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Introduction Assumptions Models

Preliminaries

Decomposing Time Series

Time series consist of:

• Trend M

• Seasonal S

• Random R

Models are additive or multiplicative:

Xt = Mt + St + Rt

Xt = MtStRt
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Preliminaries

Decomposing Time Series
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Introduction Assumptions Models

How to analyze the data?

Method 1: Trend Estimation

m̂q
t = (2q − 1)−1

q∑
j=−q

Xt−j

Ŷt = Xt − m̂q
t
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Introduction Assumptions Models

How to analyze the data?

Method 1: Trend Estimation q = 2
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Introduction Assumptions Models

How to analyze the data?

Method 2: Trend Elimination by Differencing

∇Xt = Xt − Xt−1 = (1− B)Xt

BXt = Xt−1

B jXt = Xt−j

∇2Xt = ∇ (∇Xt) = Xt − 2Xt−1 − Xt−2

Imagine:

mt = c0 + c1t

∇mt = mt −mt−1 = c0 + c1t − (c0 + c1(t − 1))

∇mt = c1
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Introduction Assumptions Models

How to analyze the data?

Method 2: Trend Elimination by Differencing

This generalizes:

Xt = mt + Yt Yt is stationary with µY (t) = 0

mt =
k∑

j=0

cj t
j

∇kXt = k!ck +∇kYt

Now, ∇kXt is stationary with mean k!ck .
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Introduction Assumptions Models

How to analyze the data?

Method 2: Trend Elimination by Differencing q = 2
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Introduction Assumptions Models

How to analyze the data?

Summarizing the preprocessing step

• Visualize the time series
• Detect Trend and Seasonal effects

• Transform data such that residuals are stationary
• Estimate and substract Mt and St
• Differencing
• Transformations (log,

√
)

• Fit time series model to the stationary residuals
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Introduction Assumptions Models

Stationarity

Stationarity

Some notation:

µX (t) = E [Xt ]

γX (s, t) = Cov(Xs ,Xt) = E [(Xs − µs)(Xt − µt)]

Strict:

(X1, . . . ,Xn)
d
= (X1+h, . . . ,Xn+h)

Weak:

• µX (t) is independent of t

• γX (t + h, t) is independent of t for each h.

Strict usually implies weak but not the other way around.
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Introduction Assumptions Models

Stationarity

Stationarity: Random Walk

St =
∑t

i=1 Xi where Xi i.i.d., µX = 0 and γX = σ2

E [St ] = 0 and E [S2
t ] = tσ2. Hence:

γS(t + h, t) = Cov (St+h,St)

= tσ2 − 02

We conclude: Random walks violate stationarity.
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Introduction Assumptions Models

Linear process

Linear process

Xt = µ+
∞∑

j=−∞
ψjWt−j

where Wt ∼ N
(
0, σ2

)
, and

∑∞
j=−∞ |ψj | <∞

Wold’s decomposition

Every second-order stationary process is, or can be trans-
formed to, a linear process.
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Introduction Assumptions Models

Linear process

MA(1)

Xt = µ+
∞∑

j=−∞
ψjWt−j

Choose µ = 0,

ψj =


1, if j = 0

θ, if j = 1

0, otherwise

we obtain:

Xt = Wt + θWt−1
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Introduction Assumptions Models

Linear process

Properties of the MA(1)

MA(1):

Var(Xt) = γX (t, t) = σ2(1 + θ2)

Cov(Xt) =

{
γX (t, t + h) = θσ2, if h = 1

γX (t, t + h) = 0, if h > 1

CorXt (t, t + h) =
γX (t, t + h)

γX (t, t)
=

{
θ

1+θ2
, if h = 1

0, if h > 1
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Introduction Assumptions Models

Linear process

AR(1)

Xt = µ+
∞∑

j=−∞
ψjWt−j

Choose µ = 0,

ψj =

{
ρj , if j ≥ 0

0, otherwise

Then if |ρ| < 1 we obtain:

Xt = ρXt−1 + Wt
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Introduction Assumptions Models

Linear process

Properties of the AR(1)

AR(1):

Var(Xt) = γX (t, t) =
σ2

(1− ρ2)

Cov(Xt) = γX (t, t + h) =
ρ|h|σ2

(1− ρ2)

CorXt (t, t + h) =
γX (t, t + h)

γX (t, t)
= ρ|h|
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Introduction Assumptions Models

Linear process

Comparison of MA(1) and AR(1)

• The difference is in the correlation and covariance function

• Useful for estimation

• Useful for model comparison
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Introduction Assumptions Models

Linear process

Comparison of MA(1) and AR(1): ACF
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Introduction Assumptions Models

Linear process

Extensions: AR(p)

Xt − φ1Xt−1 − · · · − φpXt−p = Wt

where Wt ∼ N (0, σ2)

Equivalently,

φ(B) = 1− φ1B − · · · − φpBp

φ(B)Xt = Wt

Remember: BXt = Xt−1 and B jXt = Xt−j
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Introduction Assumptions Models

Linear process

Extensions: AR(p)

Conditions on φ(B)

φ(B) = 1− φ1B − · · · − φpBp

• Unique solution iff no roots in the unit circle

• Does not depend on future iff roots outside of unit circle
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Introduction Assumptions Models

Linear process

Extensions: ARMA(p, q)

ARMA(1, 1)

Xt − φXt−1 = Wt + θWt−1

where φ+ θ 6= 0

ARMA(p, q)

Xt − φ1Xt−1 − · · · − φpXt−p = Wt + θ1Wt−1 + · · ·+ θqWt−q

φ(B)Xt = θ(B)Wt

For identifiability, φ(B) and θ(B) have no common factors.
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Introduction Assumptions Models

Linear process

Extensions: predictors

• VAR model

• VMA model

• VARMA model

R: stats::arima and forecasting
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