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Introduction
®0

Preliminaries

Decomposing Time Series

Time series consist of:
® Trend M
® Seasonal S
® Random R

Models are additive or multiplicative:

Xe= M+ St + R:
Xt = MtSth
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Decomposing Time Series

Time
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How to analyze the data?

Method 1: Trend Estimation

q

Al =02q-1)7" ) Xe
Jj=—q

\I}t = Xt — rﬁ?
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How to analyze the data?

Method 1: Trend Estimation g = 2

]

Year Year

Number of strikes in the USA
‘Number of strikes in the USA* — m2
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Introduction
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How to analyze the data?

Method 2: Trend Elimination by Differencing

VXt - Xt - th]_ - (1 - B)Xt
BXt = Xt—l
B/ X, = X;_j
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Introduction

[e]e] lele]e}

How to analyze the data?

Method 2: Trend Elimination by Differencing

VXe=Xi — X1 = (1 — B)X:
BXt = Xt—l
B/ X, = X;_j
V32X =V (VX)) = X — 2Xi—1 — Xe 2
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How to analyze the data?

Method 2: Trend Elimination by Differencing

VXe=Xi — X1 = (1 — B)X:
BXt = Xt—l
B/ X, = X;_j
V32X =V (VX)) = X — 2Xi—1 — Xe 2

Imagine:

my = Ccg + C1t
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[e]e] lele]e}

How to analyze the data?

Method 2: Trend Elimination by Differencing

VXe=Xi — X1 = (1 — B)X:
BXt = Xt—l
B/ X, = X;_j
V32X =V (VX)) = X — 2Xi—1 — Xe 2

Imagine:

my = Ccg + C1t
Vmy=my —mi1=cy+ cat — (o + a(t — 1))
Vm: = ¢
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Introduction
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How to analyze the data?

Method 2: Trend Elimination by Differencing

This generalizes:

Xe=m: + Y Y: is stationary with py(t) =0

k
Jj=0
k _ k
VXt = klek +V*Y:

Now, VXX, is stationary with mean klcy.
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Introduction
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How to analyze the data?

Method 2: Trend Elimination by Differencing g = 2

value
value

Year Year
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O0000e

How to analyze the data?

Summarizing the preprocessing step

® Visualize the time series
® Detect Trend and Seasonal effects
® Transform data such that residuals are stationary

® Estimate and substract M; and S;
® Differencing
® Transformations (log, /)

® Fit time series model to the stationary residuals
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Assumptions
®0

Stationarity

Stationarity

Some notation:

px(t) = E[X¢]
x(s, t) = Cov(Xs, Xe) = E[(Xs — ps)(Xe — pue)]
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Assumptions
®0

Stationarity

Stationarity

Strict:

d
(X153 Xn) = (Xiny -+, Xoh)

Weak:
® Lux(t) is independent of t
® yx(t+ h,t) is independent of t for each h.
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Assumptions
®0

Stationarity

Stationarity

Strict:

d
(X17 s 7Xn) = (X1+h7 s 7Xn+h)

Weak:
® Lux(t) is independent of t
® yx(t+ h,t) is independent of t for each h.

Strict usually implies weak but not the other way around.
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Assumptions
oce

Stationarity

Stationarity: Random Walk

S5 = Zle X; where X;i.id., ux =0 and vx = o2
E[S¢] = 0 and E[S?] = to?. Hence:
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Assumptions
oce

Stationarity

Stationarity: Random Walk

S5 = Zle X; where X;i.id., ux =0 and vx = o2
E[S¢] = 0 and E[S?] = to?. Hence:

’75(t + h, t) = Cov (St-l-ha St)

= to? — 0°
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Assumptions
oce

Stationarity

Stationarity: Random Walk

S5 = Zle X; where X;i.id., ux =0 and vx = o2
E[S¢] = 0 and E[S?] = to?. Hence:

’75(t + h, t) = Cov (St-l-ha St)

= to? — 0°

We conclude: Random walks violate stationarity.
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Linear process

Linear process

o
Xe=p+ Z YW

j=—o00

where Wy ~ N (0, 0’2), and 37°° || < o0
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Models
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Linear process

Linear process

o
Xe=p+ Z YW

j=—o00

where Wy ~ N (0, 0’2), and 37°° || < o0

Wold’s decomposition

Every second-order stationary process is, or can be trans-
formed to, a linear process.
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Linear process

MA(1)

Xe = p+ Z Q/)J'Wt,j

j=—00
Choose u =0,
1, ifj=0
Yyp=40, ifj=1
0, otherwise
we obtain:

Xe= Wi +0W;_1
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Linear process

Properties of the MA(1)

MA(1):
Var(X:) = yx(t, t) = 0?(1 + 6?)
h) =602, if h=1
Cov(X,) = vx(t,t+ h) 00., i
vx(t,t+h) =0, if h>1
Cox(tt+h) {14?02, if h=1

Corx,(t,t+ h
x{ N ) 0, ifh>1
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Models
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Linear process

AR(1)

Xe=p+ Y Wi

j=—00
Choose =0,
i = Pl ifj>0
I 0, otherwise

Then if |p| < 1 we obtain:

Xe = pXe—1 + Wi
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Linear process

Properties of the AR(1)

AR(1):
o2

Var(X;) = = —

ar(X:) = yx(t,t) i= 2
Al 2
po

Cov(X:) = t,t+h) =
( t) fyX( ) (1_p2)

vx(t, t)
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Linear process

Comparison of MA(1) and AR(1)

® The difference is in the correlation and covariance function
® Useful for estimation

® Useful for model comparison
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Comparison of MA(1) and AR(1): ACF

AR(1) MA(1)
> >
Time Time
ks | 8
‘lll._ |"'"

lag lag
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Linear process

Extensions: AR(p)

Xe— 1 Xe1— - — 0pXep = Wi

where W; ~ N(0, 02)
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Models
00000008000

Linear process

Extensions: AR(p)

Xe— 1 Xe1— - — 0pXep = Wi
where W; ~ N(0, 02)
Equivalently,

$(B)=1—¢1B— - — $,B”
$(B)X; = W,

Remember: BX; = X;_1 and B/ X, = Xi—j
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Linear process

Extensions: AR(p)

Conditions on ¢(B)

$(B)=1— 1B —---— $,B

® Unique solution iff no roots in the unit circle

® Does not depend on future iff roots outside of unit circle
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Linear process

Extensions: ARMA(p, q)

ARMA(1, 1)
Xt — ¢Xe1 = Wy +0We

where ¢ +60 # 0
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Models
00000000080

Linear process

Extensions: ARMA(p, q)

ARMA(1, 1)

X — pXe—1 = Wi + 0W,_4
where ¢ +60 # 0
ARMA(p, q)

Xe— o1 Xe1— - = ¢pXep = We + 01 We1 + - + 04 Wi g
P(B) X = 0(B)W;

For identifiability, ¢(B) and 6(B) have no common factors.

Time Series Don van den Bergh



Models
0000000000e

Linear process

Extensions: predictors

¢ VAR model
® VVMA model
* VARMA model

R: stats::arima and forecasting
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