as
the empirical pmf p̂

obs

(X) was already on the model. Geometrically, this means
that M

2

is closer to the empirical pmf than M
1

, which results in a lower goodness-
of-fit term � log f

2

(xn

obs

| ↵̂
obs

= 1/3) = 9.9.
This geometric interpretation allows us to make intuitive that data sets with

the same goodness-of-fit terms will be as far from M
1

as from M
2

. Equivalently,
M

1

and M
2

identify the same amount of noise within xn

obs

, when the two models
fit the observations equally well. For instance, Fig. 13.10 shows that observations
xn

obs

with an empirical pmf p̂
obs

(X) = [0.25, 0.5, 0.25] are equally far from M
1

as from M
2

. Note that the closest pmf on M
1

and M
2

are both equal to the
empirical pmf, as f

1

(X | #̂
obs

= 0.5) = p̂
obs

(X) = f
2

(X | ↵̂
obs

= 1/2). As a result,
the two goodness-of-fit terms will be equal to each other.

In sum, goodness-of-fit measures a model’s proximity to the observed data.
Consequently, models that take up more volume in model space will be able to
be closer to a larger number of data sets. In particular, when, say, M

3

is nested
within M

4

, this means that the distance between p̂
obs

(X) and M
3

(noise) is
at least the distance between p̂

obs

(X) and M
4

. Equivalently, for any data set,
M

4

will automatically label more of the observations as structural. Models that
excessively identify parts of the observations as structural are known to overfit
the data. Overfitting has an adverse e↵ect on generalisability, especially when
n is small, as p̂

obs

(X) is then dominated by sampling error. In e↵ect, the more
voluminous model will then use this sampling error, rather than the structure, for
its predictions. To guard ourselves from overfitting, thus, bad generalisability, the
information criteria AIC, BIC and FIA all penalise for model complexity. AIC and
BIC only do this via the dimensionality terms, while FIA also take the models’
volumes into account.

13.4.3.2 Geometrical complexity

For both models the dimensionality term is given by 1

2

log( n

2⇡

). Recall that the
geometrical complexity term is the logarithm of the model’s volume, which for the
individual-word and the only-mixed strategy are given by

VM1 =

Z

1

0

p

IM1(✓)d✓ =
p
2⇡ and VM2 =

Z

1

0

p

IM2(↵)d↵ = ⇡, (13.4.8)

respectively. Hence, the individual-word strategy is a more complex model, be-
cause it has a larger volume, thus, capacity to fit data compared to the only-mixed
strategy. After taking logs, we see that the individual-word strategy incurs an ad-
ditional penalty of 1/2 log(2) compared to the only-mixed strategy.

239



13. A Tutorial on Fisher Information

13.4.4 Model selection based on the minimum description
length principle

With all model characteristics at hand, we only need observations to illustrate
that MDL model selection boils down to selecting the model that is closest to the
observations with an additional penalty for model complexity. Table 13.1 shows

Table 13.1: The description lengths for three observations xn

obs

= [y
L

, y
M

, y
R

],
where y

L

, y
M

, y
R

are the number of observed responses L,M and R respectively.

xn

obs

= [y
L

, y
M

, y
R

] FIAM1(x
n

obs

) FIAM2(x
n

obs

) Preferred model
xn

obs,1

= [12, 1, 17] 42 26 M
2

xn

obs,2

= [14, 10, 6] 34 34 tie
xn

obs,3

= [12, 16, 2] 29 32 M
1

three data sets xn

obs,1

, xn

obs,2

, xn

obs,3

with n = 30 observations. The three associated
empirical pmfs are plotted as the top, middle and lower rectangles in the right panel
of Fig. 13.10, respectively. Table 13.1 also shows the approximation of each model’s
description length using FIA. Note that the first observed pmf, the top rectangle
in Fig. 13.10, is closer to M

2

than to M
1

, while the third empirical pmf, the lower
rectangle, is closer to M

1

. Of particular interest is the middle rectangle, which lies
on an additional black curve that we refer to as a non-decision curve; observations
that correspond to an empirical pmf that lies on this curve are described equally
well by M

1

and M
2

. For this specific comparison, we have the following decision
rule: FIA selects M

2

as the preferred model whenever the observations correspond
to an empirical pmf between the two non-decision curves, otherwise, FIA selects
M

1

. Fig. 13.10 shows that FIA, indeed, selects the model that is closest to the
data except in the area where the two models overlap –observations consisting of
n = 30 trials with an empirical pmf near the cross are considered better described
by the simpler model M

2

. Hence, this yields an incorrect decision even when the
empirical pmf is exactly equal to the true data generating pmf that is given by,
say, f

1

(X |# = 0.51). This automatic preference for the simpler model, however,
decreases as n increases. The left and right panel of Fig. 13.11 show the non-
decision curves when n = 120 and n (extremely) large, respectively. As a result of
moving non-decision bounds, the data set xn

obs,4

= [56, 40, 24] that has the same
observed pmf as xn

obs,2

, i.e., the middle rectangle, will now be better described by
model M

1

.
For (extremely) large n, the additional penalty due to M

1

being more volup-
tuous thanM

2

becomes irrelevant and the sphere is then separated into quadrants:
observations corresponding to an empirical pmf in the top-left or bottom-right
quadrant are better suited to the only-mixed strategy, while the top-right and
bottom-left quadrants indicate a preference for the individual-word strategy M

1

.
Note that pmfs on the non-decision curves in the right panel of Fig. 13.11 are as
far apart from M

1

as from M
2

, which agrees with our geometric interpretation of
goodness-of-fit as a measure of the model’s proximity to the data. This quadrant
division is only based on the two models’ goodness-of-fit terms and yields the same
selection as one would get from BIC (e.g., Rissanen, 1996). For large n, FIA, thus,
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mL

mM

mR

mL

mM

mR

Figure 13.11: For n large the additional penalty for model complexity becomes
irrelevant. The plotted non-decision curves are based on n = 120 and n = 10,000
trials in the left and right panel respectively. In the right panel only the goodness-
of-fit matters in the model comparison. The model selected is then the model that
is closest to the observations.

selects the model that is closest to the empirical pmf. This behaviour is desirable,
because asymptotically the empirical pmf is not distinguishable from the true data
generating pmf. As such, the model that is closest to the empirical pmf will then
also be closest to the true pmf. Hence, FIA asymptotically selects the model that
is closest to the true pmf. As a result, the projected pmf within the closest model
is then expected to yield the best predictions amongst the competing models.

13.4.5 Fisher information and generalisability

Model selection by MDL is sometimes perceived as a formalisation of Occam’s
razor (e.g., Balasubramanian, 1996; Grünwald, 1998), a principle that states that
the most parsimonious model should be chosen when the models under consid-
eration fit the observed data equally well. This preference for the parsimonious
model is based on the belief that the simpler model is better at predicting new (as
yet unseen) data coming from the same source, as was shown by Pitt et al. (2002)
with simulated data.

To make intuitive why the more parsimonious model, on average, leads to
better predictions, we assume, for simplicity, that the true data generating pmf
is given by f(X | ✓⇤), thus, the existence of a true parameter value ✓⇤. As the
observations are expected to be contaminated with sampling error, we also expect
an estimation error, i.e., a distance d✓ between the maximum likelihood estimate
✓̂
obs

and the true ✓⇤. Recall that in the construction of Je↵reys’s prior Fisher
information was used to convert displacement in model space to distances on
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parameter space. Conversely, Fisher information transforms the estimation error
in parameter space to a generalisation error in model space. Moreover, the larger
the Fisher information at ✓⇤ is, the more it will expand the estimation error into a
displacement between the prediction f(X | ✓̂

obs

) and the true pmf f(X | ✓⇤). Thus,
a larger Fisher information at ✓⇤ will push the prediction further from the true
pmf resulting in a bad generalisation. Smaller models have, on average, a smaller
Fisher information at ✓⇤ and will therefore lead to more stable predictions that
are closer to the true data generating pmf. Note that the generalisation scheme
based on the MLE plugin f(X | ✓̂

obs

) ignores the error at each generalisation step.
The Bayesian counterpart, on the other hand, does take these errors into account,
see Dawid (2011), Ly et al. (2017b), Marsman et al. (2016a) and see van Erven
et al. (2012), Grünwald and Mehta (2016), van der Pas and Grünwald (2014),
Wagenmakers et al. (2006) for a prequential view of generalisability.

13.5 Concluding comments

Fisher information is a central statistical concept that is of considerable relevance
for mathematical psychologists. We illustrated the use of Fisher information in
three di↵erent statistical paradigms: in the frequentist paradigm, Fisher infor-
mation was used to construct hypothesis tests and confidence intervals; in the
Bayesian paradigm, Fisher information was used to specify a default prior that
does not depend on how the model is parameterised; lastly, in the paradigm of
information theory, data compression, and minimum description length, Fisher in-
formation was used to measure model complexity. Note that these three paradigms
highlight three uses of the functional relationship f between potential observations
xn and the parameters ✓. Firstly, in the frequentist setting, the second argument
was fixed at a supposedly known parameter value ✓

0

or ✓̂
obs

resulting in a prob-
ability mass function, a function of the potential outcomes f(· | ✓

0

). Secondly, in
the Bayesian setting, the first argument was fixed at the observed data resulting
in a likelihood function, a function of the parameters f(x

obs

| ·). Lastly, in the
information geometric setting both arguments were free to vary, i.e., f(· | ·) and
plugged in by the observed data and the maximum likelihood estimate.

To ease the exposition we only considered Fisher information of one-dimensional
parameters. The generalisation of the concepts introduced here to vector valued ✓
can be found in the appendix. A complete treatment of all the uses of Fisher infor-
mation throughout statistics would require a book (e.g., Frieden, 2004) rather than
a tutorial. Due to the vastness of the subject, the present account is by no means
comprehensive. Our goal was to use concrete examples to provide more insight
about Fisher information, something that may benefit psychologists who propose,
develop, and compare mathematical models for psychological processes. Other
uses of Fisher information are in the detection of model misspecification (Golden,
1995; Golden, 2000; Waldorp et al., 2005; Waldorp, 2009; Waldorp et al., 2011;
White, 1982), in the reconciliation of frequentist and Bayesian estimation meth-
ods through the Bernstein-von Mises theorem (Bickel and Kleijn, 2012; Rivoirard
and Rousseau, 2012; van der Vaart, 1998; Yang and Le Cam, 2000), in statisti-
cal decision theory (e.g., Berger, 1985; Hájek, 1972; Korostelev and Korosteleva,
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2011; Ray and Schmidt-Hieber, 2016; Wald, 1949), in the specification of objective
priors for more complex models (e.g., Ghosal et al., 1997; Grazian and Robert,
2015; Kleijn and Zhao, 2017), and computational statistics and generalised MCMC
sampling in particular (e.g., Banterle et al., 2015; Girolami and Calderhead, 2011;
Grazian and Liseo, 2014; Gronau et al., 2017b).

In sum, Fisher information is a key concept in statistical modelling. We hope
to have provided an accessible and concrete tutorial that explains the concept and
some of its uses for applications that are of particular interest to mathematical
psychologists.
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13.A Generalisation to vector-valued parameters: The
Fisher information matrix

Let X be a random variable, ~✓ = (✓
1

, . . . , ✓
d

) a vector of parameters, and f a

functional relationship that relates ~✓ to the potential outcomes x of X. As before,
it is assumed that by fixing ~✓ in f we get the pmf p

~

✓

(x) = f(x | ~✓), which is a
function of x. The pmf p

~

✓

(x) fully determines the chances with which X takes on

the events in the outcome space X . The Fisher information of the vector ~✓ 2 Rd

is a positive semidefinite symmetric matrix of dimension d ⇥ d with the entry at
the ith row and jth column given by

I
X

(~✓)
i,j

=Cov
⇣

l̇(X | ~✓), l̇T (X | ~✓)
⌘

i,j

, (13.A.1)

=

8

<

:

P

x2X

⇣

@

@✓

i

l(x | ~✓), @

@✓

j

l(x | ~✓)
⌘

p
~

✓

(x) if X is discrete,
R

x2X

⇣

@

@✓

i

l(x | ~✓), @

@✓

j

l(x | ~✓)
⌘

p
~

✓

(x)dx if X is continuous.
(13.A.2)

where l(x | ~✓) = log f(x | ~✓) is the log-likelihood function, @

@✓

i

l(x | ~✓) is the score
function, that is, the partial derivative with respect to the ith component of the
vector ~✓ and the dot is short-hand notation for the vector of the partial derivatives
with respect to ✓ = (✓

1

, . . . , ✓
d

). Thus, l̇(x | ~✓) is a d ⇥ 1 column vector of score

functions, while l̇T (x | ~✓) is a 1 ⇥ d row vector of score functions at the outcome

x. The partial derivative is evaluated at ~✓, the same ~✓ that is used in the pmf
p
~

✓

(x) for the weighting. In Appendix 13.E it is shown that the score functions are

expected to be zero, which explains why I
X

(~✓) is a covariance matrix.
Under mild regularity conditions the i, jth entry of the Fisher information

matrix can be equivalently calculated via the negative expectation of the second
order partial derivates, that is,

I
X

(~✓)
i,j

=� E
⇣ @2

@✓
i

@✓
j

l(X | ~✓)
⌘

, (13.A.3)

=

(

�
P

x2X
@

2

@✓

i

@✓

j

log f(x | ~✓)p
~

✓

(x) if X is discrete,

�
R

x2X
@

2

@✓

i

@✓

j

log f(x | ~✓)p
~

✓

(x)dx if X is continuous.
(13.A.4)

Note that the sum (thus, integral in the continuous case) is with respect to the
outcomes x of X.

Example 13.A.1 (Fisher information for normally distributed random variables).
When X is normally distributed, i.e., X ⇠ N (µ,�2), it has the following proba-
bility density function (pdf)

f(x | ~✓) = 1p
2⇡�

exp
⇣

� 1

2�2

(x� µ)2
⌘

, (13.A.5)

where the parameters are collected into the vector ~✓ =
�

µ

�

�

, with µ 2 R and � > 0.
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The score vector at a specific ✓ =
�

µ

�

�

is the following vector of functions of x

l̇(x | ~✓) =
 

@

@µ

l(x | ~✓)
@

@�

l(x | ~✓)

!

=

 

x�µ

�

2

(x�µ)

2

�

3 � 1

�

!

. (13.A.6)

The unit Fisher information matrix I
X

(~✓) is a 2⇥2 symmetric positive semidefinite

matrix, consisting of expectations of partial derivatives. Equivalently, I
X

(~✓) can
be calculated using the second order partials derivatives

I
X

(~✓) = �E

 

@

2

@µ@µ

log f(x |µ,�2) @

2

@µ@�

log f(x |µ,�)
@

2

@�@µ

log f(x |µ,�) @

2

@�@�

log f(x |µ,�)

!

=

✓

1

�

2 0
0 2

�

2

◆

.

(13.A.7)

The o↵-diagonal elements are in general not zero. If the i, j-th entry is zero we
say that ✓

i

and ✓
j

are orthogonal to each other, see Appendix 13.C.3.3 below. ⇧

For iid trials Xn = (X
1

, . . . , X
n

) with X ⇠ p
✓

(x), the Fisher information

matrix for Xn is given by I
X

n(~✓) = nI
X

(~✓). Thus, for vector-valued parameters
~✓ the Fisher information matrix remains additive.

In the remainder of the text, we simply use ✓ for both one-dimensional and
vector-valued parameters. Similarly, depending on the context it should be clear
whether I

X

(✓) is a number or a matrix.

13.B Frequentist statistics based on asymptotic normality

The construction of the hypothesis tests and confidence intervals in the frequentist
section were all based on the MLE being asymptotically normal.

13.B.1 Asymptotic normality of the MLE for vector-valued
parameters

For so-called regular parametric models, see Appendix 13.E, the MLE for vector-
valued parameters ✓ converges in distribution to a multivariate normal distribu-
tion, that is,

p
n(✓̂ � ✓⇤)

D! N
d

⇣

0, I�1

X

(✓⇤)
⌘

, as n ! 1, (13.B.1)

where N
d

is a d-dimensional multivariate normal distribution, and I�1

X

(✓⇤) the
inverse Fisher information matrix at the true value ✓⇤. For n large enough, we
can, thus, approximate the sampling distribution of the “error” of the MLE by a
normal distribution, thus,

(✓̂ � ✓⇤)
D⇡ N

d

⇣

0,
1

n
I�1

X

(✓⇤)
⌘

, we repeat, approximately. (13.B.2)

In practice, we fix n and replace the true sampling distribution by this normal
distribution. Hence, we incur an approximation error that is only negligible when-
ever n is large enough. What constitutes n large enough depends on the true data
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generating pmf p⇤(x) that is unknown in practice. In other words, the hypothesis
tests and confidence intervals given in the main text based on the replacement of
the true sampling distribution by this normal distribution might not be appropri-
ate. In particular, this means that a hypothesis test at a significance level of 5%
based on the asymptotic normal distribution, instead of the true sampling distri-
bution, might actually yield a type 1 error rate of, say, 42%. Similarly, as a result
of the approximation error, a 95%-confidence interval might only encapsulate the
true parameter in, say, 20% of the time that we repeat the experiment.

13.B.2 Asymptotic normality of the MLE and the central limit
theorem

Asymptotic normality of the MLE can be thought of as a refinement of the cen-
tral limit theorem. The (Lindeberg-Lévy) CLT is a general statement about the
sampling distribution of the sample mean estimator X̄ = 1

n

P

n

i=1

X
i

based on iid
trials of X with common population mean ✓ = E(X) and variance Var(X) < 1.
More specifically, the CLT states that, with a proper scaling, the sample mean
X̄ centred around the true ✓⇤ will converge in distribution to a normal distri-

bution, that is,
p
n(X̄ � ✓⇤)

D! N (0,Var(X)). In practice, we replace the true
sampling distribution by this normal distribution at fixed n and hope that n is
large enough. Hence, for fixed n we then suppose that the “error” is distributed

as (X̄ � ✓⇤)
D⇡ N (0, 1

n

Var(X)) and we ignore the approximation error. In par-
ticular, when we know that the population variance is Var(X) = 1, we then
know that we require an experiment with n = 100 samples for X̄ to generate
estimates within 0.196 distance from ✓⇤ with approximately 95% chance, that is,
P (|X̄ � ✓⇤| 0.196) ⇡ 0.95.18 This calculation was based on our knowledge of
the normal distribution N (0, 0.01), which has its 97.5% quantile at 0.196. In the
examples below we re-use this calculation by matching the asymptotic variances
to 0.01.19 The 95% statement only holds approximately, because we do not know
whether n = 100 is large enough for the CLT to hold, i.e., this probability could
be well below 23%. Note that the CLT holds under very general conditions; the
population mean and variance both need to exist, i.e., be finite. The distributional
form of X is irrelevant for the statement of the CLT.

On the other hand, to even compute the MLE we not only require that the
population quantities to exists and be finite, but we also need to know the func-
tional relationship f that relates these parameters to the outcomes of X. When
we assume more (and nature adheres to these additional conditions), we know
more, and are then able to give stronger statements. We give three examples.

Example 13.B.1 (Asymptotic normality of the MLE vs the CLT: The Gaussian
distribution). If X has a Gaussian (normal) distribution, i.e., X ⇠ N (✓,�2), with

18As before, chance refers to the relative frequency, that is, when we repeat the experiment
k = 200 times, each with n = 100, we get k number of estimates and approximately 95% of
these k number of estimates are then expected to be within 0.196 distance away from the true
population mean ✓⇤.

19Technically, an asymptotic variance is free of n, but we mean the approximate variance at
finite n. For the CLT this means 1

n

�2.
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�2 known, then the MLE is the sample mean and the unit Fisher information is
I
X

(✓) = 1/�2. Asymptotic normality of the MLE leads to the same statement

as the CLT, that is,
p
n(✓̂ � ✓⇤)

D! N (0,�2). Hence, asymptotically we do not
gain anything by going from the CLT to asymptotic normality of the MLE. The
additional knowledge of f(x | ✓) being normal does, however, allow us to come to
the rare conclusion that the normal approximation holds exactly for every finite

n, thus, (✓̂ � ✓⇤)
D

= N (0, 1

n

�2). In all other cases, whenever X 6⇠ N (✓,�2), we
always have an approximation.20 Thus, whenever �2 = 1 and n = 100 we know
that P (|✓̂ � ✓⇤| 0.196) = 0.95 holds exactly. ⇧

Example 13.B.2 (Asymptotic normality of the MLE vs the CLT: The Laplace
distribution). If X has a Laplace distribution with scale b, i.e., X ⇠ Laplace(✓, b),
then its population mean and variance are ✓ = E(X) and 2b2 = Var(X), respec-
tively.

In this case, the MLE is the sample median M̂ and the unit Fisher infor-
mation is I

X

(✓) = 1/b2. Asymptotic normality of the MLE implies that we
can approximate the sampling distribution by the normal distribution, that is,

(✓̂ � ✓⇤)
D⇡ N (0, 1

n

b2), when n is large enough. Given that the population vari-

ance is Var(X) = 1, we know that b = 1/
p
2, yielding a variance of 1

2n

in our
normal approximation to the sampling distribution. Matching this variance to
0.01 shows that we now require only n = 50 samples for the estimator to generate
estimates within 0.196 distance away from the true value ✓⇤ with 95% chance. As
before, the validity of this statement only holds approximately, i.e., whenever the
normal approximation to the sampling distribution of the MLE at n = 50 is not
too bad.

Hence, the additional knowledge of f(x | ✓) being Laplace allows us to use an
estimator, i.e., the MLE, that has a lower asymptotic variance. Exploiting this
knowledge allowed us to design an experiment with twice as few participants. ⇧

Example 13.B.3 (Asymptotic normality of the MLE vs the CLT: The Cauchy
distribution). If X has a Cauchy distribution centred around ✓ with scale 1, i.e.,
X ⇠ Cauchy(✓, 1), then X does not have a finite population variance, nor a finite
population mean. As such, the CLT cannot be used. Even worse, Fisher (1922)
showed that the sample mean as an estimator for ✓ is in this case useless, as the
sampling distribution of the sample mean is a Cauchy distribution that does not
depend on n, namely, X̄ ⇠ Cauchy(✓, 1). As such, using the first observation
alone to estimate ✓ is as good as combining the information of n = 100 samples in
the sample mean estimator. Hence, after seeing the first observation no additional
information about ✓ is gained using the sample mean X̄, not even if we increase
n.

The sample median estimator M̂ performs better. Again, Fisher (1922) already

knew that for n large enough that (M̂�✓⇤) D⇡ N (0, 1

n

⇡

2

2

). The MLE is even better,
but unfortunately, in this case, it cannot be given as an explicit function of the

20This is a direct result of Cramér’s theorem that states that whenever X is independent of Y
and Z = X+Y with Z a normal distribution, then X and Y themselves are necessarily normally
distributed.
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data.21 The Fisher information can be given explicitly, namely, I
X

(✓) = 1/2.

Asymptotic normality of the MLE implies that (✓̂ � ✓⇤)
D⇡ N (0, 1

n

2), when n is
large enough. Matching the variances in the approximation based on the normal
distribution to 0.01 shows that we require n = 25⇡2 ⇡ 247 for the sample median
and n = 200 samples for the MLE to generate estimates within 0.196 distance
away from the true value of value ✓⇤ with approximate 95% chance. ⇧

13.B.3 E�ciency of the MLE: The Hájek-LeCam convolution
theorem and the Cramér-Fréchet-Rao information
lower bound

The previous examples showed that the MLE is an estimator that leads to a smaller
sample size requirement, because it is the estimator with the lower asymptotic
variance. This lower asymptotic variance is a result of the MLE making explicit
use of the functional relationship between the samples xn

obs

and the target ✓ in
the population. Given any such f , one might wonder whether the MLE is the
estimator with the lowest possible asymptotic variance. The answer is a�rmative,
whenever we restrict ourselves to the broad class of so-called regular estimators.

A regular estimator T
n

= t
n

(X
n

) is a function of the data that has a limiting
distribution that does not change too much, whenever we change the parameters
in the neighbourhood of the true value ✓⇤, see van der Vaart (1998, p. 115) for a
precise definition. The Hájek-LeCam convolution theorem characterises the afore-
mentioned limiting distribution as a convolution, i.e., a sum of the independent
statistics �

✓

⇤ and Z
✓

⇤ . That is, for any regular estimator T
n

and every possible
true value ✓⇤ we have

p
n(T

n

� ✓⇤)
D! �

✓

⇤ + Z
✓

⇤ , as n ! 1, (13.B.3)

where Z
✓

⇤ ⇠ N (0, I�1

X

(✓⇤)) and where �
✓

⇤ has an arbitrary distribution. By
independence, the variance of the asymptotic distribution is simply the sum of
the variances. As the variance of �

✓

⇤ cannot be negative, we know that the
asymptotic variance of any regular estimator T

n

is bounded from below, that is,
Var(�

✓

⇤) + I�1

X

(✓⇤) � I�1

X

(✓⇤).
The MLE is a regular estimator with �

✓

⇤ equal to the fixed true value ✓⇤,
thus, Var(�

✓

⇤) = 0. As such, the MLE has an asymptotic variance I�1

X

(✓⇤) that is
equal to the lower bound given above. Hence, amongst the broad class of regular
estimators, the MLE performs best. This result was already foreshadowed by
Fisher (1922), though it took another 50 years before this statement was made
mathematically rigorous (Hájek, 1970; Inagaki, 1970; LeCam, 1970; van der Vaart,
2002; Yang, 1999), see also Ghosh (1985) for a beautiful review.

We stress that the normal approximation to the true sampling distribution
only holds when n is large enough. In practice, n is relatively small and the
replacement of the true sampling distribution by the normal approximation can,

21Given observations xn

obs

the maximum likelihood estimate ✓̂
obs

is the number for which

the score function l̇(xn

obs

| ✓) =Pn

i=1

2(x

obs,i

�✓)

1+(x

obs,i

�✓)

2 is zero. This optimisation cannot be solved

analytically and there are 2n solutions to this equation.
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thus, lead to confidence intervals and hypothesis tests that perform poorly (Brown
et al., 2001). This can be very detrimental, especially, when we are dealing with
hard decisions such as the rejection or non-rejection of a hypothesis.

A simpler version of the Hájek-LeCam convolution theorem is known as the
Cramér-Fréchet-Rao information lower bound (Cramér, 1946; Fréchet, 1943; Rao,
1945), which also holds for finite n. This theorem states that the variance of an
unbiased estimator T

n

cannot be lower than the inverse Fisher information, that
is, nVar(T

n

) � I�1

X

(✓⇤). We call an estimator T
n

= t(Xn) unbiased if for every
possible true value ✓⇤ and at each fixed n, its expectation is equal to the true value,
that is, E(T

n

) = ✓⇤. Hence, this lower bound shows that Fisher information is not
only a concept that is useful for large samples.

Unfortunately, the class of unbiased estimators is rather restrictive (in general,
it does not include the MLE) and the lower bound cannot be attained whenever
the parameter is of more than one dimensions (Wijsman, 1973). Consequently,
for vector-valued parameters ✓, this information lower bound does not inform us,
whether we should stop our search for a better estimator.

The Hájek-LeCam convolution theorem implies that for n large enough the
MLE ✓̂ is the best performing statistic. For the MLE to be superior, however,
the data do need to be generated as specified by the functional relationship f .
In reality, we do not know whether the data are indeed generated as specified by
f , which is why we should also try to empirically test such an assumption. For
instance, we might believe that the data are normally distributed, while in fact
they were generated according to a Cauchy distribution. This incorrect assumption
implies that we should use the sample mean, but Example 13.B.3 showed the
futility of such estimator. Model misspecification, in addition to hard decisions
based on the normal approximation, might be the main culprit of the crisis of
replicability. Hence, more research on the detection of model misspecification is
desirable and expected (e.g., Grünwald, 2016; Grünwald and van Ommen, 2014;
van Ommen et al., 2016).

13.C Bayesian use of the Fisher-Rao metric: The
Je↵reys’s prior

We make intuitive that the Je↵reys’s prior is a uniform prior on the model M
⇥

,
i.e.,

P (m⇤ 2 J
m

) =
1

V

Z

J

m

1dm
✓

(X) =

Z

✓

b

✓

a

p

I
X

(✓)d✓, (13.C.1)

where J
m

= (m
✓

a

(X),m
✓

b

(X)) is an interval of pmfs in model space. To do
so, we explain why the di↵erential dm

✓

(X), a displacement in model space, is
converted into

p

I
X

(✓)d✓ in parameter space. The elaboration below boils down
to an explanation of arc length computations using integration by substitution.
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13.C.1 Tangent vectors

First note that we swapped the area of integration by substituting the interval
J
m

= (m
✓

a

(X),m
✓

b

(X)) consisting of pmfs in function space M
⇥

by the interval
(✓

a

, ✓
b

) in parameter space. This is made possible by the parameter functional ⌫
with domain M

⇥

and range ⇥ that uniquely assigns to any (transformed) pmf
m

a

(X) 2 M
⇥

a parameter value ✓
a

2 ⇥. In this case, we have ✓
a

= ⌫(m
a

(X)) =
( 1
2

m
a

(1))2. Uniqueness of the assignment implies that the resulting parameter
values ✓

a

and ✓
b

in ⇥ di↵er from each other whenever m
a

(X) and m
b

(X) in
M

⇥

di↵er from each other. For example, the map ⌫ : M
⇥

! ⇥ implies that
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1.5

1.6
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1.8

1.9

2.0

m(X=0)

m
(X

=
1
)
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1.7

1.8
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2.0

m(X=0)

m
(X

=
1
)

Figure 13.12: The full arrow represents the simultaneous displacement in model
space based on the Taylor approximation Eq. (13.C.3) in terms of ✓ at m

✓

a

(X),
where ✓

a

= 0.8 (left panel) and in terms of � at m
�

a

(X) where �
a

= 0.6⇡ (right
panel). The dotted line represents a part of the Bernoulli model and note that the
full arrow is tangent to the model.

in the left panel of Fig. 13.12 the third square from the left with coordinates
m

a

(X) = [0.89, 1.79] can be labelled by ✓
a

= 0.8 ⇡ ( 1
2

(1.79))2, while the second
square from the left with coordinates m

b

(X) = [0.63, 1.90] can be labelled by
✓
b

= 0.9 ⇡ ( 1
2

(1.90))2.
To calculate the arc length of the curve J

m

consisting of functions in M
⇥

, we
first approximate J

m

by a finite sum of tangent vectors, i.e., straight lines. The
approximation of the arc length is the sum of the length of these straight lines.
The associated approximation error goes to zero, when we increase the number of
tangent vectors and change the sum into an integral sign, as in the usual definition
of an integral. First we discuss tangent vectors.

In the left panel in Fig. 13.12, we depicted the tangent vector at m
✓

a

(X) as
the full arrow. This full arrow is constructed from its components: one broken
arrow that is parallel to the horizontal axis associated with the outcome x = 0,
and one broken arrow that is parallel to the vertical axis associated with the
outcome x = 1. The arrows parallel to the axes are derived by first fixing X = x
followed by a Taylor expansion of the parameterisation ✓ 7! m

✓

(x) at ✓
a

. The
Taylor expansion is derived by di↵erentiating with respect to ✓ at ✓

a

yielding the
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following “linear” function of the distance d✓ = |✓
b

� ✓
a

| in parameter space,

dm
✓

a

(x) = m
✓

b

(x)�m
✓

a

(x) =
dm

✓

a

(x)

d✓
| {z }

A

✓

a

(x)

d✓ + o(d✓)
| {z }

B

✓

a

(x)

, (13.C.2)

where the slope, a function of x, A
✓

a

(x) at m
✓

a

(x) in the direction of x is given
by

A
✓

a

(x) =
dm

✓

a

(x)

d✓
=

1

2
{ d

d✓
log f(x | ✓

a

)
| {z }

score function

}m
✓

a

(x), (13.C.3)

and with an “intercept” B
✓

a

(x) = o(d✓) that goes fast to zero whenever d✓ ! 0.
Thus, for d✓ small, the intercept B

✓

a

(x) is practically zero. Hence, we approximate
the displacement between m

✓

a

(x) and m
✓

b

(x) by a straight line.

Example 13.C.1 (Tangent vectors). In the right panel of Fig. 13.12 the right
most triangle is given by m

�

a

(X) = [1.25, 1.56], while the triangle in the middle
refers to m

�

b

(X) = [0.99, 1.74]. Using the functional ⌫̃, i.e., the inverse of the

parameterisation, � 7! 2
p

f(x |�), where f(x |�) = ( 1
2

+ 1

2

(�
⇡

)3)x( 1
2

� 1

2

(�
⇡

)3)1�x,
we find that these two pmfs correspond to �

a

= 0.6⇡ and �
b

= 0.8⇡.
The tangent vector at m

�

a

(X) is constructed from its components. For the
horizontal displacement, we fill in x = 0 in log f(x |�) followed by the derivation
with respect to � at �

a

and a multiplication by m
�

a

(x) resulting in

dm
�a

(0)

d�
d� =

1

2

n d

d�
log f(0 |�

a

)
o

m
�

a

(0) d�, (13.C.4)

=� 3�2
a

p

2⇡3(⇡3 + �3
a

)
d�, (13.C.5)

where d� = |�
b

��
a

| is the distance in parameter space �. The minus sign indicates
that the displacement along the horizontal axis is from right to left. Filling in
d� = |�

b

� �
a

|= 0.2⇡ and �
a

= 0.6⇡ yields a horizontal displacement of 0.17 at
m

�

a

(0) from right to left in model space. Similarly, the vertical displacement in
terms of � is calculated by first filling in x = 1 and leads to

dm
�

a

(1)

d�
d� =

1

2

n d

d�
log f(1 |�

a

)
o

m
�

a

(1) d�, (13.C.6)

=
3�2

a

p

2⇡3(⇡3 � �3
a

)
d�. (13.C.7)

By filling in d� = 0.2 and �
a

= 0.6⇡, we see that a change of d� = 0.2⇡ at
�
a

= 0.6⇡ in the parameter space corresponds to a vertical displacement of 0.14 at
m

�

a

(1) from bottom to top in model space. Note that the axes in Fig. 13.12 are
scaled di↵erently.

The combined displacement dm�

a

(X)

d� d� at m
�

a

(X) is the sum of the two broken

arrows and plotted as a full arrow in the right panel of Fig. 13.12. ⇧
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The length of the tangent vector dm
✓

a

(X)

d✓ at the vector m
✓

a

(X) is calculated
by taking the root of the sum of its squared component, the natural measure of
distance we adopted above and this yields

�

�

�

dm
✓

a

(X)

d✓
d✓
�

�

�

2

=

s

X

x2X

⇣dm
✓

a

(x)

d✓

⌘

2

(d✓)2, (13.C.8)

=

s

X

x2X

⇣ d

d✓
log f(x | ✓

a

)
⌘

2

p
✓

a

(x)d✓ =
p

I
X

(✓
a

)d✓. (13.C.9)

The second equality follows from the definition of dm✓

a

(X)

d✓ , i.e., Eq. (13.C.3), and
the last equality is due to the definition of Fisher information.

Example 13.C.2 (Length of the tangent vectors). The length of the tangent
vector in the right panel of Fig. 13.12 can be calculated as the root of the sums

of squares of its components, that is, kdm�

a

(X)

d� d�k
2

=
p

(�0.14)2 + 0.172 = 0.22.

Alternatively, we can first calculate the square root of the Fisher information at
�
a

= 0.6⇡, i.e.,

p

I(�
a

) =
3�2

a

p

⇡6 � �6
= 0.35, (13.C.10)

and a multiplication by d� = 0.2⇡ results in
�

�

�

dm
�

a

(X)

d�

�

�

�

2

d� = 0.22. ⇧

More generally, to approximate the length between pmfs m
✓

a

(X) and m
✓

b

(X),
we first identify ⌫(m

✓

a

(X)) = ✓
a

and multiply this with the distance d✓ = |✓
a

�
⌫(m

✓

b

(X))| in parameter space, i.e.,

dm
✓

(X) =
�

�

�

dm
✓

(X)

d✓

�

�

�

2

d✓ =
p

I
X

(✓) d✓. (13.C.11)

In other words, the root of the Fisher information converts a small distance d✓ at
✓
a

to a displacement in model space at m
✓

a

(X).

13.C.2 The Fisher-Rao metric

By virtue of the parameter functional ⌫, we send an interval of pmfs J
m

=
⇣

m
✓

a

(X),m
✓

b

(X)
⌘

in the function space M
⇥

to the interval (✓
a

, ✓
b

) in the pa-

rameter space ⇥. In addition, with the conversion of dm
✓

(X) =
p

I
X

(✓) d✓ we
integrate by substitution, that is,

P
⇣

m⇤(X) 2 J
m

⌘

=
1

V

Z

m

✓

b

(X)

m

✓

a

(X)

1dm
✓

(X) =
1

V

Z

✓

b

✓

a

p

I
X

(✓)d✓. (13.C.12)

In particular, choosing J
✓

= M
⇥

yields the normalisation constant V =
R

1

0

p

I
X

(✓)d✓. The interpretation of V as being the total length of M
⇥

is due
to the use of dm

✓

(X) as the metric, a measure of distance, in model space. To
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honour Calyampudi Radhakrishna Rao’s (1945) contribution to the theory, this
metric is also known as the Fisher-Rao metric (e.g., Amari et al., 1987; Atkin-
son and Mitchell, 1981; Burbea, 1984; Burbea and Rao, 1982, 1984; Dawid, 1977;
Efron, 1975; Kass and Vos, 2011).

13.C.3 Fisher-Rao metric for vector-valued parameters

13.C.3.1 The parameter functional ⌫ : P ! B and the categorical
distribution

For random variables with w number of outcomes, the largest set of pmfs P is
the collection of functions p on X such that (i) 0  p(x) = P (X = x) for every
outcome x in X , and (ii) to explicitly convey that there are w outcomes, and none
more, these w chances have to sum to one, that is,

P

x2X p(x) = 1. The complete
set of pmfs P can be parameterised using the functional ⌫ that assigns to each
w-dimensional pmf p(X) a parameter � 2 Rw�1.

For instance, given a pmf p(X) = [p(L), p(M), p(R)] we typically use the func-
tional ⌫ : P ! R2 that takes the first two coordinates, that is, ⌫(p(X)) = � =

�

�1

�2

�

,

where �
1

= p(L) and �
2

= p(M). The range of this functional ⌫ is the param-
eter space B = [0, 1] ⇥ [0,�

1

]. Conversely, the inverse of the functional ⌫ is the
parameterisation � 7! p

�

(X) = [�
1

,�
2

, 1� �
1

� �
2

], where (i’) 0  �
1

,�
2

and (ii’)
�
1

+ �
2

 1. The restrictions (i’) and (ii’) imply that the parameterisation has
domain B and the largest set of pmfs P as its range. By virtue of the functional
⌫ and its inverse, that is, the parameterisation � 7! p

�

(X), we conclude that the
parameter space B and the complete set of pmfs P are isomorphic. This means
that each pmf p(X) 2 P can be uniquely identified with a parameter � 2 B and
vice versa. The inverse of ⌫ implies that the parameters � 2 B are functionally
related to the potential outcomes x of X as

f(x |�) = �x

L

1

�x

M

2

(1� �
1

� �
2

)xR , (13.C.13)

where x
L

, x
M

and x
R

are the number of L,M and R responses in one trial –
we either have x = [x

L

, x
M

, x
R

] = [1, 0, 0], x = [0, 1, 0], or x = [0, 0, 1]. The
model f(x |�) can be regarded as the generalisation of the Bernoulli model to
w = 3 categories. In e↵ect, the parameters �

1

and �
2

can be interpreted as a
participant’s propensity of choosing L and M , respectively. If Xn consists of n iid
categorical random variables with the outcomes [L,M,R], the joint pmf of Xn is
then

f(xn |�) = �y

L

1

�y

M

2

(1� �
1

� �
2

)yR , (13.C.14)

where y
L

, y
M

and y
R

= n � y
L

� y
M

are the number of L,M and R responses
in n trials. As before, the representation of the pmfs as the vectors m

�

(X) =
[2
p
�
1

, 2
p
�
2

, 2
p
1� �

1

� �
2

] form the surface of (the positive part of) the sphere
of radius two, thus, M = M

B

, see Fig. 13.13. The extreme pmfs indicated by
mL,mM and mR in the figure are indexed by the parameter values � = (1, 0),
� = (0, 1) and � = (0, 0), respectively.
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13.C.3.2 The stick-breaking parameterisation of the categorical
distribution

Alternatively, we could also have used a “stick-breaking” parameter functional
⌫̃ that sends each pmf in P to the vector of parameters ⌫̃(p(X)) =

�

�1

�2

�

, where

�
1

= p
L

and �
2

= p
M

/(1�p
L

).22 Again the parameter � =
�

�1

�2

�

is only a label, but

this time the range of ⌫̃ is the parameter space � = [0, 1] ⇥ [0, 1]. The functional
relationship f associated to � is given by

f(x | �) = �xL

1

((1� �
1

)�
2

)xM ((1� �
1

)(1� �
2

))xR . (13.C.15)

For each � we can transform the pmf into the vector

m
�

(X) = [2
p
�
1

, 2
p

(1� �
1

)�
2

, 2
p

(1� �
1

)(1� �
2

)], (13.C.16)

and write M
�

for the collection of vectors so defined. As before, this collection
coincides with the full model, i.e., M

�

= M. In other words, by virtue of the
functional ⌫̃ and its inverse � 7! p

�

(x) = f(x | �) we conclude that the parameter
space � and the complete set of pmfs M are isomorphic. Because M = M

B

this
means that we also have an isomorphism between the parameter space B and �
via M, even though B is a strict subset of �. Note that this equivalence goes via
parameterisation � 7! m

�

(X) and the functional ⌫̃.

13.C.3.3 Multidimensional Je↵reys’s prior via the Fisher information
matrix and orthogonal parameters

The multidimensional Je↵reys’s prior is parameterisation-invariant and has as nor-
malisation constant V =

R

p

det I
X

(✓)d✓, where det I
X

(✓) is the determinant of
the Fisher information matrix.

In the previous subsection we argued that the categorical distribution in terms
of � or parameterised with � are equivalent to each other, that is, M

B

= M =
M

�

. However, these two parameterisations describe the model space M quite
di↵erently. In this subsection we use the Fisher information to show that the
parameterisation in terms of � is sometimes preferred over �.

The complete model M is easier described by �, because the parameters are
orthogonal. We say that two parameters are orthogonal to each other whenever
the corresponding o↵-diagonal entries in the Fisher information matrix are zero.
The Fisher information matrices in terms of � and � are

I
X

(�) =
1

1� �
1

� �
2

✓

1� �
2

1
1 1� �

1

◆

and I
X

(�) =

 

1

�1(1��1)
0

0 1��1

�2(1��2)

!

,

respectively. The left panel of Fig. 13.13 shows the tangent vectors at p
�

⇤(X) =
[1/3, 1/3, 1/3] in model space, where �⇤ = (1/3, 1/3). The green tangent vector

corresponds to
@m

�

⇤ (X)

@�1
, thus, with �

2

= 1/3 fixed and �
1

free to vary, while

the red tangent vector corresponds to
@m

�

⇤ (X)

@�2
, thus, with �

1

= 1/3 and �
2

22This only works if p
L

< 1. When p(x
1

) = 1, we simply set �
2

= 0, thus, � = (1, 0).
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mL

mM

mL

mR

mM

mR

Figure 13.13: When the o↵-diagonal entries are zero, the tangent vectors are
orthogonal. Left panel: The tangent vectors at p

�

⇤(X) = [1/3, 1/3, 1/3] span a
diamond with an area given by

p

det I(�⇤)d�. The black curve is the submodel
with �

2

= 1/3 fixed and �
1

free to vary and yields a green tangent vector. The blue
curve is the submodel with �

1

= 1/3 fixed and �
2

free to vary. Right panel: The
tangent vectors at the same pmf in terms of �, thus, p

�

⇤(X), span a rectangle with
an area given by

p

det I(�⇤)d�. The black curve is the submodel with �
2

= 1/2
fixed and �

1

free to vary and yields a green tangent vector. The blue curve is the
submodel with �

1

= 1/3 fixed and �
2

free to vary.

free to vary. The area of the diamond spanned by these two tangent vectors
is
p

det I(�⇤)d�
1

d�
2

, where we have taken d�
1

= 0.1 and d�
2

= 0.1.
The right panel of Fig. 13.13 shows the tangent vectors at the same point

p
�

⇤(X) = [1/3, 1/3, 1/3], where �⇤ = (1/3, 1/2). The green tangent vector cor-

responds to
@m

�

⇤ (X)

@�1
, thus, with �

2

= 1/2 fixed and �
1

free to vary, while the

red tangent vector corresponds to
@m

�

⇤ (X)

@�2
, thus, with �

1

= 1/3 and �
2

free to
vary. By glancing over the plots, we see that the two tangent vectors are indeed
orthogonal. The area of the rectangle spanned by these these two tangent vectors
is
p

det I(�⇤)d�
1

d�
2

, where we have taken d�
1

= d�
2

= 0.1.
There are now two ways to calculate the normalisation constant of the Je↵reys’s

prior, the area, more generally volume, of the model M. In terms of � this leads
to

V =

Z

1

0

 

Z

�1

0

1

1� �
1

� �
2

p

�
1

�
2

� �
1

� �
2

d�
2

!

d�
1

. (13.C.17)

Observe that the inner integral depends on the value of �
1

from the outer integral.
This coupling is reflected by the non-zero o↵-diagonal term of the Fisher informa-
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tion matrix I
X

(�) corresponding to �
1

and �
2

. On the other hand, orthogonality
implies that the two parameters can be treated independently of each other. That
is, knowing and fixing �

1

and changing �
2

will not a↵ect m
�

(X) via �
1

. This
means that the double integral decouples

V =

Z

1

0

 

Z

1

0

1
p

�
1

�
2

(1� �
2

)
d�

1

!

d�
2

=

Z

1

0

1
p
�
1

d�
1

Z

1

0

1
p

�
2

(1� �
2

)
d�

2

= 2⇡.

(13.C.18)

Using standard geometry we verify that this is indeed the area of M, as an eighth
of the surface area of a sphere of radius two is given by 1

8

4⇡22 = 2⇡.
Orthogonality is relevant in Bayesian analysis, as it provides an argument to

choose a prior on a vector-valued parameter that factorises (e.g., Berger et al.,
1998; Huzurbazar, 1950, 1956; Je↵reys, 1961; Kass and Vaidyanathan, 1992; Ly
et al., 2016a, 2016b), see also Cox and Reid (1987); Mitchell (1962).

By taking a random variable X with w = 3 outcomes, we were able to visualise
the geometry of model space. For more generalX these plots get more complicated
and perhaps even impossible to draw. Nonetheless, the ideas conveyed here extend,
even to continuous X, whenever the model adheres to the regularity conditions
given in Appendix 13.E.

13.D MDL: Coding theoretical background

13.D.1 Coding theory, code length and log-loss

A coding system translates words, i.e., outcomes of a random variable X, into code
words with code lengths that behave like a pmf. Code lengths can be measured
with a logarithm, which motivates the adoption of log-loss, defined below, as the
decision criterion within the MDL paradigm. The coding theoretical terminologies
introduced here are illustrated using the random variable X with w = 3 potential
outcomes.

13.D.1.1 Kraft-McMillan inequality: From code lengths of a specific
coding system to a pmf

For the source-memory task we encoded the outcomes as L,M and R, but when
we communicate a participant’s responses xn

obs

to a collaborator over the internet,
we have to encode the observations xn

obs

as zeroes and ones. For instance, we might
use a coding system C̃ with code words C̃(X = L) = 00, C̃(X = M) = 01 and
C̃(X = R) = 10. This coding system C̃ will transform any set of responses xn

obs

into a code string C̃(xn

obs

) consisting of 2n bits. Alternatively, we can use a coding
system C with code words C(X = L) = 10, C(X = M) = 0 and C(X = R) = 11,
instead. Depending on the actual observations xn

obs

, this coding system outputs
code strings C(xn

obs

) with varying code lengths that range from n to 2n bits.
For example, if a participant responded with xn

obs

= (M,R,M,L,L,M,M,M) in
n = 8 trials, the coding system C would then output the 11-bit long code string
C(xn

obs

) = 01101010000. In contrast, the first coding system C̃ will always output
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13.D. MDL: Coding theoretical background

a 16-bit long code string when n = 8. Shorter code strings are desirable as they
will lead to a smaller load on the communication network and they are less likely
to be intercepted by “competing” researchers.

Note that the shorter code length C(xn

obs

) = 01101010000 of 11-bits is a result
of having code words of unequal lengths. The fact that one of the code word is
shorter does not interfere with the decoding, since no code word is a prefix of
another code word. As such, we refer to C as a prefix (free) coding system. This
implies that the 11-bit long code string C(xn

obs

) is self-punctuated and that it
can be uniquely deciphered by simply reading the code string from left to right
resulting in the retrieval of xn

obs

. Note that the code lengths of C inherit the
randomness of the data. In particular, the coding system C produces a shorter
code string with high chance, if the participant generates the outcomeM with high
chance. In the extreme case, the coding system C produces the 8-bits long code
string C(xn) = 00000000 with 100% (respectively, 0%) chance, if the participant
generates the outcome M with 100% (respectively, 0%) chance. More generally,
Kraft and McMillan (Kraft, 1949; McMillan, 1956) showed that any uniquely
decipherable (prefix) coding system from the outcome space X with w outcomes
to an alphabet with D elements must satisfy the inequality

w

X

i=1

D�l

i  1, (13.D.1)

where l
i

is the code length of the outcome w. In our example, we have taken
D = 2 and code length of 2, 1 and 2 bits for the response L,M and R respectively.
Indeed, 2�2+2�1+2�2 = 1. Hence, code lengths behave like the logarithm (with
base D) of a pmf.

13.D.1.2 Shannon-Fano algorithm: From a pmf to a coding system
with specific code lengths

Given a data generating pmf p⇤(X), we can use the so-called Shannon-Fano algo-
rithm (e.g., Cover and Thomas, 2006, Ch. 5) to construct a prefix coding system
C⇤. The idea behind this algorithm is to give the outcome x that is generated with
the highest chance the shortest code length. To do so, we encode the outcome x
as a code word C⇤(x) that consists of � log

2

p⇤(x) bits.23

For instance, when a participant generates the outcomes [L,M,R] according to
the chances p⇤(X) = [0.25, 0.5, 0.25] the Shannon-Fano algorithm prescribes that
we should encode the outcome L with � log

2

(0.25) = 2, M with � log
2

(0.5) = 1
and R with 2 bits; the coding system C given above.24 The Shannon-Fano algo-
rithm works similarly for any other given pmf p

�

(X). Hence, the Kraft-McMillan
inequality and its inverse, i.e., the Shannon-Fano algorithm imply that pmfs and

23When we use the logarithm with base two, log
2

(y), we get the code length in bits, while
the natural logarithm, log(y), yields the code length in nats. Any result in terms of the natural
logarithm can be equivalently described in terms of the logarithm with base two, as log(y) =
log(2) log

2

(y).
24Due to rounding, the Shannon-Fano algorithm actually produces code words C(x) that are

at most one bit larger than the ideal code length � log
2

p⇤(x). We avoid further discussions on
rounding. Moreover, in the following we consider the natural logarithm instead.
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uniquely decipherable coding systems are equivalent to each other. As such we
have an additional interpretation of a pmf. To distinguish the di↵erent uses, we
write f(X |�) when we view the pmf as a coding system, while we retain the no-
tation p

�

(X) when we view the pmf as a data generating device. In the remainder
of this section we will not explicitly construct any other coding system, as the
coding system itself is irrelevant for the discussion at hand –only the code lengths
matter.

13.D.1.3 Entropy, cross entropy, log-loss

With the true data generating pmf p⇤(X) at hand, thus, also the true coding
system f(X |�⇤), we can calculate the (population) average code length per trial

H(p⇤(X)) = H
⇣

p⇤(X)k f(X |�⇤)
⌘

=
X

x2X
� log f(x |�⇤)p⇤(x). (13.D.2)

Whenever we use the logarithm with base 2, we refer to this quantity H(p⇤(X))
as the Shannon entropy.25 If the true pmf is p⇤(X) = [0.25, 0.5, 0.25] we have an
average code length of 1.5 bits per trail whenever we use the true coding system
f(X |�⇤). Thus, we expect to use 12 bits to encode observations consisting of
n = 8 trials.

As coding theorists, we have no control over the true data generating pmf
p⇤(X), but we can choose the coding system f(X |�) to encode the observations.
The (population) average code length per trial is given by

H(p⇤(X)k�) = H
⇣

p⇤(X)k f(X |�)
⌘

=
X

x2X
� log f(x |�)p⇤(x). (13.D.3)

The quantity H(p⇤(X)k�) is also known as the cross entropy from the true
pmf p⇤(X) to the postulated f(X |�).26 For instance, if the pmf f(X |�) =
[0.01, 0.18, 0.81] is used to encode data that are generated according to p⇤(X) =
[0.25, 0.5, 0.25], we will use 2.97 bits on average per trial. Clearly, this is much
more than the 1.5 bits per trial that we get from using the true coding system
f(X |�⇤).

More generally, Shannon (1948) showed that the cross entropy can never be
smaller than the entropy, i.e., H(p⇤(X))  H(p⇤(X)k�). In other words, we
always get a larger average code length, whenever we use the wrong coding system
f(X |�). To see why this holds, we decompose the cross entropy as a sum of the
entropy and the Kullback-Leibler divergence,27 and show that the latter cannot
be negative. This decomposition follows from the definition of cross entropy and

25Shannon denoted this quantity with an H to refer to the capital Greek letter for eta. It
seems that John von Neumann convinced Claude Shannon to call this quantity entropy rather
than information (Tribus and McIrvine, 1971).

26Observe that the entropy H(p⇤(X)) is the just the cross entropy from the true p⇤(X) to
the true coding system f(X |�⇤).

27The KL-divergence is also known as the relative entropy.
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13.D. MDL: Coding theoretical background

a subsequent addition and subtraction of the entropy resulting in

H(p⇤(X)k�) = H(p⇤(X)) +
X

x2X
( log

p⇤(x)

f(x |�⇤)
)p⇤(x)

| {z }

D(p

⇤
(X)k�)

, (13.D.4)

where D(p⇤(X)k�) defines the Kullback-Leibler divergence from the true pmf
p⇤(X) to the postulated coding system f(X |�). Using the so-called Jensen’s
inequality it can be shown that the KL-divergence is non-negative and that it
is only zero whenever f(X |�) = p⇤(X). Thus, the cross entropy can never be
smaller than the entropy. Consequently, to minimise the load on the communica-
tion network, we have to minimise the cross entropy with respect to the parameter
�. Unfortunately, however, we cannot do this in practice, because the cross en-
tropy is a population quantity based on the unknown true pmf p⇤(X). Instead,
we do the next best thing by replacing the true p⇤(X) in Eq. (13.D.3) by the
empirical pmf that gives the relative occurrences of the outcomes in the sample
rather than in the population. Hence, for any postulated f(X |�), with � fixed, we
approximate the population average defined in Eq. (13.D.3) by the sample average

H(xn

obs

k�) = H
⇣

p̂
obs

(X)k f(X |�)
⌘

=
n

X

i=1

� log f(x
obs,i

|�) = � log f(xn

obs

|�).

(13.D.5)

We call the quantity H(xn

obs

k�) the log-loss from the observed data xn

obs

, i.e., the
empirical pmf p̂

obs

(X), to the coding system f(X |�).

13.D.2 Data compression and statistical inference

The entropy inequality H(p⇤(X))  H(p⇤(X)k�) implies that the coding theo-
rist’s goal of finding the coding system f(X |�) with the shortest average code
length is in fact equivalent to the statistical goal of finding the true data generat-
ing process p⇤(X). The coding theorist’s best guess is the coding system f(X |�)
that minimises the log-loss from xn

obs

to the model M
B

. Note that minimising
the negative log-likelihood is the same as maximising the likelihood. Hence, the
log-loss is minimised by the coding system associated with the MLE, thus, the pre-
dictive pmf f(X | �̂

obs

). Furthermore, the cross entropy decomposition shows that
minimisation of the log-loss is equivalent to minimisation of the KL-divergence
from the observations xn

obs

to the model M
B

. The advantage of having the op-
timisation problem formulated in terms of KL-divergence is that it has a known
lower bound, namely, zero. Moreover, whenever the KL-divergence from xn

obs

to

the code f(X | �̂
obs

) is larger than zero, we then know that the empirical pmf
associated to the observations does not reside on the model. In particular, Sec-
tion 13.4.3.1 showed that the MLE plugin, f(X | �̂

obs

) is the pmf on the model
that is closest to the data. This geometric interpretation is due to the fact that
we retrieve the Fisher-Rao metric, when we take the second derivative of the
KL-divergence with respect to � (Kullback and Leibler, 1951). This connection
between the KL-divergence and Fisher information is exploited in Ghosal et al.
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13. A Tutorial on Fisher Information

(1997) to generalise the Je↵reys’s prior to nonparametric models, see also van
Erven and Harremos (2014) for the relationship between KL-divergence and the
broader class of divergence measures developed by Rényi (1961), see also Campbell
(1965).

13.E Regularity conditions

A more mathematically rigorous exposition of the subject would have had this
section as the starting point, rather than the last section of the appendix. The
regularity conditions given below can be seen as a summary, and guidelines for
model builders. If we as scientists construct models such that these conditions are
met, we can then use the results presented in the main text. We first give a more
general notion of statistical models, then state the regularity conditions followed
by a brief discussion on these conditions.

The goal of statistical inference is to find the true probability measure P ⇤ that
governs the chances with which X takes on its events. A model P

⇥

defines a
subset of P, the largest collection of all possible probability measures. We as
model builders choose P

⇥

and perceive each probability measure P within P
⇥

as a possible explanation of how the events of X were or will be generated. When
P ⇤ 2 P

⇥

we have a well-specified model and when P ⇤ /2 P
⇥

, we say that the
model is misspecified.

By taking P
⇥

to be equal to the largest possible collection P, we will not be
misspecified. Unfortunately, this choice is not helpful as the complete set is hard
to track and leads to uninterpretable inferences. Instead, we typically construct
the candidate set P

⇥

using a parameterisation that sends a label ✓ 2 ⇥ to a
probability measure P

✓

. For instance, we might take the label ✓ =
�

µ

�

2

�

from the
parameter space ⇥ = R⇥ (0,1) and interpret these two numbers as the popula-
tion mean and variance of a normal probability P

✓

. This distributional choice is
typical in psychology, because it allows for very tractable inference with param-
eters that are generally over-interpreted. Unfortunately, the normal distribution
comes with rather stringent assumptions resulting in a high risk of misspecifica-
tion. More specifically, the normal distribution is far too ideal, as it supposes that
the population is nicely symmetrically centred at its population mean and outliers
are practically not expected due to its tail behaviour.

Statistical modelling is concerned with the intelligent construction of the can-
didate set P

⇥

such that it encapsulates the true probability measure P ⇤. In other
words, the restriction of P to P

⇥

in a meaningful manner. Consequently, the
goal of statistical inference is to give an informed guess P̃ within P

⇥

for P ⇤ based
on the data. This guess should give us insights to how the data were generated
and how yet unseen data will be generated. Hence, the goal is not to find the
parameters as they are mere labels. Of course parameters can be helpful, but they
should not be the goal of inference.

Note that our general description of a model as a candidate set P
⇥

does not
involve any structure –thus, the members of P

⇥

do not need to be related to
each other in any sense. We use the parameterisation to transfer the structure
of our labels ⇥ to a structure on P

⇥

. To do so, we require that ⇥ is a nice
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open subset of Rd. Furthermore, we require that each label defines a member P
✓

of P
⇥

unambiguously. This means that if ✓⇤ and ✓ di↵er from each other that
the resulting pair of probability measure P

✓

⇤ and P
✓

also di↵er from each other.
Equivalently, we call a parameterisation identifiable whenever ✓⇤ = ✓ leads to
P
✓

⇤ = P
✓

. Conversely, identifiability implies that when we know everything about
P
✓

, we can then also use the inverse of the parameterisation to pinpoint the unique
✓ that corresponds to P

✓

. We write ⌫ : P
⇥

! ⇥ for the functional that attaches
to each probability measure P a label ✓. For instance, ⌫ could be defined on the

family of normal distribution such that P 7! ⌫(P ) =
�

E

P

(X)

Var
P

(X)

�

=
�

µ

�

2

�

. In this

case we have ⌫(P
⇥

) = ⇥ and, therefore, a one-to-one correspondence between the
probability measures P

✓

2 P
⇥

and the parameters ✓ 2 ⇥.
By virtue of the parameterisation and its inverse ⌫, we can now transfer ad-

ditional structure from ⇥ to P
⇥

. We assume that each probability measure P
✓

that is defined on the events of X can be identified with a probability density
function (pdf) p

✓

(x) that is defined on the outcomes of X. For this assump-
tion, we require that the set P

⇥

is dominated by a so-called countably additive
measure �. When X is continuous, we usually take for � the Lebesgue measure
that assigns to each interval of the form (a, b) a length of b � a. Domination
allows us to express the probability of X falling in the range (a, b) under P

✓

by

the “area under the curve of p
✓

(x)”, that is, P
✓

(X 2 (a, b)) =
R

b

a

p
✓

(x)dx. For
discrete variables X taking values in X = {x

1

, x
2

, x
3

, . . .}, we take � to be the
counting measure. Consequently, the probability of observing the event X 2 A
where A = {a = x

1

, x
2

, . . . , b = x
k

} is calculated by summing the pmf at each

outcome, that is, P
✓

(X 2 A) =
P

x=b

x=a

p
✓

(x). Thus, we represent P
⇥

as the set
P
⇥

= {p
✓

(x) : ✓ 2 ⇥, P
✓

(x) =
R

x

�1 p
✓

(y)dy for all x 2 X} in function space.
With this representation of P

⇥

in function space, the parameterisation is now es-
sentially the functional relationship f that pushes each ✓ in ⇥ to a pdf p

✓

(x). If we
choose f to be regular, we can then also transfer additional topological structure
from ⇥ to P

⇥

.

Definition 13.E.1 (Regular parametric model). We call the model P
⇥

a regu-
lar parametric model, if the parameterisation ✓ 7! p

✓

(x) = f(x | ✓), that is, the
functional relationship f , satisfies the following conditions

(i) its domain ⇥ is an open subset of Rd,

(ii) at each possible true value ✓⇤ 2 ⇥, the spherical representation ✓ 7! m
✓

(x) =
2
p

p
✓

(x) = 2
p

f(x | ✓) is so-called Fréchet di↵erentiable in L
2

(�). The tan-
gent function, i.e., the “derivative” in function space, at m

✓

⇤(x) is then given
by

dm
✓

(x)

d✓
d✓ =

1

2
(✓ � ✓⇤)T l̇(x | ✓⇤)m

✓

⇤(x), (13.E.1)

where l̇(x | ✓⇤) is a d-dimensional vector of score functions in L
2

(P
✓

⇤),

(iii) the Fisher information matrix I
X

(✓) is non-singular,

(iv) the map ✓ 7! l̇(x | ✓)m
✓

(x) is continuous from ⇥ to Ld

2

(�).
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Note that (ii) allows us to generalise the geometrical concepts discussed in Ap-
pendix 13.C.3 to more general random variables X. ⇧

We provide some intuition. Condition (i) implies that⇥ inherits the topological
structure of Rd. In particular, we have an inner product on Rd that allows us to
project vectors onto each other, a norm that allows us to measure the length
of a vector, and the Euclidean metric that allows us to measure the distance
between two vectors by taking the square root of the sums of squares, that is,

k✓⇤ � ✓k
2

=
q

P

d

i=1

(✓⇤
i

� ✓
i

)2. For d = 1 this norm is just the absolute value,

which is why we previously denoted this as |✓⇤ � ✓|.
Condition (ii) implies that the measurement of distances in Rd generalises to

the measurement of distance in function space L
2

(�). Intuitively, we perceive
functions as vectors and say that a function h is a member of L

2

(�), if it has a
finite norm (length), i.e., kh(x)k

L2(�)
< 1, meaning

kh(x)k
L2(�)

=

(

q

R

X [h(x)]2dx if X takes on outcomes on R,
p

P

x2X [h(x)]2 if X is discrete.
(13.E.2)

As visualised in the main text, by considering M
⇥

= {m
✓

(x) =
p

p
✓

(x) | p
✓

2 P
✓

}
we relate⇥ to a subset of the sphere with radius two in the function space L

2

(�). In
particular, Section 13.4 showed that whenever the parameter is one-dimensional,
thus, a line, that the resulting collection M

⇥

also defines a line in model space.
Similarly, Appendix 13.C.3 showed that whenever the parameter space is a subset
of [0, 1]⇥ [0, 1] that the resulting M

⇥

also forms a plain.
Fréchet di↵erentiability at ✓⇤ is formalised as

km
✓

(x)�m
✓

⇤(x)� 1

2

(✓ � ✓⇤)T l̇(x | ✓⇤)m
✓

⇤(x)k
L2(�)

k✓ � ✓⇤k
2

! 0. (13.E.3)

This implies that the linear term 1

2

(✓�✓⇤)T l̇(x | ✓⇤)m
✓

⇤(x) is a good approximation
to the “error” m

✓

(x)�m
✓

⇤(x) in the model M
⇥

, whenever ✓ is close to ✓⇤ given
that the score functions l̇(x | ✓⇤) do not blow up. More specifically, this means
that each component of l̇(x | ✓⇤) has a finite norm. We say that the component
@

@✓

i

l(x | ✓⇤) is in L
2

(P
✓

⇤), if k @

@✓

i

l(x | ✓⇤)k
L2(P

✓

⇤ )< 1, meaning

�

�

�

@

@✓
i

l(x | ✓⇤)
�

�

�

L2(P
✓

⇤ )
=

8

<

:

q

R

x2X ( @

@✓

i

l(x | ✓⇤))2p
✓

⇤(x)dx if X is continuous,
q

P

x2X ( @

@✓

i

l(x | ✓⇤))2p
✓

⇤(x) if X is discrete.

(13.E.4)

This condition is visualised in Fig. 13.12 and Fig. 13.13 by tangent vectors with
finite lengths. Under P

✓

⇤ , each component i = 1, . . . , d of the tangent vector is
expected to be zero, that is,

(

R

x2X
@

@✓

i

l(x | ✓⇤)p
✓

⇤(x) = 0 if X is continuous,
P

x2X
@

@✓

i

l(x | ✓⇤)p
✓

⇤(x) = 0 if X is discrete.
(13.E.5)
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This condition follows from the chain rule applied to the logarithm and an ex-
change of the order of integration with respect to x, and derivation with respect
to ✓

i

, as
Z

x2X

@

@✓
i

l(x | ✓⇤)p
✓

⇤(x)dx =

Z

x2X

@

@✓
i

p
✓

⇤(x)dx =
@

@✓
i

Z

x2X
p
✓

⇤(x)dx =
@

@✓
i

1 = 0.

(13.E.6)

Note that if
R

@

@✓

i

p
✓

⇤(x)dx > 0, then a small change at ✓⇤ will lead to a function
p
✓

⇤
+d✓

(x) that does not integrate to one and, therefore, not a pdf.
Condition (iii) implies that the model does not collapse to a lower dimension.

For instance, when the parameter space is a plain the resulting model M
⇥

cannot
be line. Lastly, condition (iv) implies that the tangent functions change smoothly
as we move from m

✓

⇤(x) to m
✓

(x) on the sphere in L
2

(�), where ✓ is a parameter
value in the neighbourhood of ✓⇤.

The following conditions are stronger, thus, less general, but avoid Fréchet
di↵erentiability and are typically easier to check.

Lemma 13.E.1. Let ⇥ ⇢ Rd be open. At each possible true value ✓⇤ 2 ⇥, we
assume that p

✓

(x) is continuously di↵erentiable in ✓ for �-almost all x with tangent
vector ṗ

✓

⇤(x). We define the score function at x as

l̇(x | ✓⇤) = ṗ
✓

⇤(x)

p
✓

⇤(x)
1
[p

✓

⇤>0]

(x), (13.E.7)

where 1
[p

✓

⇤>0]

(x) is the indicator function

1
[p

✓

⇤>0]

(x) =

(

1 for all x such that p
✓

⇤(x) > 0,

0 otherwise.
(13.E.8)

The parameterisation ✓ 7! P
✓

is regular, if the norm of the score vector Eq. (13.E.7)
is finite in quadratic mean, that is, l̇(X | ✓⇤) 2 L

2

(P
✓

⇤), and if the corresponding
Fisher information matrix based on the score functions Eq. (13.E.7) is non-singular
and continuous in ✓. ⇧

There are many better sources than the current manuscript on this topic that
are mathematically much more rigorous and better written. For instance, Bickel
et al. (1993) give a proof of the lemma above and many more beautiful, but some-
times rather (agonisingly) technically challenging, results. For a more accessible,
but no less elegant, exposition of the theory we highly recommend van der Vaart
(1998).
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Conclusion
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Chapter 14

Discussion and Future Directions

In this dissertation we advocate the use of Bayes factors in empirical research to
replace or complement standard null hypothesis tests based on p-values. These
Bayes factors were specifically designed to quantify the evidence for or against the
existence of an e↵ect. This was done by comparing two models with the same
distributional assumptions, where the alternative model is an extension of the null
model by incorporating one extra parameter. Furthermore, instead of returning a
decision to “reject” or “not reject”, a Bayes factor BF

10

(d) returns a non-negative
number that represents the evidence within the observed data for the model that
includes the e↵ect. The returned number can be seen as a refinement of the binary
decision with BF

10

(d) = 1 and BF
10

(d) = 0 corresponding to definite rejection
and acceptance of the null, respectively. Moreover, the Bayes factor allows its users
to forgo the binary decision and acknowledge uncertainty, so that the evidence
can be updated continually in light of new data, directly and easily. For empirical
scientists to be able to use these Bayes factors we implemented them in Je↵reys’s
Amazing Statistics Program, JASP, which is freely available and open-source (url:
https://jasp-stats.org).

In Chapter 8 we showed how easy it is do a Bayesian reanalysis of published
results in JASP. Most of the discussion centred on how Bayes factors quantify
evidence from data already observed, but future research should also focus on
how the already observed data can be used for follow-up experiments. This idea
of generalising past observations to future data underlies the replication Bayes
factor discussed in Chapter 9. Comprehensive knowledge updating requires that
the data come from the same population, which is why we emphasised the role
of openness and transparency in Chapter 7. By making research materials and
data available, future researchers can then conduct a direct replication and build
upon previous work. In some cases, however, a replication on the same population
is not possible. For correlation and t-test Bayes factors we can nonetheless do
meaningful inference by relocating the data, while for more complicated settings
such as ANOVAs and contingency tables this is still work in progress.

When no previous data are available we recommend the use of default Je↵reys’s
Bayes factors that are constructed from priors that adhere to the general criteria
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for Bayesian model choice (Bayarri et al., 2012). One goal of this dissertation
was to explain, apply, and extend these general criteria to scenarios common to
empirical scientists. The first extension was to Pearson’s correlation, Chapter 2,
resulting in an analytic Bayes factor, which was further extended to Kendall’s ⌧
in Chapter 4. By modelling the test statistic, more specifically, approximating
the sampling distribution of the test statistic with its asymptotic normal equiv-
alent, a Bayes factor was derived that leads to interpretable results and is fast
to compute. In future research we plan to apply the general procedure based on
the asymptotic normal approximation and parametric yoking to other scenarios.
The use of the normal approximation to the true sampling distribution, however,
is not as principled as we wanted it to be and led to Bayes factors that provide
less evidence for the alternative, whenever ⌧ is far from zero. This motivated us
to consider di↵erent approaches and the latent normal approach in van Doorn
et al. (2017) in particular. Future research should further explore the relationship
between Kendall’s ⌧ and certain copula families as this will provide insights in
statistical research on dependency.

The calculations used for the analytic posteriors for Pearson’s ⇢ also led to the
informed t-test in Chapter 5. This work can easily be adapted to linear regression
and is worth exploring further.

The first analytic result of Chapter 11 was used to construct a limit-consistent
Bayes factor for the two-sample Poisson problem in Chapter 6. In future research
we will use the posterior for the odds ratio to formulate a Bayesian test for two
proportions, the homogeneity of the odds ratio and the test for independence in
multiple 2-by-2 tables. Chapter 6 also described our attempt to extend Je↵reys’s
principles of testing to problems that deal with discrete random variables based
on the desideratum of limit-consistency. Further research should also focus on
the relationship between predictive matching and limit-consistency, as the latter
criterion might provide a fruitful technique to generalise Je↵reys’s ideas on testing
to other settings.

Je↵reys’s principles to construct Bayes factors, however, requires one of the pa-
rameters to be perceived as the test-relevant one and the others as nuisance. This
might be di�cult for high-dimensional problems, but can be done for location-scale
problems and the variable selection problem in particular. The multiplicity intro-
duced can then be tackled by the method discussed by Scott and Berger (2006,
2010), which have yet to be incorporated in JASP. Furthermore, Je↵reys’s con-
struction also requires that we choose the distribution form of the models, which
increases the hazard of model misspecification. Model misspecification can have
dramatic e↵ects on Bayesian methods as was shown by Grünwald and van Ommen
(2014). Fortunately, Grünwald (2017) and colleagues also developed a framework
for safe Bayesian inference and methods to detect model misspecification. Further
research in this area is necessary and on the way. One goal, therefore, is to extend
Je↵reys’s principled Bayes factors to nonparametric models, which in itself comes
with additional challenges of tractability and once again multiplicity.

To control for multiplicity with the Bayes factors described here, we recom-
mended that researchers preregister their hypotheses and the tests they perform.
The reason for this is that testing is a confirmatory tool of inference concerned
with model uncertainty and that this di↵ers from an estimation problem. Esti-
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mation and exploration, however, should not be undervalued as they allow for the
construction of theories and models, which can subsequently be tested. Models
are always simplified description of reality and can always be improved upon.

Bayesian methods can help discover and improve models. For instance, by
Bayesian model averaging, or by exploring the posterior of fitted models using
so-called plausible values to give insights to how a hierarchical model should be
formulated (e.g., Ly et al., 2017a; Marsman, 2014; Marsman et al., 2016b). For
instance, in Ly et al. (2017a) we used plausible values to generalise the finding
of Forstmann et al. (2008) based on n = 19 participants to the general popula-
tion. Key to this generalisation was the acknowledgement of uncertainty via the
posteriors and the mixing of the analytical posteriors developed in Chapter 10.
When the posterior is not analytic, one can use the bridge sampler instead, see
Chapter 12. The mixing of posteriors in Ly et al. (2017a), however, implies that
the posterior, and the marginal likelihood in particular, can be evaluated quickly.
Hence, to further make Bayesian methods accessible to empirical scientist, we
need to make these sampling methods more e�cient. Lastly, Chapter 13 provides
some insights in the nature of statistical models and provides the empirical scien-
tists with regularity conditions that allow them to formulate models in which the
standard methods are (asymptotically) valid.

We hope to have made a convincing case for the use of Bayesian methods in
the empirical sciences, and the Bayes factor in particular when it comes to testing.
Our advocacy for Bayesian methods in psychology is, in essence, a call to adopt
a principled method of learning. This call is neither new nor controversial, as
Bayesian methods have been adopted in fields such as econometrics, statistics and
computer science with great success.
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Bateman, H., Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F. G., Bertin,
D., Fulks, W. B., Harvey, A. R., Thomsen Jr, D. L., Weber, M. A., Whit-
ney, E. L., and Stampfel, R. (1954). Tables of integral transforms, volume 1.
McGraw-Hill. 86, 152, 157

Bayarri, M. J. (1981). Inferencia Bayesiana sobre el coeficiente de correlación
de una población normal bivariante. Trabajos de estad́ıstica y de investigación
operativa, 32(3):18–31. 150, 151

Bayarri, M. J., Benjamin, D. J., Berger, J. O., and Sellke, T. M. (2016). Re-
jection odds and rejection ratios: A proposal for statistical practice in testing
hypotheses. Journal of Mathematical Psychology, 72:90–103. 116, 171

Bayarri, M. J. and Berger, J. O. (2000). P values for composite null models.
Journal of the American Statistical Association, 95(452):1127–1142. 58

Bayarri, M. J. and Berger, J. O. (2013). Hypothesis testing and model uncertainty.
In Damien, P., Dellaportas, P., Polson, N. G., and Stephens, D. A., editors,
Bayesian Theory and Applications, pages 361–394. Oxford University Press,
Oxford. 103

Bayarri, M. J., Berger, J. O., Forte, A., and Garćıa-Donato, G. (2012). Criteria
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Control, 8(4):423–429. 260

Carlin, B. P. and Chib, S. (1995). Bayesian model choice via Markov chain Monte
Carlo methods. Journal of the Royal Statistical Society. Series B (Methodolog-
ical), pages 473–484. 174, 206

274



References

Cavedini, P., Riboldi, G., D’Annucci, A., Belotti, P., Cisima, M., and Bellodi,
L. (2002a). Decision-making heterogeneity in obsessive-compulsive disorder:
Ventromedial prefrontal cortex function predicts di↵erent treatment outcomes.
Neuropsychologia, 40:205–211. 194

Cavedini, P., Riboldi, G., Keller, R., D’Annucci, A., and Bellodi, L. (2002b).
Frontal lobe dysfunction in pathological gambling patients. Biological Psychia-
try, 51:334–341. 194

Chambers, C. D. (2013). Registered Reports: A new publishing initiative at
Cortex. Cortex, 49:609–610. 99, 117

Chandramouli, S. and Shi↵rin, R. M. (2016). Extending Bayesian induction. Jour-
nal of Mathematical Psychology, 72:38–42. 41, 51, 52, 54, 57

Chechile, R. A. (1973). The Relative Storage and Retrieval Losses in Short–Term
Memory as a Function of the Similarity and Amount of Information Processing
in the Interpolated Task. PhD thesis, University of Pittsburgh. 213

Chen, M.-H., Shao, Q.-M., and Ibrahim, J. G. (2012). Monte Carlo methods in
Bayesian computation. Springer Science & Business Media. 173

Chen, Y. and Hanson, T. E. (2014). Bayesian nonparametric k-sample tests
for censored and uncensored data. Computational Statistics & Data Analysis,
71:335–346. 71

Cherno↵, H. and Savage, I. R. (1958). Asymptotic normality and e�ciency of
certain nonparametric test statistics. The Annals of Mathematical Statistics,
pages 972–994. 72

Chib, S. and Jeliazkov, I. (2001). Marginal likelihood from the Metropolis–
Hastings output. Journal of the American Statistical Association, 96(453):270–
281. 207

Colonius, H. (2016). An invitation to coupling and copulas: With applications to
multisensory modeling. Journal of Mathematical Psychology, 74:2–10. 74

Consonni, G. and Veronese, P. (2008). Compatibility of prior specifications across
linear models. Statistical Science, 23(3):332–353. 45

Cook, A. (1990). Sir Harold Je↵reys. 2 April 1891-18 March 1989. Biographical
Memoirs of Fellows of the Royal Society, 36:302–333. 11

Cover, T. M. and Thomas, J. A. (2006). Elements of information theory. John
Wiley & Sons. 257

Cox, D. and Reid, N. (1987). Parameter orthogonality and approximate condi-
tional inference. Journal of the Royal Statistical Society. Series B (Methodolog-
ical), pages 1–39. 256

Cramér, H. (1946). Methods of mathematical statistics. Princeton University
Press, 23. 249

Cumming, G. (2014). The new statistics: Why and how. Psychological Science,
25:7–29. 124
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De Bayesiaanse hypothese toetsen die wij ontwikkeld hebben zijn bedoeld om
empirische onderzoekers te helpen met (i) het kwantificeren van evidentie voor of
tegen een hypothese, en (ii) het leren en construeren van (statistische) modellen
en theorieën op basis van geobserveerde data.

Een statistisch model geeft een versimpelde beschrijving van de werkelijkheid
met een mathematische relatie f(d | ✓) tussen observaties, de data, d en parameters
✓. Zo kan d bijvoorbeeld refereren naar bloeddrukmetingen voor en na een behan-
deling van een steekproef van patiënten, ✓ refereert dan naar de e↵ectgrootte, en
f is in de meeste gevallen een normale verdeling om er rekening mee te houden
dat de metingen slechts een steekproef zijn uit een grotere populatie patiënten.

Om te toetsen of de behandeling e↵ectief is vergelijken we het nul model M
0

,
het statistisch model waarbij de e↵ectgrootte op nul wordt gezet ✓ = 0, met het
alternatief model M

1

, het model waarin de e↵ectgrootte elke reëele waarde kan
aannemen.

De a priori plausibiliteit van de e↵ectiviteit hangt af van welke behandeling
de patiënt krijgt voorgeschreven. De a priori kans dat de behandeling e↵ectief
is, is relatief hoog, zeg, P (M

1

) = 0.9 en P (M
0

) = 0.1, wanneer de patiënten
worden voorgeschreven om pillen in te nemen met een actieve stof ontwikkeld om
bloeddruk te verlagen. Een ander, maar equivalente, manier om deze a priori
model kansen te beschrijven is met behulp van de a priori model kansverhouding,
in dit geval, negen staat tot één, dus P (M1)

P (M0)
= 9. Op basis van de geobserveerde

data kunnen we de a priori model kansverhouding bijwerken tot a posteriori mo-
del kansverhouding P (M1 | d)

P (M0 | d) met behulp van de regel van Bayes en leidt tot de
volgende cruciale vergelijking:

P (M
1

| d)
P (M

0

| d) =
p(d |M

1

)

p(d |M
0

)
| {z }

BF10(d)

P (M
1

)

P (M
0

)
, (.0.1)

waar P (M
i

| d) refereert naar de a posteriori model kans van M
i

gegeven de
observaties, en p(d |M

i

) refereert naar de marginale waarschijnlijkheid van model
M

i

. De term BF
10

(d) is de zogeheten factor van Bayes, oftewel, Bayes factor,
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en beschrijft hoe de a priori model kansverhouding wordt bijgewerkt tot de a
posteriori model kansverhouding gegeven de observaties d.

De Bayes factor is makkelijk interpreteerbaar: BF
10

(d) = 7 indiceert dat de
observaties 7 keer zo waarschijnlijk zijn onder M

1

als onder M
0

, en BF
10

(d) = .2
indiceert dat de observaties 5 keer zo waarschijnlijk zijn onder M

0

als onder M
1

.
Gegeven de observaties is de Bayes factor BF

10

(d) altijd een niet-negatief getal
en hoe hoger (lager) dit getal, hoe meer (minder) evidentie er is voor M

1

ten
opzichte van M

0

. Op een gelijksoortige manier, wanneer ook de activiteitsniveau
van de patiënten is gemeten, kunnen we toetsen of de behandeling mensen moe
maakt. Op deze manier krijgen we geleidelijk meer inzicht in de e↵ecten van de
behandeling op de populatie van patiënten.

De Bayes factor is een ratio van de marginale waarschijnlijkheid p(d |M
i

) die
aangeeft hoe goed het model op de geobserveerde data past. Deze marginale
waarschijnlijkheid wordt berekend door de relatie f

i

(d | ✓) van model M
i

gegeven
de observaties d te evalueren op elke mogelijke parameter waarde ✓ en te middelen
ten opzichte van een a priori verdeling ⇡

i

(✓):

p(d |M
i

) =

Z

f
i

(d | ✓)⇡
i

(✓)d✓. (.0.2)

Gegeven twee modellen, dus, de relaties f
1

(d | ✓) en f
0

(d | ✓), is het de taak van
de statisticus om twee a priori verdelingen, namelijk, ⇡

0

(✓) en ⇡
1

(✓) te kiezen om
daarmee een Bayes factor te construeren. Voor een gebruiksvriendelijke Bayes
factor moet de statisticus er ook voor zorgen dat deze uit te rekenen is voor elke
data set d. In dit proefschrift beschreven we hoe men a priori verdelingen voor
Bayes factoren moet selecteren en berekenen. De resulterende Bayes factoren
zijn of worden nog gëımplementeerd in het gratis software-pakket vernoemd naar
Harold Je↵reys, Je↵reys’s Amazing Statistics Program, JASP, (url: https://jasp
-stats.org/, JASP Team, 2017).

Deel I. De onderliggende principes van de Bayes factor

Het eerste gedeelte van dit proefschrift richtte zich op de filosofie, de motivering
en de constructie van zogeheten Je↵reys’s Bayes factoren.

In Hoofdstuk 2 bespraken we de onderliggende principes van de Bayes factor,
hoe deze te interpreteren, en gaven we een beschrijving van de algemene constructie
waarmee Je↵reys a priori verdelingen selecteerde voor Bayes factoren. In deze
constructie is het van belang om een Bayes factor te ontwerpen dat predictief geijkt
en informatie consistent is. Een predictief geijkte Bayes factor is één wanneer de
steekproefgrootte te klein en daarom ambigu is, terwijl een informatie consistente
Bayes factor oneindig is wanneer de observaties overweldigend wijzen naar het
bestaan van een e↵ect. De constructie waarmee Je↵reys Bayes factoren ontwerpt
is ontleend uit hoe hij zijn Bayesiaanse t-toets opzet. Deze constructie hebben
we gebruikt om een Je↵reys’s Bayes factor af te leiden voor de product-moment
correlatiecoë�ciënt van Pearson. De resulterende Bayes factor is analytisch en
makkelijk te gebruiken.

In Hoofdstuk 3 reageren wij op twee discussie artikelen op ons werk over Harold
Je↵reys. In dit hoofdstuk belichtten wij de zogeheten Je↵reys-Lindley-Bartlett
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paradox, het verschil tussen inferentie en besluitvorming, en het verschil tussen
schatten en toetsen toe.

Deel II. Bayes factoren voor veelgebruikte statistische analyses

Het tweede deel van dit proefschrift richtte zich op Bayes factoren die wij gecon-
strueerd hebben voor bepaalde veelgebruikte statistische analyses.

In Hoofdstuk 4 zetten we een Bayesiaanse methode uiteen voor het schatten
en toetsen van de rangcorrelatiecoë�ciënt ⌧ van Kendall. Voor deze methode
modelleerden we de toets statistiek die we daarna gecombineerd hebben met het
analytische resultaat voor de correlatiecoë�ciënt van Pearson.

In Hoofdstuk 5 hebben we de afleiding van het analytische resultaat voor de cor-
relatiecoë�ciënt van Pearson gebruikt om een gëınformeerde Bayesiaanse t-toets
te construeren. De klasse van a priori verdelingen die wij hiervoor gebruikten is
een veralgemenisering van de verdelingen die Harold Je↵reys aandroeg voor dit
probleem, maar laat de locatie en schaal op de a priori verdeling van de e↵ect-
grootte vrij. Hierdoor kunnen onderzoekers wanneer ze substantiële voorkennis
hebben deze gebruiken in hun t-toetsen.

In Hoofdstuk 6 introduceerden we limiet-consistentie als een desideratum voor
het selecteren van a priori verdelingen voor twee-steekproef toetsen. Voor dit
desideratum bekijken we de hypothetische scenario waarin de dataverzameling
voor een process vroegtijdig wordt beëindigd, terwijl de dataverzameling van het
tweede proces voor een onbepaalde tijd doorgaat. In dergelijke gevallen zou de
Bayes factor moeten convergeren naar een eindige limiet. We constateren dat de
Bayes factor die Je↵reys voorstelde voor het twee-steekproef Poisson probleem
limiet-inconsistent is. Als oplossing generaliseren wij de Bayes factor van Je↵reys
zodat deze wel limiet-consistent is.

Deel III. Wetenschappelijk kennis vergaren met Bayes factoren

Het derde deel van dit proefschrift richtte zich op het gebruik van Bayes factoren
in de empirische wetenschappen als een instrument voor wetenschappelijk leren.
In het bijzonder bespreken wij de rol van de Bayes factor in de “replicatie- en
reproduceerbaarheidscrisis” (Baker, 2016, Levelt et al., 2012, Pashler and Wagen-
makers, 2012).

In Hoofdstuk 7 bespraken wij kort hoe psychologen zich hebben ingezet om
de reproduceerbaarheid van het veld te vergroten met grootschalige replicatie ini-
tiatieven, zoals het “Reproducibility Project: Psychology” (Open Science Colla-
boration, 2015), de speciale replicatie editie van Social Psychology (Nosek and
Lakens, 2014) en de vele ManyLabs experimenten (Ebersole et al., 2016; Klein
et al., 2014). Dit hoofdstuk is een commentaar op het werk van Witte and Zenker
(2016). Zij beweren dat een “ander” gebruik van standaard statistische methoden
op basis van p-waarden een oplossing is voor de replicatie- en reproduceerbaar-
heidscrisis. Ons standpunt is dat deze crisis veel omvattender is dan een discussie
over de statistische methoden. Wij pleiten er namelijk voor om confirmatieve stu-
dies te preregistreren. Door te preregistreren worden termen beter gedefinieerd
en vermijdt men het probleem van achteraf kanskapitalisatie. Daarnaast vinden
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wij dat wetenschap open en transparant moet zijn waarbij onzekerheid gerappor-
teerd wordt, omdat dit een betere en eerlijke beeld geeft van het wetenschappelijke
proces.

In Hoofdstuk 8 beschreven wij het gemak waarmee men een Bayesiaanse her-
analyse kan doen, zelfs wanneer de volledige dataset niet beschikbaar is. Dit is
relevant voor onderzoekers die naast p-waarden ook een Bayes factor willen rappor-
teren. Een Bayesiaanse heranalyse is ook handig voor redacteuren, recensenten,
lezers en verslaggevers, omdat zij in één oogopslag de evidentie kunnen bepalen in
gerapporteerde statistieken. Daarnaast demonstreren we hoe gevoelig de evidentie
is voor veranderingen in de a priori verdelingen door middel van een robuustheids-
analyse. De Bayesiaanse heranalyse leidt ook tot een a posteriori verdeling waaruit
men kan concluderen welke gebieden in de parameterruimte plausibeler worden na-
dat we de observaties in ogenschouw nemen. Als laatste bespraken wij hoe de a
posteriori verdeling gebruikt kan worden als voorkennis in een vervolgstudie.

In Hoofdstuk 9 bespraken wij een algemene methode om de evidentie te extra-
heren uit de observaties van een directe replicatiepoging gegeven de observaties
van een oorspronkelijke studie. Deze algemene methode is ontworpen om onder-
zoekers te helpen modellen te bouwen en kennis te vergaren uit een groeiend aantal
replicatiestudies.

Deel IV. Analytische resultaten

Het vierde deel van dit proefschrift richtte zich op verschillende analytische re-
sultaten die zijn gebruikt voor de constructie van de Bayesiaanse toetsen in dit
proefschrift.

In Hoofdstuk 10 leidden wij de analytische a posteriori verdeling af voor een
grote klasse van a priori verdelingen op de product-moment correlatiecoë�ciënt
van Pearson. Dit resultaat is gebruikt voor de analytische Bayes factor in Hoofd-
stuk 2 en de afleiding vormt de basis van Hoofdstuk 4 en 5.

In Hoofdstuk 11 leidden wij analytische a posteriori verdelingingen af voor
modellen met discrete data. Het eerste resultaat is gebruikt in Hoofdstuk 6 om
een limiet-consistente Bayes factor te construeren voor het twee-steekproef Poisson
probleem. Dit resultaat kan ook gebruikt worden om een robuustheidsanalyse te
definiëren voor een binomiaal toets. Daarnaast bevat dit hoofdstuk analytische
uitdrukkingen voor de eenzijdige binomiaal Bayes factoren. Het laatste resultaat
is een analytische uitdrukking voor de ratio van kansverhoudingen in een 2-keer-2
contingentie tabel.

Deel V. Twee handleidingen

Het vijfde en laatste deel van dit proefschrift richtte zich op hulpmiddelen bij het
construeren van Bayes factoren en biedt verdieping in mathematische statistisch
modelleren.

In Hoofdstuk 12 legden wij uit hoe bridge sampling (Meng and Wong, 1996)
gebruikt kan worden om uitkomsten van een MCMC-procedure te transformeren
in een schatting van de marginale waarschijnlijkheid van een model. De bridge
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sampler is relevant voor complexe modellen met hiërarchische structuren die lastig
te beschrijven zijn met standaard wiskundige functies.

In Hoofdstuk 13 gaven we een algemene beschrijving van mathematische sta-
tistiek en de rol van Fisher informatie voor statistische modellen in het bijzonder.
In het frequentistische paradigma werd uiteengezet hoe men hypothese toetsen
en betrouwbaarheidsintervallen kan construeren door Fisher informatie te combi-
neren met maximale waarschijnlijkheidsschatters. In het Bayesiaanse paradigma
werd uiteengezet hoe men een standaard a priori verdeling kan construeren uit
Fisher informatie. In het minimale beschrijvingslengte paradigma werd uiteenge-
zet hoe Fisher informatie gebruikt wordt om de mate van model complexiteit te
beschrijven. De resultaten hangen af van bepaalde regulariteitscondities die gege-
ven zijn in de appendix. Wanneer men modellen construeert die voldoen aan deze
condities zullen de standaard statistische methoden (asymptotisch) geldig zijn.
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