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History of Kriging

I Gold mining in South Africa in the 1940s

I Mines established in locations with surface exposure of ore ⇒
biased sampling

I Sample mean of assays times estimated ore-body volume used
to predict recoverable ore

I Sample standard deviation used to estimate variability in ore
quality throughout the ore body

I D. G. Krige in the 1950s noted three flaws:

- Gold-assay data are log-normal
- Local variability (block grade) is lower than global variability

(core sample grade)
- Block grade and core sample grade are correlated

I Similar techniques and models developed in meteorology,
forestry, physics, geodesy
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Gaussian Process

I Observations Z (s1), . . . ,Z (sN) at locations s1, . . . , sN of
random variable Z

I Here, each si is a 2-dimensional vector

I Data are a partial realisation of a stochastic process:

{Z (s) : s ∈ D} (1)

with D ⊂ R2

I Replications are not independent but are spatially correlated

I Goal: estimating Z (s0) for location(s) s0
I Rewrite the model: Z (s) = µ(s) + ε(s) = drift + zero-mean

residual
I Estimation requires:

- Description of drift E[Z (s)] = µ(s)
- Description of spatial covariance Cov(Z (si ),Z (sj))



Gaussian Process

I Simplifying assumption 1 - Stationarity :

E[Z (s)] = µ ∀s ∈ D

I Simplifying assumption 2 - Second-order stationarity :

Cov(Z (si ),Z (sj)) = C (Z (si )− Z (sj)) ∀si , sj ∈ D (2)

I Covariance between observations depends on distance and
direction but not location

I C is called the covariance function

I Even stronger assumption - Isotropy :

C (Z (si )− Z (sj)) = C (Z (sk)− Z (sl)) ∀si , sj , sk , sl ∈ D :

‖si − sj‖ = ‖sk − sl‖

I Covariance between observations depends on distance but not
on direction or location



Estimating Spatial Covariance - Semivariogram

I Alternative characterisation of spatial autocorrelation for
isotropic processes (with some theoretical advantages)

I If:
V[Z (si )− Z (sj)] = 2γ(si − sj)

Z (·) is called intrinsically stationary and 2γ(·) is called the
variogram

I γ(·) is the semivariogram and only depends on the spatial lag
h = si − sj

I Properties:
- γ(−h) = γ(h)
- γ(0) = 0
- γ(h)/‖h‖2 → 0 as ‖h‖2 →∞
- γ(·) is conditionally negative definite for

∑m
i=1 ai = 0:

m∑
i=1

m∑
j=1

aiajγ(si − sj) ≤ 0
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Relationship with Covariance function

I For a second-order stationary process Z (·):

γ(h) = C (0)− C (h)

I If C (h)→ 0 as ‖h‖ → ∞, then γ(h)→ C (0), so C (0) is the
variance of the process

I Range of the semivariogram in direction r0/‖r0‖ is the
smallest value ‖r0‖ so that γ(r0) = C (0)

I Spatial correlogram: ρ(h) = C (h)/C (0)

I So why do we need all three functions? Because the class of
intrinsically stationary processes is larger than the class of
second-order stationary processes (Brownian motion: γ(·)
exists, C (·) does not)



Estimating the Semivariogram

I Classic semivariogram estimator:

I Requires sufficient observations for each spatial lag

I With irregularly spaced data, pool data over tolerance regions

I Under intrinsic stationarity (E[Z (s)] constant):

2γ(h) = V[Z (s + h)− Z (h)]

= E[(Z (s + h)− Z (h))2]− (E[Z (s + h)− Z (h)])2

= E[(Z (s + h)− Z (h))2]

I Estimate E[(Z (s + h)− Z (h))2] by averaging squared
differences across pairs of observations
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Parametric Isotropic Semivariogram Models

I Several parametric families can be fitted to estimated
semivariogram

I Models typically assume isotropy but can be modified to fit
well-defined anisotropy types:

I Geometric anisotropy: range changes with direction, shape and
sill remain constant

I Zonal anisotropy: sill changes with direction, range remains
constant

I Several fitting methods (NLS, ML)

I Methods for model comparison (single-parameter tests,
chi-squared tests, AIC)

I Sum of models that are valid in Rd is again a valid model;
model addition used for complex processes



Spherical Semivariogram Model

I A semivariogram model is valid if it satisfies
negative-definiteness

I Spherical model :

γ(h, θ) =


0, h = 0

c0 + cs [32
h
as
− 1

2

(
h
as

)3
], 0 < h ≤ as

c0 + cs , h > as

where θ = (c0, cs , as); c0, cs ≥ 0, as > 0.

I c0: nugget effect, cs : partial sill, as : range

I Valid in 1, 2, and 3 dimensions
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Example Spherical Semivariogram Fit
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Estimating the Mean - Kriging

I Once we know how observations are related across space we
can use these to:

- Estimate E[Z (s0)] at some location s0
- Obtain uncertainty bounds for our estimate

I Types of kriging:

- Simple: mean known
- Ordinary : mean constant but unknown
- Universal : mean nonstationary and unknown
- Filterd : smoothing and prediction for noisy data
- Lognormal : optimal spatial estimation for lognormal data



Simple Kriging

I Let S = {s1, . . . , sn} be a set of locations at which we have
observed realisations z(s1), . . . , z(sn) of the random variable
Z (s) = µ(s) + ε(s)

I Assume µ(s) is known and γ(si − sj) is independent of the
location

I We use the shorthand notation Zi = Z (si ) and µi = µ(si )

I We want to estimate Z0 = Z (s0) using a linear estimator:

Z ∗ =
n∑

i=1

λiZi + λ0

that minimises the mean-squared prediction error (MSPE):

E[(Z ∗ − Z0)2] = V[Z ∗ − Z0] + (E[Z ∗ − Z0])2



Eliminating Bias

I To minimise V[Z ∗ − Z0] + (E[Z ∗ − Z0])2 we first eliminate
the bias term, that is, we choose:

λ0 = µ0 −
n∑

i=1

λiµi

I This gives for the estimator:

Z ∗ = µ0 +
n∑

i=1

λi (Zi − µi )

I Without loss of generality µ0 = 0



Minimising Mean Squared Prediction Error

I We expand:

V[Z ∗ − Z0] = −
n∑

i=1

n∑
j=1

λiλjγ(si − sj) + 2
n∑

i=1

λiγ(si − s0)

I Since we know/estimated γ(·), we can minimise the MSPE

I Taking derivatives wrt. λi and equating with 0 gives a system
of equations, the Simple Kriging System:

n∑
j=1

λjγ(si − sj) = γ(si − s0)

I Solution is the BLUP

I Measure of the error is given by simple kriging variance:

σ2SK = E[(Z ∗ − Z0)2] = C (0)−
n∑

i=1

λiγ(si − s0)



What if we don’t know the mean?



Universal Kriging

I Basic idea: mean is a linear combination of ‘nice’ basis
functions:

µ(s) =
L∑

`=0

a`f
`(s),

mostly monomials in s of low degree

I We use the shorthand notation f `i = f `(∼i )

I We again want to minimise the MSPE
E[(Z ∗ − Z0)2] = V[Z ∗ − Z0] + (E[Z ∗ − Z0])2 using a linear
predictor of the form:

Z ∗ =
n∑

i=1

λiZi ,



Eliminating Bias

I Expanding the bias term we get:

E[Z ∗ − Z0] =
n∑

i=1

λi

L∑
`=0

a`f
`
i −

L∑
`=0

a`f
`
0

=
L∑

`=0

a`

(
n∑

i=1

λi f
`
i − f `0

)

I To minimise the MSPE we need to eliminate the bias, that is,
we must have:

n∑
i=1

λi f
`
i = f `0 ∀` = 0, 1, . . . , L,

called the universal kriging conditions



Minimising Mean Squared Prediction Error

I With these conditions in place, we expand the remaining term
of the MSPE:

V[Z ∗ − Z0] = −
n∑

i=1

n∑
j=1

λiλjγ(si − sj) + 2
n∑

i=1

λiγ(si − s0)

I Our objective function now is:

Q = V[Z ∗ − Z0] +
L∑

`=0

a`

(
n∑

i=1

λi f
`
i − f `0

)

where we need to estimate both, the a` and the λi



Minimising Mean Squared Prediction Error

I Taking partial derivatives wrt. a` and λi and equating to 0
gives:{∑n

j=1 λjγ(si − sj) +
∑L

`=0 a`f
`
i = γ(si − s0), i = 1, . . . n∑n

i=1 λi f
`
i = f `0 , ` = 0, . . . L,

the Universal Kriging System

I Measure of the error is given by universal kriging variance:

σ2UK = E[(Z ∗ − Z0)2] =
n∑

i=1

λiγ(si − s0) +
L∑

`=0

a`f
`
0



Misspecification of the Variogram

I Effect on kriging estimates is largely negligible as long as the
behaviour near the origin is correct

I Effect on kriging variance can be substantial; sensitivity
analysis is recommended



Predicting Zinc Concentrations



Predicting Zinc Concentrations

Zinc concentrations in Maas flood plains near Stein
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Thank You

More about kriging:
Waller, L.A. & Gotway, C. A. (2004). Applied Spatial Statistics for
Public Health Data. Wiley.
Chiles, Jean-Paul & Delfiner, P. (1999). Geostatistics: Modeling
Spatial Uncertainty. Wiley.

Kriging tutorial:
https://rpubs.com/nabilabd/134781

Image sources:
https://www.resourcesandenergy.nsw.gov.au/__data/assets/image/0007/526246/

sofala-hill-end-stuart-town-1-250-000-gold-deposits-map.jpg

http://www.equusmining.com/wp-content/uploads/2018/02/slide1-775x317.jpg

https://upload.wikimedia.org/wikipedia/commons/thumb/0/08/Sofala_Denison_Street_003.JPG/

1200px-Sofala_Denison_Street_003.JPG

https://postcodebijadres.nl/gemeente/stein

https://rpubs.com/nabilabd/134781
https://www.resourcesandenergy.nsw.gov.au/__data/assets/image/0007/526246/sofala-hill-end-stuart-town-1-250-000-gold-deposits-map.jpg
https://www.resourcesandenergy.nsw.gov.au/__data/assets/image/0007/526246/sofala-hill-end-stuart-town-1-250-000-gold-deposits-map.jpg
http://www.equusmining.com/wp-content/uploads/2018/02/slide1-775x317.jpg
https://upload.wikimedia.org/wikipedia/commons/thumb/0/08/Sofala_Denison_Street_003.JPG/1200px-Sofala_Denison_Street_003.JPG
https://upload.wikimedia.org/wikipedia/commons/thumb/0/08/Sofala_Denison_Street_003.JPG/1200px-Sofala_Denison_Street_003.JPG
https://postcodebijadres.nl/gemeente/stein
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