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History of Kriging

» Gold mining in South Africa in the 1940s

> Mines established in locations with surface exposure of ore =
biased sampling

» Sample mean of assays times estimated ore-body volume used
to predict recoverable ore

» Sample standard deviation used to estimate variability in ore
quality throughout the ore body
» D. G. Krige in the 1950s noted three flaws:

- Gold-assay data are log-normal

- Local variability (block grade) is lower than global variability
(core sample grade)

- Block grade and core sample grade are correlated

» Similar techniques and models developed in meteorology,
forestry, physics, geodesy
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Gaussian Process

» Observations Z(s1),...,Z(sy) at locations s, ...,sy of
random variable Z

» Here, each s; is a 2-dimensional vector

» Data are a partial realisation of a stochastic process:
{Z(s) :s € D} (1)

with D C R?
» Replications are not independent but are spatially correlated
» Goal: estimating Z(sp) for location(s) sg
» Rewrite the model: Z(s) = u(s) + €(s) = drift + zero-mean
residual
» Estimation requires:

- Description of drift E[Z(s)] = u(s)
- Description of spatial covariance Cov(Z(s;), Z(s;))



Gaussian Process

» Simplifying assumption 1 - Stationarity:

E[Z(s)] = p Vse D

v

Simplifying assumption 2 - Second-order stationarity:

Cov(Z(si), Z(s))) = C(Z(si)) — Z(s}))  Vsi,sie D (2)

v

Covariance between observations depends on distance and
direction but not location

v

C is called the covariance function

v

Even stronger assumption - Isotropy:

C(Z(S,’) — Z(Sj)) = C(Z(Sk) — Z(S/)) VS,‘,Sj,Sk,S/ eD:

Isi —sjll = lIsk — sl

v

Covariance between observations depends on distance but not
on direction or location



Estimating Spatial Covariance - Semivariogram

» Alternative characterisation of spatial autocorrelation for
isotropic processes (with some theoretical advantages)

> If:
V[Z(si) — Z(sj)] = 2v(si —s))

Z(-) is called intrinsically stationary and 2v(+) is called the
variogram
» 7(-) is the semivariogram and only depends on the spatial lag
h= Si —§j
» Properties:
- (=h) = ~(h)
-7(0)=0
- y(h)/[Ih[> = 0 as [|h||* = o0
- 7(+) is conditionally negative definite for > 1, a; = 0:

> aiaj(si—s) <0

i=1 j=1
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Relationship with Covariance function

» For a second-order stationary process Z(-):
+(h) = C(0) — C(h)

» If C(h) — 0 as ||h|| — oo, then y(h) — C(0), so C(0) is the
variance of the process

» Range of the semivariogram in direction ro/||ro|| is the
smallest value ||rg]| so that v(rp) = C(0)

» Spatial correlogram: p(h) = C(h)/C(0)

» So why do we need all three functions? Because the class of
intrinsically stationary processes is larger than the class of
second-order stationary processes (Brownian motion: ~(+)
exists, C(-) does not)



Estimating the Semivariogram

» Classic semivariogram estimator:
» Requires sufficient observations for each spatial lag
» With irregularly spaced data, pool data over tolerance regions

» Under intrinsic stationarity (E[Z(s)] constant):
2y(h) = V[Z(s + h) — Z(h)]

= E[(Z(s +h) — Z(W))?] - (E[Z(s +h) — Z(W)])?
= E[(Z(s +h) — Z(h))?]

v

Estimate E[(Z(s + h) — Z(h))?] by averaging squared
differences across pairs of observations



Estimating the Semivariogram
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Parametric Isotropic Semivariogram Models

» Several parametric families can be fitted to estimated
semivariogram

» Models typically assume isotropy but can be modified to fit
well-defined anisotropy types:

» Geometric anisotropy: range changes with direction, shape and
sill remain constant

» Zonal anisotropy: sill changes with direction, range remains
constant

» Several fitting methods (NLS, ML)

» Methods for model comparison (single-parameter tests,
chi-squared tests, AlC)

» Sum of models that are valid in R is again a valid model;
model addition used for complex processes



Spherical Semivariogram Model

» A semivariogram model is valid if it satisfies
negative-definiteness

» Spherical model:

0, h=
3
v(h,8) = co—i—cs[%a—hs—%(a—hs) ], 0<h<as
¢ + Gs, h>as

where 6 = (co, ¢s, as); ¢, ¢s > 0,as > 0.
> ¢y nugget effect, cs: partial sill, as: range

» Valid in 1, 2, and 3 dimensions



Spherical Semivariogram Model
Spherical

as

y(h,0)

Qo




Example Spherical Semivariogram Fit
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Other Models

Spherical Exponential
= x
h h
Gaussian Power
p=2
p=1
. p=05
g g
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h h
K-Bessel Cardinal-Sine
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=05
a=1
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Estimating the Mean - Kriging

» Once we know how observations are related across space we
can use these to:
- Estimate E[Z(so)] at some location sg
- Obtain uncertainty bounds for our estimate
» Types of kriging:
- Simple: mean known
- Ordinary: mean constant but unknown
- Universal: mean nonstationary and unknown
- Filterd: smoothing and prediction for noisy data
- Lognormal: optimal spatial estimation for lognormal data



Simple Kriging

» Let S = {s1,...,s,} be a set of locations at which we have
observed realisations z(s1),. .., z(s,) of the random variable
Z(s) = p(s) + (s)

» Assume 4(s) is known and 7(s; — s;) is independent of the
location

» We use the shorthand notation Z; = Z(s;) and pj = p(s;i)

» We want to estimate Zy = Z(sg) using a linear estimator:
n
A— Z NiZi + o
i=1

that minimises the mean-squared prediction error (MSPE):

E[(Z* — Zo)?] = V[Z* — Zo] + (E[Z* - Zo])*



Eliminating Bias

» To minimise V[Z* — Zo] + (E[Z* — Zy])? we first eliminate
the bias term, that is, we choose:

n
Ao = 1o — Z Aipti
i=1
» This gives for the estimator:
n
Z* = po+ Y N (Zi— )
i=1

» Without loss of generality pg =0



Minimising Mean Squared Prediction Error

» We expand:

V[Z* - 2] = —ZZ)\;)\I}/(S; —|—2Z)\,’7 S; —Sp)

i=1 j=1

v

Since we know/estimated 7(+), we can minimise the MSPE

v

Taking derivatives wrt. \; and equating with 0 gives a system
of equations, the Simple Kriging System:

> Alsi—sj) = A(si —s0)
j=1

Solution is the BLUP
Measure of the error is given by simple kriging variance:

v

v

odk = E[(Z* — Zo)*] = Z)w i —so)



What if we don’'t know the mean?
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Universal Kriging

» Basic idea: mean is a linear combination of ‘nice’ basis

functions:

L
/J’(S) = Z affe(s)’
=0

mostly monomials in s of low degree
» We use the shorthand notation ¥ = f(~;)

» We again want to minimise the MSPE
E[(Z* — Z0)?] = V[Z* — Zo] + (E[Z* — Zo])? using a linear
predictor of the form:

Z* = zn: \NZi,
i=1



Eliminating Bias

» Expanding the bias term we get:

n L L
E[Z* — Zo] = Z/\;Zagf;e — Zé)gfoZ
(=0 (=0

=1 —
L n
- Zag (Z Aiff — fof)
=0 i=1

» To minimise the MSPE we need to eliminate the bias, that is,
we must have:

ST =f ve=01,....L
i=1

called the universal kriging conditions



Minimising Mean Squared Prediction Error

» With these conditions in place, we expand the remaining term
of the MSPE:

n n
V[Z* = Zo] = =D ) Aida(si — ) +2 Z Aiv(si — so)
i=1 j=1
» Qur objective function now is:
L n
(=0 i=1

where we need to estimate both, the a; and the );



Minimising Mean Squared Prediction Error

» Taking partial derivatives wrt. ay and \; and equating to 0

gives:
Sl A (si =) + g aff =(si—s0), i=1,...
Z?:lAffiezf(Je7 £=0,...L

the Universal Kriging System

» Measure of the error is given by universal kriging variance:

n L
otk =E[(Z* — 20)°] =) Aiv(si —s0) + > afy
i=1 =0



Misspecification of the Variogram

» Effect on kriging estimates is largely negligible as long as the
behaviour near the origin is correct

» Effect on kriging variance can be substantial; sensitivity
analysis is recommended



Predicting Zinc Concentrations
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Predicting Zinc Concentrations

Zinc concentrations in Maas flood plains near Stein
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Thank You

More about kriging:

Waller, L.A. & Gotway, C. A. (2004). Applied Spatial Statistics for
Public Health Data. Wiley.

Chiles, Jean-Paul & Delfiner, P. (1999). Geostatistics: Modeling
Spatial Uncertainty. Wiley.

Kriging tutorial:
https://rpubs.com/nabilabd/134781

Image sources:
https://www.resourcesandenergy.nsw.gov.au/__data/assets/image/0007/526246/
sofala-hill-end-stuart-town-1-250-000-gold-deposits-map. jpg
http://www.equusmining.com/wp-content/uploads/2018/02/s1ide1-775x317. jpg
https://upload.wikimedia.org/wikipedia/commons/thumb/0/08/Sofala_Denison_Street_003.JPG/
1200px-Sofala_Denison_Street_003.JPG

https://postcodebijadres.nl/gemeente/stein
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