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Abstract

We show how e-values simplify the design and the conduct of experiments.
These e-values yield anytime-valid tests and confidence intervals that pre-
serve type I error guarantee regardless of the sample size. This enables
real-time monitoring of evidence as data are collected, permitting early ter-
mination of experiments without intolerably inflating the risk of making a
false discovery. Early stopping not only preserves resources, but also mit-
igates risk for participants in clinical settings. Anytime-valid tests always
allow for optional continuation, that is, the extension of an experiment re-
gardless of the motivation. For instance, if more funds become available, or
if the evidence looks promising and the funding agency, a reviewer, or an ed-
itor urges the experimenter to collect more data. Analogously, a researcher
can be assured that a 95% anytime-valid confidence interval will, with at
least 95% chance, cover the true effect size regardless of how, or even if,
data collection is stopped. We use the free and open-source software library
safestats implemented in R to illustrate the practical benefits of this novel
inference framework.

Keywords: adaptive sampling designs; evidence; reproducible science; re-
search waste reduction; sequential analysis

Reproducible science is a demanding undertaking: It necessitates reducing the risk
of reporting, publication, and hindsight biases by explicitly formulating the theories and
hypotheses that we test in a pre-registration document before data acquisition. Such a
pre-registration document typically also requires the pre-specification of a (sampling) rule
for terminating data collection. Incorporating a sampling regimen in a pre-registration doc-
ument serves to prevent the commonly used classical p-value test from becoming unreliable
and invalid, a situation that arises when such a test is conducted during data acquisition.
Based on this fact, Simmons et al. (2011, p. 4) argued that reliable science requires authors
to explicate and abide by their sampling rule. They also proposed that reviewers should act
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as gatekeepers to enforce adherence to the sampling plan. The suggested solution ultimately
comes down to removing flexibility by confining researchers to a rigid sampling regimen in
service of an old-fashioned statistical tool of inference, which was developed in the 1930s.
However, despite all good intentions to sustain a sampling plan, researchers might face chal-
lenges such as difficulties in study recruitment, faster-than-expected depletion of funds, or
even the impact of a global pandemic. Experiencing these setbacks and subsequently being
informed that the statistical inferences are invalid is akin to having salt rubbed into one’s
wounds.

Rather than forcing researchers to become slaves to rigid classical statistical tools
that require strict adherence to a sampling regimen, we propose the use of recently devel-
oped, maximally flexible, anytime-valid tests and confidence intervals based on E-processes,
which yield realisations referred to as e-values. The main advantage of F-process-based
analysis methods is that their validity is independent of any sampling plan; they can be
conducted at any moment in time, regardless of planned, current, or future sample sizes.
Being free of a sampling plan implies that the realised e-values can help researchers safely
make informed decisions about whether to stop or continue an investigation during data
acquisition. Crucially, the flexibility in data collection afforded by e-values does not permit
just any working hypothesis to be falsely presented as significant, in contrast to p-values,
as was so convincingly illustrated by Simmons et al. (2011)). As such, this e-value-based in-
ference framework relieves authors of the strenuous effort required to adhere to a sampling
plan. It also lifts the burden on reviewers to evaluate whether the authors upheld their
sampling plan — a reviewer who considers the evidence to be too weak (i.e. the reported
e-value to be too small) may even ask authors to gather some additional data and compute
an updated e-value. Whenever there truly is no effect, additional data cannot intolerably
inflate the chance of a false positive finding.

To clarify our stance, we do not object to the principles of pre-registration and plan-
ning. Rather, our concern is with the traditional methods of inference that restrict us from
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adapting to new circumstances. Our aim is to show that a viable alternative to classical p-
value-based methods exists, and making it accessible to practitioners. Notably, our primary
contribution consists of insightful yet non-binding and maximally flexible sampling designs,
which provide explicit guidance on the efficient use of resources for designing and executing
experiments. In a nutshell (all jargon will be explained further below), our designs involve
a planned sample size npan at which a desired power at a guessed (or minimally clinically
relevant) effect size is guaranteed; non-binding means that both the e-value based tests and
confidence intervals remain valid irrespective of whether the planned sample size is actually
realised, or whether the guessed effect size is even approximately correct — we may always
stop early or add data points at will.

These designs are elaborated on in Section Before doing so, we first illustrate
the use of e-values applied to two real-world data sets in Section [I, Section [2| examines
the nature of anytime-validity by analysing the behaviour of E-processes under the null
(when the effect is truly absent), while Section 3| focuses on their behaviour under the
alternative (when the effect is truly present). Section [4]is concerned with the more nuanced
differences between e-value based and Bayesian inference, which can be safely skipped upon
first reading. Practical guidelines are given in Section [5] which we use to revisit the two
real-world examples in Section [} We conclude with a brief discussion in Section

This tutorial on e-values is intended for practitioners who wish to make reliable
inferences with minimal statistical constraints. It prioritises readability by an applied au-
dience over rigorous mathematical presentation, a facet adeptly handled by, for instance,
Grinwald et al. (2024), Howard et al. (2021), Ramdas et al. (2023)), Ramdas and Wang
(2024), and Shafer (2021)).

1 Two Real-World Examples Illustrating e-Value Based Inference in Action

Before elaborating on the design of an e-value based experiment, we first illustrate
its application by examining two replication attempts from the Many Labs 2 Project (Klein
et al., |2018)). This project investigated variations across samples and settings in the repli-
cability of 28 classic psychological findings.

1.1 Example 1: Moral Typecasting (Gray & Wegner, 2009, Study 1a)

Moral typecasting is the process where a moral agent (doer of right or wrong actions)
is less likely to be perceived as a receiver of that action, and vice versa. Gray and Wegner’s
(2009) postulated that age plays a key role in perceived morality. More precisely, they
hypothesise that children are viewed (1) as being less responsible for their actions, (2) as
having less intention of doing right or wrong, and (3) they are more likely to be perceived
as receivers of moral actions compared to adults.

To study this hypothesis, Gray and Wegner (2009) had 69 participants read a story
about either an adult man (high in moral agency) harming a baby, or a baby (low in moral
agency) harming an adult man by knocking over a tray of glasses. Participants rated the
responsibility of the offender on a 7-point scale from 1 (low) to 7 (high). On average,
participants who read the story of the offending adult man rated him as more responsible
(Z1 =5.29,s1 = 1.86) compared to participants who were presented with the offending baby
(Z2 = 3.86, s9 = 1.64). The two observed sample means z; and Z3 are assumed to be imperfect
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InfoBox 1: Basic terminology, notation and the statistical model underlying the t-test

A hypothesis makes a claim about (unobserved) population parameters of interest. For instance, the
null hypothesis of no effect Hg : 1 = po postulates that the population mean difference parameter
= 1 — o equals zero. Note that the null hypothesis specifies one constraint on two populations
means, which leaves one parameter free. This is even clearer when we write p; = pg + ¢/2 and
po = fig — ¢/2, where 14 is a so-called grand mean. The parameter 4 is test irrelevant, thus, a
nuisance parameter, because its value does not affect the parameter of interest .

Instead of limiting ourselves to the postulate that ¢ equals zero, we can as easily test null hypotheses
where the mean difference parameter is claimed to be —3.142, or 2.718, or any other constant (.
The T-statistic is a function of the data that measures the discrepancy between the claimed value
o and the (observed) sample mean difference scaled by the standard error S,/\/ns, that is,

X1—X2—900

T:=/ns S, ) (1)

where X, := nik Yk Xy is the sample mean of population k =1,2, ns = % the so-called effective

sample size with ny the size of the sample from population k£ =1,2, and

5, \J LBz S, - %p2). (2’
viia =1

is the pooled standard deviation, where v = ny + ny — 2 is the degree of freedom.

If the null hypothesis holds true, then the discrepancy as measured by the T-statistic is expected
to be small. The null hypothesis does not exclude the possibility of ever seeing large values of T', it
only implies that such an event occurs with low chance. What quantifies large values of T' occurring
with small chance is quantified by a model that links the population parameters to data. Such
a model M specifies a collection of data-generating distributions for the problem of interest (e.g.
Bickel & Doksum, 2015; Ly et al., 2017)). For typical t-test scenarios, the model consists of normal
distributions. In context of Section the ratings in the adult offending and baby offending
condition are assumed to be independently drawn from the normal distributions N (u1,02) and
N (p2,0?) respectively, where o2 is an unknown population variance, and also a nuisance parameter.
The null model denoted by My consists of the aforementioned normal distributions with mean
difference parameter restricted to the null value ¢¢ leaving the nuisance parameters p, and o free
to vary. o

reflections of two underlying, but unobserved, population means @ and ps, respectively.
The null hypothesis postulates that the mean difference is zero, i.e. Hg: @ = u3 — ug = 0,
which implies that the observed mean difference z; — Zo is a result of mere random noise.
This null hypothesis was tested and rejected at the typical significance level of o = 0.05 due
to observing ¢(68) = 3.32 and p = 0.001 < a. A more detailed description of the relevant
terminology and notation can be found in Box

The resulting null rejection was viewed as support for Gray and Wegner’s (2009)
(1) perceived responsibility part of the moral typecasting hypothesis. The authors of the
original study also found that participants (2) perceived the adult offender to be more
intentional compared to the baby, and that (3) the perceived pain of the adult is less than
that of the baby. The main focus here, as in Many Labs 2, is on (1) perceived responsibility.

Out of 61 Many Labs 2 replication attempts, a total of 58 (95.08%) led to a signifi-
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cant p-value. The pre-registration required each replication attempt to contain at least 80
participants, say, nplan,1 = Mplan,2 = 40 in each group. To ensure that the classical p-value
tests remain valid (see also the discussion surrounding Fig. [2| below), data collection across
all attempts had to stop before the p-value tests were conducted.

By using e-values, we can reverse this process and monitor the test results before
stopping an experiment — all while maintaining type I error control, as explained below.
The e-value quantifies the evidence against the null hypothesis, ranging from zero (abso-
lutely no evidence against the null) to one (neutral evidence) and to infinity (irrefutable
evidence against the null). A null rejection at level « can be concluded as soon as the e-value
crosses the threshold 1/a;, e.g. e > 20 for « = 0.05. Monitoring the test implies that we deal
with a sequence of e-values, say, e1,ea,...,€,,.... At each “time” n we can check whether
the e-value at that moment, denoted by e, exceeds the evidence threshold 1/a. The left
panel of Fig. [I] shows in blue the evolution of the e-values for the replication data acquired
at Carleton University in Ottawa, Canada. The plot shows the progression of e-values as a

Progression of e-values as sample size increases in Gray and Wegner, 2009, Study 1a savi confidence interval as sample size increases in Gray and Wegner, 2009, Study 1a
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Figure 1

Left panel: The e-value sample path shows that at ny = 16, and no = 14, there is already suf-
ficient evidence to reject the null. Right panel: The 95% anytime-valid confidence intervals
encapsulates the data-governing mean difference at all times with 95% chance. The null
value of zero mean difference drops out of the intervals the first time the e-value passes the
rejection threshold of 1/a = 20.

function of the sample sizes ni and no of the adult offending and baby offending condition,
respectively. For simplicity, the ratio between n; and ns is assumed to be fixed to the ratio
of the final sample sizes n; = 66 and ns = 55. For instance, the first time the e-value passes
the threshold of 1/ = 20 (indicated by the broken horizontal line) occurs at n; = 16 and
ng = 14, at which point data collection can already be stopped. Doing so leads to testing
50 and 41 fewer participants from the adult offending and the baby offending condition,
respectively. The right panel of Fig. [I] shows the corresponding anytime-valid confidence
interval for the mean difference parameter ¢ = puy — ps. The yellow broken horizontal line
corresponds to the postulated Hg : ¢ = 0. The few lines of code needed for this analysis
are shown in R Code Repeating the e-value test for all replication attempts yields
54 null rejections (88.52%), 4 fewer than the p-value analysis. These conclusions, however,

'For those interested in coding along, we recommend installing version 0.8.8 or higher of the safestats
package, which, if not available on the Comprehensive R Archive Network (CRAN), can be installed by
running the command remotes: :install _github("AlexanderLyNL/safestats", ref="088") in R.
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designObj <« designSaviT(nPlan=c(40, 40), alpha=0.05,
testType="twoSample")

result <« saviTTest(x, y, designObj=designObj, sequential=TRUE)

plot (result, xlim=c(1, 70), xlab="Number of looks/Sample size")

plot (result, xlim=c(1, 70), wantConfSeqPlot=TRUE)

R Code 1.1: R Code for an e-value t-test. Only a few lines of code suffices to run an e-value
t-test. The design object on Line 1 formalises the Many Labs 2 protocol of acquiring at
least 80 participants. The e-value test is performed on Line 3 for data vectors x and y. Line
4 plots the evolution of e-values, and Line 5 plots the corresponding confidence interval as
a function of the sample size of the first group, see Fig.

can be reached with 2543 and 2474 fewer participants (about 63.1% and 62.3% less) in the
offending adult and offending baby condition, respectively, if an experiment is stopped as
soon as e > 1/a = 20 is observed.

1.2 Example 2: The Macbeth Effect — Moral Violations and Desire for Cleans-
ing Zhong and Liljenquist, 2006, Study 2

Exactly the same E-process, that is, the same procedure that takes in data and out-
puts e-values, yields markedly different results when it is applied to the following example.
Zhong and Liljenquist (2006]) hypothesised that a threat to one’s moral purity induces the
need to (physically) cleanse oneself, which they referred to as the “Macbeth effect”.

In Study 2, Zhong and Liljenquist (2006) asked 27 participants to copy a first-
person account of an ethical act (helping a co-worker), or an unethical act (sabotaging a
co-worker). Afterwards, the participants rated the desirability of five cleaning products and
five non-cleaning products on a scale from 1 (not at all) to 7 (very much). Participants who
copied the unethical story (1 =4.95,5s1 = 0.84) found the cleaning products more desirable
compared to participants who copied the ethical story (Z2 = 3.75,s9 = 1.32). A p-value
test was conducted to reject the null hypothesis Hp : ¢ = 0 that claims that the observed
mean difference is due to mere random noise. The null hypothesis was rejected based on
t(25) =2.64 and p =0.01 < a = 0.05.

The test applied to the combined data from all replication attempts yielded
t(6954) = 0.096 and p = 0.9237. Only 3 out of the 57 Many Labs 2 replication attempts
(5.26%) yielded a significant p-value less than o = 0.05F] Recall that if the null hypothesis
indeed holds true (e.g. see Earp et al., |2014), then we expect the p < 0.05 test to falsely
reject in about a 5% proportion of the number of replication attempts. Indeed, the results
are fully consistent with the postulate that the Macbeth effect is absent. It is worth noting
that these p < 0.05 tests were only computed once, at the final sample sizes. If the p-value
test was performed as the data accumulate and the experiment stopped as soon as p < 0.05
was observed, then we would have ended up with 16 significant p-values out of the 57
replication attempts (28.07%, which is much larger than the tolerable 5%). On the other

2Unfortunately, we were unable to retrieve the correct “bogota” data from the data sets uploaded at
https://osf.io/8cd4r/, which is why our results differ slightly compared to what is reported in Klein et al.
(2018}).
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hand, monitoring the e-value and rejecting the null as soon as e, > 1/a = 20 resulted in 1
null rejection out of 57 attempts (only 1.75% compared to 28.07%). If the null hypothesis
holds true, then no matter how far we extend each trial, the chance of ever falsely rejecting
the null based on e > 20 will forever remain below 5%.

Before we proceed, we offer a few remarks:

1. In general, there are various types of F-processes that output e-values. In the
examples above, we employed one specific E-process to two sets of replication attempts. A
different E-process might have led to faster inference in the first example and fewer false
discoveries in the second example, assuming the Macbeth effect does not exist. To avoid
e-hacking, one must fix the E-process in advance. R Code does so by fixing the e-value
type, and the tuning parameters within the type, see Section for further details.

2. The specific F-process employed in the two examples is of type mom with explicit
formulation given in Box As a result of running Lines 1 and 2 of R Code the
tuning parameter gmom, See Section for details, is set to gmom = 0.134. Unless specified
otherwise, all simulations performed below, use the same mom E-process with gpen = 0.134.
The safestats package (version 0.8.8) uses the mom type E-process for t-tests by default.
The other types included in the package are referred to as eGauss, eCauchy, and grow.
Motivation for the mom and the other E-processes types will be given in Section

3. The underlying tuning parameter of the F-process used in the two examples above
is optimised to the minimum sample size of npjan,1 = Nplan,2 = 40 within each condition.
In Many Labs 1 it was mentioned that this choice was a trade-off between lowering the
threshold for laboratories to join the Many Labs project and having a sample size at which
estimates would be reasonable. Other inputs could have been used to determine the planned
sample sizes. For instance, based on an expected or minimal clinically relevant standardised
effect size dmin and a targeted power 1 — 3, as elaborated on in Section (3] We revisit these
two sets of replication attempts in Section [6

2 Anytime-Valid Inference and the Definition of F-Processes and e-Values

In the two examples above, we considered the aggressive data-dependent so-called
first-passage time N at which the e-value passes 1/« as a stopping rule. Inference based
on e-values does not require us to adhere to this or any other stopping time. We use the
term stopping time to describe possibly data-dependent rules for stopping, see Box [2| for
a more precise definition and practical examples. Regardless of the stopping time N we
choose, or is forced upon us, the chance of ey > 1/« remains forever small if there truly
is no effect. This robustness to the stopping time follows quite directly from its definition,
which involves some statistical terminology that we briefly review first.

2.1 Typel Error a Control is Relevant for Both Tests and Confidence Intervals

By a (statistical) test or test procedure we refer to a random variable that takes in
data, typically via a p-value, Bayes factor, or e-value, and has two potential realisations:
FEither “reject” or “not reject” the null hypothesis. Ideally, we want the test to only reject
the null when it is false, and only refrain from rejecting the null hypothesis when it is true,
see Table [I} Regrettably, due to individual differences, no statistical method can entirely
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InfoBox 2: Definition of stopping times and examples

A stopping time N is a potentially data-dependent rule for halting data collection, as long as the
decision to stop does not depend on future events. Here are some examples:

a. The classic stopping rule to halt data collection at a fixed time, say, N = 200, after observing
ny1 = ng = 200 pairs. Halting is not influenced by any observation, particularly those after N = 200.

b. The first-passage time N, at which ey > 1/a occurs, only depends on the data up to time N.

c. The external stopping time when we have to halt data collection due to our funds being
depleted, or because our measurement instrument, such as an EEG scanner, malfunctions.

d. Frustrated stopping time: The moment the study stops, because the principal investigator
quits his job in rage due to his constant struggles with a particularly evil printer.

e. Convenient stopping time: The point in time when a meeting is finally scheduled with a
funding agent, governing board and ethics committee during which it is established that the
e-value at that time is satisfactory after intermediate assessments.

Stopping times can also be reformulated during data collection:

A. Delayed first-passage time: Assume that the first-passage time N occurs early on. This makes
us conservative, leading us to require the e-value to remain above 1/« for, say, an additional 6
time points before actually stopping.

B. Forced continuation: We observed e = 12 < 1/a = 20, but a reviewer, convinced that there
should be significant evidence against the null hypothesis, insists that we test another 20 obser-
vations before concluding the experiment.

C. Hopeful continuation: A Bayesian statistician tells us to stop data collection in favour of the
null the first instance ey < 0.21, and to stop for the alternative as soon as ey > 16. Suppose that
during data acquisition, e,, < 0.21 is observed, but that the investigator is hopeful and continues
sampling until ey > 16. The first time N at which ey > 16 occurs after first observing e, < 0.21
is a stopping time.

Note that the last two stopping times incorporate hopeful intentions. Finally, let M be the (poten-
tially unknown in advance) time at which one must stop due to the exhaustion of resources such as
money, time, or energy. It follows that for any stopping time N, the minimum between N and M,
i.e. min{N, M} is also a stopping time. S

eliminate the tabulated errors stemming from sampling only a (small) portion of a large
population. The general consensus is that a type I error, that is, a false positive rejection
of a true null hypothesis, is the worst type of error. A false positive finding arises when
random noise is mistaken for a structural effect. Type I errors are costly, as they introduce
random noise into a scientific field that typically persists in the literature. Furthermore,
type I errors can lead to fruitless research programmes and hurt the credibility of the field
(Simmons et al., 2011). Thus, to ensure reliable statistical hypothesis tests, we always first
insist that the type I error is controlled.

Type I error control of level a remains a directly relevant quantity if the goal is to
report 1—« confidence intervals alongside, or even in place of, a test (Amrhein et al., [2019).
This relevance arises because « reflects the chance that a confidence interval will not cover
the data-governing parameter, such as the population mean difference . Classical 1 - «
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Table 1

Schematic of binary classification errors when testing.

Test outcome
Reject Not reject

True Hg Type I error Correct decision
False Hg Correct decision Type II error

confidence intervals are the inversions of the p < « tests; see Section 4.5 Bickel and Doksum,
2015l and Box [ for further details.

To control the type I error rate for a test or confidence interval, we choose a nominal
«, which is typically, perhaps ritually, set to a = 0.05. This « serves two purposes. Firstly,
it defines the threshold of null rejection, namely, whenever p < a. Secondly, « represents
the tolerable chance with which the test is allowed to produce a false null rejection. By
‘chance’, we mean the relative frequencies of the potential realisations of the test under
repeated uses, assuming that a hypothesis, such as the null hypothesis, holds true. For
instance, if a p < a = 0.05 test were applied to 100,000 experiments with data generated
under the null, then we are willing to put up with at most 5,000 incorrect null rejections.

Classical p-value tests require strict adherence to the sampling plan for the False
Positive Rate (FPR) to align with the nominal type I error. The FPR defined as the realised
type I error can be much higher than «, e.g. when the classical p < a test is conducted
during data collection (see the red curve in Fig. 2| for more details). The repeated use of

Comparison of false positive rates as a function of sample size Comparison of coverage rates as a function of sample size
09— povalue 100 4

- — Computational convenient Bayes factor
= —— mom e-value
R 40 . 90+
< S
P g
E 30 E 80
g [
2 °
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g = g 70
) 3
o]
S 10 O o
o 10 60

——  Anytime-valid mom interval
- — Bayesian credible interval
o 50 ] — Classical confidence interval
r T ] r T T )
o 100 150 200 o 100 150 200
Number of looks/Sample size Number of looks/Sample size
Figure 2

Left panel: Both the false positive rates of monitoring the p < a (solid red) and a BF19 > 1/«
tests (dashed brown) increase well beyond the tolerable o = 0.05-level, where BF 1y represents
a (non-default) computationally convenient Bayes factor (Appendix@. On the other hand,
the FPR of the e > 1/a test (blue) remains below the tolerable o at all moments in time,
see Section for more details. Right panel: Both the coverage rates of the classical
confidence interval (solid red) and the (Bayesian) credible interval (dashed brown) dip below
the nominal 95%-level, if they are used sequentially. The coverage rate of the anytime-valid
confidence interval remains above the nominal 95% as promised. Simulation details are

provided in Section .

the standard p < « test is then of level a in name only, hence the adjective nominal, and
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InfoBox 3: The duality between classical 1 — « confidence intervals and p < « tests

A classical confidence interval inverts a p-value test. For instance, for any null value ¢y we have a
T-statistic, Eq. . The p < a test is equivalent to rejecting the null value ¢g whenever the observed
t-statistic is larger than the threshold ¢, ,. For instance, when o = 0.05 and n; = no = 18, then the
degrees of freedom equal v = 34 and the null value ¢y is rejected if ¢t > ¢, , =2.03 or if £ < -t .. For
ni = ng = 456 the p < v test corresponds to [t > t,,, = 1.96. More generally, if the true population
mean difference equals the postulated ¢ used in the T-statistic, then there is less than « chance to
observe outcomes of T' with magnitude larger than t, ,:

X - X5 -
At each n1,n2 and all null values g € R: Py, (‘\/n(;lsw)‘ > ta,l,) < a, (3)
P

where t,,, is the 1 — a/2 quantile of a T-distribution with v degrees of freedom.

A classical 1 — « confidence interval inverts Eq. by negating the event within P,,. This follows
from the fact that chances sum to one, which implies that the chance of the complement of the event
A denoted by A€ is given by P(A¢) =1 -P(A). This leads to:

X1 - X, -
At each ni,no and all null values g e R: Py, (‘\/7”152%00‘ < ta’l,) >1-a. (4)
P

Rewriting the statement within P, shows that

%o

= . S . - S,
At each nq,ny fixed, the interval CI(1—a) == | X1 - Xo — —to0, X1 - Xo+ —=ta. 5
1,12 ( ) [ 1 2 NS a, 1 2 NG a, (5)
will encapsulate ¢y with at least 1 -« chance. It is worth emphasising that the 1 —a chance pertains
to the interval, as that is data-dependent, not the parameter value, and this chance drops well below
1 -« if ny,ng are not fixed, see Fig. o

has an intolerably inflated chance of a false null rejection. A classical p-value test is valid,
if it is conducted once — and only once, as the FPR then (exactly) equals the tolerable a.
This is the reason why valid inference based on p-values is limited to the protocol where
data collection is first stopped, after which the p-value test is performed. Further data
acquisition and analysis leads to an FPR larger than the nominal «. In other words, with
a classical p-value test we have a one-shot chance to reliably conduct the test, essentially
rendering the collected data single use.

In contrast, the safe anytime-valid inference paradigm allows researchers to reverse
the protocol, enabling them to monitor the test results before concluding the experiment, all
while maintaining type I error control. The test is also specified by «, and a null rejection
is realised whenever the e-value is compellingly large, that is, e > 1/a such as e > 20 for
a = 0.05. Monitoring the test implies that at each “time” n we can check whether the e-
value at that moment, denoted by e,,, exceeds the evidence threshold 1/«. By construction,
as elaborated on in the next section, the FPR for anytime-valid tests will never exceed the
tolerable a-level. It is important to note that stopping is not necessary for type I error
control, it is allowed, as we always have the option to continue the study. This feature is
not shared by other sequential methodsﬁ

3For example, Wald’s sequential tests require a precise stopping rule to be determined in advance (see
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2.2 Inference as an Ongoing Process and the Definition of F-Processes as a
Generalisation of Likelihood Ratios

More generally, as the data accrue, the observed e-values form a sequence/sample
path of non-negative numbers e = (e1,ea,...,€,,...), e.g. Fig. [l} that is realised by a so-
called E-process E = (E1,Es,...,E,,...). Following standard conventions, we denote a
random variable in upper case and its realisation in lower case. For instance, the random
variable FE, refers to the anticipated e-value, that is, before the data are observed at time
n. The randomness and variability in F,, arise from data that have not yet been observed.
In contrast, after data observation F, realises a number e, such as e, = 7, which does not
vary. For an FE-process to reliably quantify the evidence against the null at any moment in
time, it has to fulfil three defining properties:

(i) It has to quantify neutral evidence at the start of the process, that is, Fq = 1.

(ii) At each time n the anticipated e-value E,, may take on values between 0 and oo repre-
senting absolutely no evidence and irrefutable evidence against the null, respectively.

(iii) But under any data-generating distribution P from the null model M, (Box [I)), and
regardless of the stopping time N (Box [2)) we expect Ex to convey at most neutral
evidence:

For any stopping time N and P € Mg we require Ep[ En] <1, (6)

where Ep is the expectation with respect to a data-generating distribution P from
the null model My. An intuitive analogy to an E-process is a bettor’s wealth in a
multi-round game of roulette (see Box .

2.2.1 FExzample: Simple Likelihood Ratios

These three defining properties hold naturally for the better-known notion of like-
lihood ratios when the null model consists of a single data-generating distribution, as is
the case for a one-sample z-test. The null model then specifies that the data are nor-
mally distributed with known mean and variance such as X; B (po, 1), where pyg is fixed,
typically, g = 0. The typical alternative model consists of any data-generating normal
distribution with mean p some real-valued number that is allowed to vary freely. Let us
write q(x;) = f(x;|p = ps) for the likelihood under the alternative for outcome xz; with
fixed at s, say, us = 1, and po(x;) = f(x;|p = po) denotes the likelihood under the null.
The likelihood ratio (of the alternative over the null) for observations (™ := (z1,...,z,) is
then given by the product

s x(n) _ o Q(xl) _ Q(‘Tl) % Q(x2) % oo x Q(xn)
o ) = L Gy ™ polan)  po(an) " polan)’ Q

Section {| for a brief discussion). Also, Johari et al., 2022|introduce anytime-valid p-values, which allow op-
tional continuation; but upon closer inspection their anytime-valid p-values are e-values in disguise (Ramdas
et al., 2020).
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InfoBox 4: The betting interpretation of e-values

We may always interpret E-processes as a bettor’s potential wealth in an ongoing multi-round game,
in which no money is expected to be gained if the null hypothesis holds true. We explain the precise
rules of the game in the simplest setting. In this setting the bettor starts with initial capital e; =1,
say, dollar, and the pay-off depends on o(x), where z is an outcome taking values in a finite set, say,
{RED,BLACK}. If, as for a roulette table without the green outcome, the null hypothesis corresponds
to p(RED) = p(BLACK) = 1/2, then the game maker (i.e. the casino/nature) can set o(x) = 1/p(x) = 2.
At each round n, before seeing x,, the bettor can decide the strategy with which she spreads the
wealth e,_; she has gained so far over all outcomes by putting a fraction ¢(«) of her money on
outcome x; for example, ¢(RED) = 2/3,¢(BLACK) = 1/3. She receives e,_; multiplied by l,,(z,) :=
q(x,)xo(x,), where x,, is the realised outcome; in our example, if x5 = RED then es = I3 (1) xeq = 4/3;
the money put on BLACK is lost. Thus, at round n, after observing x,, the bettor’s accumulated
wealth becomes e, = [Tiq li(x;) = l1(x1) x l2(x2) x -+ x I (x,). For example, after observing a
sequence (RED, RED, BLACK) the bettor above would have accumulated (4/3)%(2/3) = 1.19 dollar.

If (as in the example above, with the null a ‘real casino’) the o(x) is set such that the bettor is not
expected to gain money if the null hypothesis is true, then (and only then) is the potential wealth
process E = (Fy, Es,...) an E-process. It further is a good E-process if additionally, the bettor is
expected to get rich fast if the alternative is true. Betting with strategy ¢(RED) = 2/3 at each round
n makes sense if the bettor thinks that the null hypothesis is false and that there is a substantially
larger chance of observing RED compared to BLACK. If this is really the case, then the bettor’s wealth
E,, will grow exponentially fast. The higher this wealth, the more evidence is acquired against the
null.

By refining the game, the betting analogy can be extended to composite nulls and continuous
outcomes as is the case for the T-statistic: every E-process has a sequential betting interpretation,
which can be used to gain intuition. For instance, the fact that E-processes preserve type I error
guarantees under optional stopping is the same mathematical phenomenon as the fact that the
chance that you can multiply your initial capital in a real casino by a factor K is bounded by 1/K
— no matter what betting strategy you use or what rule is used to stop betting. The fact that a
valid stopping time may depend on past data but not on the future corresponds to the truism that
your decision to stop betting in a real casino may depend on what you have seen in the past but
not on what you will see in the future.

Further elaboration on this betting interpretation is unfortunately beyond the scope of this paper,
and we refer to Griinwald et al. (2024)), Ramdas et al. (2023), Shafer (2021), and Waudby-Smith
and Ramdas (2024) and at an introductory level to Ter Schure, 2023, Chapter 1 for further details.
o
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To see that the likelihood ratio statistic, i.e. LREs = Irfs (X (")) that takes in random data
X () is an E-process, we verify the properties. For (ii) note that for all outcomes z(" the
likelihoods, thus, also their ratios, are always non-negative. For (i) we use the fact that for
n = 1 fixed, the expectation involves integrating/summing over all possible realisations of
X, and that for each fixed us the probability density function ¢ integrates to one, that is,

R (€ _ [ _
Ep,[LR}*] = [oo 2Mpo(az)dsc = [OO g(x)der=1<1. (8)

The assumption that g and pg have the normal form was never used in the derivation above,
which is why this argument holds for simple likelihood ratios in general; as long as the null
hypothesis consists of a single distribution. If, as in the t-test, this is not the case, most
likelihood ratios will not give E-processes, see Section The verification of Property (iii)
requires some technicalities, but follows the same logic, see Appendix [A] These arguments
imply that Wald’s sequential probability ratio statistic, one of the first statistics that was
used in a sequential test, is an E-process.

Moreover, mixtures of E-processes are also E-processes. For instance, instead of
choosing a single ps in the numerator of the z-likelihood ratio, we can take a weighted aver-
age of the likelihood ratio with respect to us. For this we employ a prior distribution (s )
that serves as mixture weights provided that [ m(us)dus = 1. If Property (iii) holds for any
s, then it also holds for its mixture by interchanging the order of integration/expectation:

oo o0 iii) oo

Brol [ LR n(udn] = [ Be (LR In(u)din S [ in(u)du =1, ()
where N is an arbitrary stopping time. This derivation does not explicitly use that LRE*
is a likelihood ratio, only Property (iii) for every fixed ps and that 7w(us) integrates to one.
Hence, a mixture of E-processes that are not likelihood ratios is also an E-process. Since this
derivation holds for any stopping time N it also holds for the deterministic stopping time
N =1, thus, Property (i) follows. These arguments imply that E-processes are in general
not unique: Any fixed us in the numerator of LRE® yields an E-process parametrised by
ts, and so does any mixture. Some have higher power than others to detect an effect, see
Section [3|below. Regardless of the choice, all E-processes provide anytime-valid type I error
control.

2.2.2 Ville’s Inequality Implies Anytime-Valid Type I Error Control

The three defining properties of E-processes, in particular, Property (iii) being
formulated with respect to any stopping time, allows for anytime-valid type I error control
via Ville’s inequality. The essence of Ville’s inequality is using the expectation to bound
the chance of a rare event. For instance, we expect 100 heads, if we stop flipping a fair coin
after 200 flips. This expectation does not rule out the possibility of observing 190 heads
in 200 flips, but it does imply that such an extreme event occurs infrequently, that is, only
once in many repetitions of 200 coin flips.

Ville’s inequality (Ruf et al., 2023) quantifies that for data generated under any
distribution P from the null model My there is at most a small chance « that an E-process
will ever yield evidence against the null larger than 1/ca. That is,

For all P e Mg : P(There exists a stopping time N such that Ey > 1/a) < a. (10)
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This means that when there truly is no effect, there is little chance to nudge the evidence
above the threshold, for instance, due to a hopeful reviewer or investigator, see Box
The discussion surrounding Fig. [f] below provides some intuition on this fact. Due to its
robustness to all stopping times, we call the test that rejects the null whenever the e-value
crosses the threshold 1/« a safe anytime-valid inference (savi) test of level a.

This does not mean that anytime-valid tests can handle data dredging, which is as-
sociated with a strategy for halting data collecting that is not a stopping time. For instance,
the cheating strategy of reporting only n = 40, while actually collecting 90 observations and
removing 50 “outliers” because they led to a low e-value, can be associated with a retroac-
tive stop at n = 40. This retroactive decision to stop depends not only on the n = 40 data
points, but on the full data set up to n = 90. Thus, we did not use a valid stopping time and
hence the reported e-value is not guaranteed to be lower than 1/a with at most « chance:
cheating is still prohibited within this framework of inference, and it is not anticipated to
be permitted within any reasonable framework of inference.

Similar to how a confidence interval is constructed from a p-value test, see Box[3] we
can invert Ville’s inequality, thus, the ey > 1/« test to construct anytime-valid confidence
intervals. The notable difference between the p-value test, e.g. Eq. ), and an anytime-
valid test, Eq. , is the placement of the sample size within the probability statement,
which therefore also needs to be negated. The negation of a “there exists” statement is a
“for all” statement and vice versa, resulting in{]

For all P e My : P(For all stopping times N : Exy <1/a) > 1 - a. (11)

This version of Ville’s inequality, thus, states that for data generated by any distribution
from the null model, the evidence against the null remains forever smaller than 1/« with
at least 1 -« chance. We exploit the fact that the statement holds for all times and convert
the evidence to a 1 -« confidence interval at a particular time n by gathering all null values
©o that have not (yet) led to an e-value larger than 1/, e.g. see Box |5l Ville’s inequality
Eq. ensures that the thus constructed “running intersection” 1 — « confidence interval
(Howard et al., [2021]) encapsulates the data-governing effect size of interested at all times
with at least 1 -« chance. These intervals are therefore also attractive to those who suggest
to eliminate the concept of statistical significance in favour of confidence intervals (Amrhein
et al., 2019).

Ville’s inequality also provides guidance on when data collection can be stopped.
Since it holds for any stopping time, it also holds for the earliest time between the aggres-
sive first-passage time N at which ey > 1/a and some planned sample size npjan, or the
sample size at which the semester ends, or when the resources are depleted, as was the
case for various laboratories in the Many Labs 2 project. Section [3| below on sample size
determination with E-processes provides guidance on how 7y, can be chosen based on a
power analysis. Ville’s inequality thus justifies the e-value testing procedure as described
in Protocol in pseudo R code.

4For example, the existence of just one black swan is enough to disprove the statement “all swans are
white”.
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# Pseudo code: This code does NOT run
n <« 1
eValueAtTime [1] <« currentEValue <« 1

while (currentEValue < 1/alpha && n <= nPlan) {
currentEValue <« saviTTest(x[1:n], y[1:n], designObj=designObj)
eValueAtTime [t] <« currentEValue

if (currentEValue >= 1/alpha) {
"Reject the null"
stop ()
} else {
"Increase sample size and test again
at the start of the while loop"
n <« n + 1

Protocol 2.1: Pseudo R code for the e-value testing procedure with an 7pjan.

2.3 Four Types of Anytime-Valid t-Tests

The arguments used to show that likelihood ratios are E-processes crucially rely on
the null model being simple. Constructing E-processes for composite null models, however,
is much more involved. For example, the two-sample t-test used in Section [I| involves a
composite null hypothesis. We can take P € Mg to be two identical normal distributions
with grand mean pg = g1 = g2 = 4 and o = 2 or any other value for py and o > 0, see
Box Some technical effort (Hendriksen et al., 2021} Pérez-Ortiz et al., 2024)) is needed to
rigorously prove that the following likelihood ratio is an E-process, see also Gronau et al.
(2020, Appendix A) for the explicit computations,

T,(t Os
1p0s (t) := M7 and where LR := Ir% (T), (12)
" T,(t) T

where T,(t) is the likelihood of the T-distribution with v degrees of freedom centred at
zero, and T, (t|v/nds) in the numerator above it is the T-likelihood for outcome t at the
non-centrality parameter \/ngds, where n; is the effective sample size (Box , and g some
savi test defining parameter.

This tuning parameter §5, and the parameters for the E-process types given below,
can be selected optimally, if we are provided with an expected, or a minimal clinically rele-
vant effect size dpmin. Intuitively, an optimal choice leads to an E-process that accumulates
evidence as fast as possible, thus, requiring the smallest possible average sample size to reject
the null whenever the data-governing parameter equals 0, (Ter Schure et al., 2024]). Below
we use the term ‘optimal’ and ‘fastest evidence accumulating’ F-process interchangeably.
Extended intuition for the meaning of optimal/fastest evidence accumulating is provided in
Section [3.1], and a more formal treatment can be found in Appendix [C] For now, we just
list the optimal choices for each type of t-test E-process. The different types are arrived at
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Different priors for the construction of E-processes

0.8 = mom
= == eCauchy
eGauss
0.6
2
‘0
& o4
g o
0.2
0.0 -
I T T T 1
-2 -1 . 0 1 2
Tuning parameter &g
Figure 3

The wvarious types of E-processes for the two-sided anytime-valid t-test can be identified
by the prior used to mixz the T-likelihood ratio: mom is based on the mnon-local moment
prior (blue), grow is based on the two point priors (purple arrows), eGauss is based on the
Gaussian prior (dashed yellow), and eCauchy is based on the Cauchy prior (dash-dotted
brown) on ds. All priors are optimised to a minimal clinically relevant effect size dpin = 0.5.

by putting different prior distributions 7 on d,, mixing the T-likelihood ratios as in @ in
different ways. Crucially, the type I error guarantee remains valid irrespective of how we
mix.

2.3.1 grow

One of the main results of Pérez-Ortiz et al. is that the fastest evidence
accumulating one-sided anytime-valid t-test (alternative 0 > dpin) is given by 05 in Eq.
set equal to dmin. It follows that the fastest evidence accumulating two-sided anytime-
valid t-test, which is relevant for our examples, is given by the mixture 7 as in @ that
puts half its mass at §s = —0min and at s = dmin, see the purple arrows in Fig. [3| for a
graphical representation. This choice of prior leads to the grow E-process for the t-test,
where grow stands for growth-rate optimal in the worst case, see (Griinwald et al.,
and Appendix [C] for more details.

2.3.2 eGauss

An anytime-valid t-test can also be based on the eGauss E-process (Gonen et al.,
that uses Gaussian priors N(0,g) on d,, instead of the two-point priors. The prior
variance g inherits the role of the tuning parameter. Provided with d.,;, the optimal choice
(amongst all eGauss E-processes) is given by g = 62, (the dashed yellow curve in Fig. [3)).

min
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InfoBox 5: Explicit formula of the mom E-process, and the associated anytime-valid confi-
dence sequence.

The mom E-process has tuning parameter gyon, which can be adapted to duni,, see Section for
details, or Section @ when no dni, is available. It takes as input the observed t-value, i.e. a
realisation of Eq. , the sample sizes ni,ns, thus, effective sample size ns = TZYZ“Q , and the degrees
of freedom v = ny +ng — 2. Its explicit form (Appendix is given by

2 1+L+1 1+75 gnon (V+1
3 148 2 [(1+ %()ﬂ
By () =(1 +n5gmom)-z(1 ; ) ( P ) ) (13)
+

t 1 t
[ — + i
v (1476 Guon ) v

The same formula holds for the one-sample case but with ¢ replaced by its one-sample counterpart,
ns=n1 and v =nq — 1.

The associate anytime-valid 1 — o« confidence interval at time N, with sample sizes N; and Np
respectively, is based on Eq. by gathering all ¢ for which, at all times n; =1,2,..., N7 and
ng =1,2,..., Ny, we have:

Vs (Z1 = T2~ o)

Sp

Enyo ) <1/a. (14)
The inversion is done numerically. In the real-world examples above, the parameter was set to
uom = 0.134, which corresponds to the mom confidence interval that, at ny = no = 40, is the most
narrow. o

2.3.3 mom

Alternatively, anytime-valid inference can also be based on the mom E-process derived
from a so-called non-local moment prior on ds (Johnson & Rossell, |2010; Pramanik &
Johnson, [2022). This two-bump/camel prior is plotted as the blue curve in Fig. and
the positions of the bumps take on the role of the tuning parameter. The associated F-
process can be computed explicitly and it is given in Box [} The optimal choice (amongst
all mom E-processes) corresponds to putting the bumps at —0pin and dpin, which mimics the
behaviour of the grow choice. This is achieved by setting guom in Box |5/ t0 gnom = 5r2nin /2.

2.3.4 eCauchy

Similarly, we can also opt for an eCauchy t-test E-process based on a Cauchy prior
§s ~ Cauchy(0, k?) (Jeffreys, [1961; Rouder et al., 2009) with scale parameter s represented
by the dash-dotted red curve in Fig.|3] The optimal choice involves setting & = |dmin|-

All four types of E-processes have in some form been introduced in the literature
as Bayes factors (Jeffreys, |1961, Ly et al., 2016a, 2016b)) with specifically chosen priors
on the nuisance parameters, i.e. g and o. For instance, not adapting to dmin by setting
K = |6min|, but fixing & = 1/3/2 recovers the default choice in psychology (Rouder et al., 2009
Schoénbrodt et al., [2017).

It is not well known that these Bayes factors are also F-processes. Furthermore, it
should be noted that (a) not all E-processes are Bayes factors (e.g. Wang and Ramdas,
in press), and that (b) not all Bayes factors are E-processes. For (a) we mention the uni-
versal inference construction (Wasserman et al., 2020). This method was used to construct
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anytime-valid tests where no reliable p-value or Bayesian procedure can be reasonably for-
mulated; see, for instance Pandeva et al. (2024), Ramdas et al. (2023), and the reference
therein for further details. There also exists an information projection method (Grinwald
et al., 2024) to construct powerful E-processes such as the anytime-valid test for two pro-
portions (Turner et al., 2024), which is also not a Bayes factor. Section [4| below shows an
example of a Bayes factor that is not an E-process.

Exploiting the fact that the Bayes factor t-tests listed above are also E-processes
allows us to use them in Protocol with frequentist type I error guarantees. Frequentist
guarantees for a sequential Bayes factor test, on the other hand, uses evidence threshold that
require extensive simulations for their justifications, see Section for further discussions.

2.4 FE-Processes Slowly Drift Towards Zero Under the Null

In reality, we do not know whether the null hypothesis holds true. In simulation
studies, when the null hypothesis is known to be true, we expect a good test to maintain
a FPR below the tolerable level . For E-processes, the need for simulating under the
null is redundant due to the assurance provided by Ville’s inequality. However, for purely
illustrative purposes, we nonetheless generate a data set under the null hypothesis of no
effect with p1 = s = 4 and o = 2 until time n = 200 at which n; = ny = 200. To compare
and to emphasise the point that the p < a test should only be performed once, we also
depict the evolution of p-values as the red curve in the top left panel of Fig. [d The dark
grey horizontal dashed line represents the tolerable oo = 0.05. There are 31 times where the
p-value dips below « = 0.05, namely, at n; = no =4, 5, 127, 128, 131, 135, 144, 179, 185,
and between ni = no = 187 and n1 = no = 200. The bottom left panel of Fig. |4] shows the
corresponding confidence interval. The dashed yellow line indicates p1 — 2 = 0 representing
the true data-governing mean difference, as the data are generated under the null. Note
that the true mean difference falls outside the 95% confidence interval whenever the p-value
incorrectly rejects the null hypothesis at level o = 0.05, e.g. Box[3] Hence, for this particular
data set, monitoring and rejecting the null hypothesis as soon as p dips below « yields a
false null rejection. Subsequent inference based on the classical interval then also provides
incorrect conclusions regarding the magnitude of the mean difference (.

The top right panel of Fig. [d]shows the evolution of the mom e-values for the same data
set, with the parameter set to gmom = 0.134, as in Section[I] The dotted light grey horizontal
line represents neutral evidence e = 1. The dashed dark grey line at the top represents
the evidence threshold of 1/« = 20, which the e-value sample path correctly remains under.
The bottom right panel of Fig. |4 shows the corresponding 95% anytime-valid confidence
intervals. At each time n, the interval contains all values of the mean difference parameter
o serving as a null hypothesis Hg : 1 — p2 = o for which the corresponding e-values have
remained below the evidence threshold, here, 1/a = 20.

Fig.[2] shown further above, illustrates the performance of the two procedures under
repeated use. A simulation study was performed based on 5000 data sets generated under
the null with p1 = pg =4 and o = 2 as before. The FPR at time n = n; = ny was determined
by tallying the number of data sets that, up to that point, led to a false rejection of the
null hypothesis. The number of false positives is then divided by the total number of data
sets. Similarly, the number of data sets that included the true mean difference of @1 —ps =0
at all times up to nj = ny was recorded before dividing it by 5000. Fig. [2| depicts in blue
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Figure 4

Top left panel: Given a sufficiently large time horizon, here n1 = ny = 200, a p-value will
always dip below any a-threshold (here o = 0.05), even if the null holds true. Bottom left
panel: The classical 95% confidence intervals will not cover the true effect at all moments
in time. Top right panel: For the same data that were generated under the null, the e-
values correctly remain under the threshold of 1/c. Bottom right panel: The anytime-valid
confidence intervals cover the true effect size at any moment in time.

the FPR of the anytime-valid test based on the mom E-process with gpom = 0.134, which we
have used so far. The red curve represents the FPR of the procedure in which the p-value is
monitored and the null is rejected as soon as p < « is observed. This red curve will continue
to increase to an FPR of 100% resulting in a sure rejection despite the null being true. The
left column of Fig. [] is therefore typical. Moreover, this problem occurs for all classical
p-value testing scenarios, not just t-tests. The core issue is that, under the null hypothesis,
p-values are uniformly distributed at each sample size, causing them to meander between
zero and one and eventually dip below any « threshold.

The dramatic increase in FPR when monitoring the p < a test is caused by the
number of looks, not by the test being performed after each pair of observations. For
instance, if the p < a test were conducted after 38,20 and 40 participants, the FPR would
be approximately 5%, 8.64%, and 10.80%, respectively, as depicted in Fig.[2] Note that the
p-value test already “spent” all the tolerable oo = 0.05 at the first look, which reiterates the
point that a classical p-value test is only reliable if it is conducted once.

In contrast, after 200 looks the FPR of the anytime-valid test is only 3.64%; less
than the tolerable o = 0.05. Analogously, after 200 looks the coverage rate of the 95%
anytime-valid confidence interval was 96.36%. As the number of looks increases, so will
the FPR, but only slightly. Ville’s inequality guarantees that increasing the time horizon
from n = ny = ny = 200 to 63 million, or even indefinitely, will not cause the FPR of the
anytime-valid test to exceed the tolerable 5%. This is due to the distribution of e-values
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Behaviour of e-values under the null as a function of sample size Behaviour of e-values under the alternative as a function of sample size
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Figure 5

Left panel: E-processes start at one and under the null do not increase and typically drift
towards zero. Right panel: Under the alternative, here with the data-governing § equal
to Omin, the distribution of mom e-values increases. Since mom is tuned to dmin and thus
accumulates the evidence fastest, we know that the depicted increase is the steepest amongst
the mom E-processes.

not increasing and typically monotonically drifting to zero under the null. The left panel
of Fig. |p| depicts this decreasing drift by illustrating the sampling distribution of the mom
FE-process under the null at each time n. The vertical axis is on a logarithmic scale, which
makes e-values of 1/100 and 1/1000 as far removed from 1 as e-values of 100 and 1000,
respectively. The top and bottom green curves depict the 95% and 5% quantiles of the
distribution of e-values, respectively, whereas the black curve represents the mean of the
logarithm of the E-process. This general decreasing trend towards zero makes it increasingly
harder for the E-process to yield e, > 1/a under the null for larger values of n. As such,
additional data will tend to decrease the evidence against the null, if the null holds true.

This also suggests that an inadvertent e, > 1/« under the null will eventually be
corrected due to the e-values being pushed towards zero if we continue sampling. This
non-increasing drift not only applies to all the aforementioned anytime-valid tests (mom,
eGauss, etc), but to all E-processes in general. Intuitively, we can view an E-process as a
non-increasing, and in some cases decreasing, measure of evidence whenever the null model
holds true.

3 Designing Sampling Strategies for Experiments Based on F-Processes

A good E-process should not only decrease under any data generating distribution Py
from the null model My, but also accumulate evidence against My when the null hypothesis
is false. For instance, using notation introduced in Box[I], when in a ¢-test the data-governing
standardised population effect size § = (¢ — ¢g)/o is non-zero. In such a case, the faster an
E-process grows above the threshold 1/«, the sooner we have the option to reject the null
and conserve resources.

For this purpose, we implemented design functions, such as designSaviT, in the
safestats package. These functions select the fastest evidence accumulating, say, mom FE-
process, based on a minimal clinically relevant (standardised) effect size to enable efficient
inference. When also provided with a permissible type II error () such a design function
will then determine the sample size we should plan for to arrive at a correct null rejection
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with at least 1 - (e.g. 80%) power. For instance, Lines 2 and 3 of R Code that

deltaMin <« 0.5176537
designNPlan <« designSaviT(deltaMin=deltaMin, beta=0.2,

alpha=0.05, testType="twoSample", seed=4)
designDeltaMin <« designSaviT(nPlan=c(40, 40), beta=0.2, seed=3,

alpha=0.05, testType="twoSample")

designBeta <« designSaviT(deltaMin=0.7, nPlan=c (40, 40),

alpha=0.05, testType="twoSample", seed=2)
designNarrowestInterval <« designSaviT(nPlan=c(40, 40), alpha=0.05,

testType="twoSample")

R Code 3.1: R Code for designing Savi analyses. The design function designSaviT() takes
as input a and any two of the three quantities 3, dmin, nplan to yield an indication of the
remaining quantity as output. Lines 1, 2 and 3 specify as input /3, dmin and outputs npian,
Lines 4 and 5 take as input 3, npjan and outputs an indication of oy, Lines 6 and 7 take as
input Omin, Nplan and yield 8. Lastly, Line 8 takes as input npla, and yields the parameter
such that at npla, the confidence interval is the narrowest.

is, the function designSaviT() with 0pi, = 0.5176537 and § = 0.2 pre-registers a design
object that is going to analyse the data with (i) a mom e-value t-test with parameter fixed at
Gnom = 0.134, the same as the one we used in the examples aboveﬂ and (ii) it tells us that we
need to plan for 94 participants in each group to observe e,, > 1/a with 80% chance/power,
if the magnitude of the data governing ¢ is at least dmin. Fig.[6]shows the full summary. The
next two subsections illustrate the role dmin and 8 play in selecting the optimal parameters

of the E-process and the derivation of npan.

3.1 Determining the Fastest Evidence Accumulating F-Process Under Ps

min

Prior/similar experiments or subject experts might provide us with an indication of
an expected or a minimal clinically relevant standardised effect dy,in, which is used to tune
the fastest evidence accumulating (mom) E-process. To illustrate the sense in which it is
optimal, we consider a simulation study in which the null hypothesis is false with normally
distributed data (Box [1) and a standardised effect size equal to ¢ = dmin = 0.5176537E| and
pg =4 and o = 2 as before. The right panel of Fig. [5| shows the 95% and 5% quantiles
(golden yellow curves), and the mean of the logarithm of the E-process (black curve) under
this alternative at each time n =n; = no. At n =200 the average under the alternative is an
e-value of 115,150.4, whereas under the null it is about 1/20.2. This asymmetric behaviour
is typical for a good E-process: Under the null such an E-process (slowly) drifts to zero,
whereas it grows rapidly (exponentially fast) under the alternative Ps_. . Hence, when there
is an effect, continuing sampling only makes the evidence against the null stronger.

The selected mom E-process being optimal for the given 0, implies that the slope
of the black curve in the right panel of Fig. [5] is the steepest achievable amongst all mom

5This particular choice for dmin is derived from the relation gmom = 5,2m~n/2 with gnom = 0.134 we have used

so far, see Section for further details.
5The same iy that we used to specify the mom design object in R Code
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> print(designNPlan, digits=3)
Savi Two Sample T-Test Design

nlPlant2se, n2Plant2se = 9445.21, 9445.21
niMeant2se, nZ2MeantZ2se = 56+1.71, 56+1.71
minimal standardised mean difference = 0.518
alternative = twoSided
power: 1 - beta = 0.8
parameter: gMom = 0.134
alpha = 0.05
decision rule: e-value > 1/alpha = 20
e-variable type = mom

Timestamp: 2023-08-24 03:14:16 CEST

Note: If it is only possible to look at the data once, then

nlPlan = 113 and n2Plan = 113.
Figure 6

Screenshot of the design object created on Lines 2 and 3 in R Code .

E-processes under Ps_. . As such, it is guaranteed to cross the evidence threshold of 1/«
(broken horizontal grey line) under Ps,_;  the soonest. Provided with 8 we can also determine
when this crossing occurs.

3.2 The Targeted Power 1 - §/Permissible Type II Error  Defines nja,

The use of the fastest evidence accumulating (mom) F-process under the alternative
Ps,.... together with 3 determines npa,. Assuming that we aim to stop as soon as we
accumulate sufficient evidence to reject the null hypothesis, the natural question arises:
how many samples do we need to collect for the optimal mom E-process to reach 1/a?
The answer is the aforementioned nplan of n1 = ng = 94, which is derived by horizontally
cutting the yellow sampling distribution depicted in the right panel of Fig. [5|at the evidence
threshold 1/«. This is equivalent to studying the distribution of the first times that the
E-process passes the evidence threshold 1/a. To do so (in less than 2.7 seconds on a 2021
iMac M1), Lines 2 and 3 of R Code |3.1|simulate, by default, m = 1000 data sets under Ps_, .
Each data set is analysed sequentially, resulting in m = 1000 sequences/sample paths of
e-values. The first 100 e-value sample paths until they pass the evidence threshold 1/« are
shown in yellow in Fig. The histogram of the m = 1000 first passage times N at which
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en > 1/a occurred is depicted in bluem The top panel of Fig. [7| summarises the distinct
roles of «,dmin, 8 simultaneously. Firstly, a defines the test with the evidence threshold
1/« depicted as the horizontal black line (1/c, e.g. 20). Secondly, dmin defines the optimal
mom F-process which is expressed by the steepness of the average overall upward drift of the
e-value sample paths. Lastly, the blue histogram shows that after n; = no = 94 observations,
a wee few more than 800 out of the m = 1000 e-value sample paths led to a correct null
rejection under Ps_, . Hence, we can guarantee 1 - /3 power (80%, if we set 5 = 0.2) by
monitoring up to the 1 - 5 quantile (94 for 5 = 0.2) of the first-passage time distribution,
which is therefore recommended as npjan.

To acknowledge that npay, is derived from simulations, the design object also reports
twice the bootstrap standard error of 5.21. This uncertainty in the approximation can be
decreased by requesting a larger number of sample paths from the design function. The
derived nplan serves as an indication of how long the null should be tested for to detect
0 = Omin, as monitoring e, > 1/o until npjan provides such an effect size ample chance,
i.e. 1 - power, to reject the null. The output Fig. [6] also shows an average sample size of
n1 = ng = 56, which is the average between the first times N < npja, at which ey > 1/a occurs,
and N = npja, for sample paths that continued until npja,. In comparison, a classical p-
value test with the same «, 3, dmin always requires n; = ng = 60. Hence, under Ps_. , the mom
E-process will require on average four fewer (but in the worst-case, 34 more) participants
in both groups compared to the classical p-value test. The flexibility of e-value based tests
comes at the price of a larger sample size to plan for, but Fig. [7] shows that in return there
is about 57% chance to realise a stopped experiment before n = 60, whenever § = dmin.

It is worth emphasising that in practice we do not have to stop the experiment as
soon as the evidence crosses 1/a. If we would like to acquire more evidence against the
null, or if the anytime-valid confidence interval is too wide for our liking, we always have
the option to continue recruiting new participants without intolerably inflating the FPR,
despite this decision to continue being driven by the data.

3.3 The Behaviour of n,,, Under Other Alternatives

Monitoring the test is even more beneficial when the data-governing effect size is
larger than the expected or the minimal clinically relevant 6.,;,. The middle panel of Fig.
shows that under Ps with § = 0.6 the evidence against the null accumulates even faster,
and the whole first-passage time distribution is shifted to the left. The average sample
size at which the experiment is stopped is then n; = ny = 46. This gain in efficiency goes
unnoticed for a classical p-value test that for type I error control should always be performed
at ny =ng = 60.

On the other hand, if the data-governing effect size is smaller than expected or
minimal clinically relevant, then more samples are needed to detect this smaller effect with
80% power. The bottom panel of Fig. [7| shows that under Ps with § = 0.45 about 66% of
the sample paths resulted in a null rejection at ny = no = 94.

Hence, although the np., was tuned to the case d = Omin, it also suffices for all
data-governing 0 larger than dni,, as one would intuit for a minimal clinically relevant

"The first passage time of a sample path that did not (yet) cross the evidence threshold 1/« is set to oo,
as is customary.
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Regardless of the actual value of the data-governing §, it can (eventually) be detected with
an anytime-valid test. From top to bottom: Distribution of the first-passage distribution
when data-governing § = dmin = 0.5176, § = 0.6 > dmin, and 6 = 0.45 < Smin, respectively.
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effect size. Upon reaching npla, without the e-value sample path passing 1/a, we can
halt data collection, maintain the null hypothesis as the status quo, and assert that the
effect is not clinically relevant, with a permissible type II error rate of no more than 5.
Alternatively, we can also continue sampling if the e-value looks promising and we are
keen to investigate a smaller effect. The same conclusions can be reached by exploring the
anytime-valid confidence intervals. The role of the planned sample size is to guarantee at
least 1 — 8 power to detect |[§] > |[dmin| under continuous monitoring. It plays no role in
controlling the type I error. If there truly is no effect, we cannot nudge the e-value over the
threshold with more than « chance, as the e-value sample path is then expected to move
towards zero, see the left panel of Fig. [5l On the other hand, if there is an effect, the (mom)
FE-process will eventually detect the effect by simply continuing sampling, as the e-value
sample path is then expected to increase (see the right panel of Fig. [5)). This ability to
optionally continue, without breaking type I error control, is, as far as we know, unique to
e-value based inference, and forms the basis for flexible sequential learning.

3.4 Alternative Sampling Design Scenarios

There are circumstances where the available budget forms the bottleneck of our
investigation, yielding a restriction on the sample sizes, say, at most n; = ng = 40, just
enough to be included in the Many Labs 2 project. Before running Protocol with
Nplan = N1 = N2 = 40, we might want to get an indication of the effect sizes that we can
detect with, say, 80% power. By providing the designSaviT function with o, nplan, 5, €.g.
Lines 4 and 5 of R Code[3.I], we see that the smallest effect that we can detect, by continuous
monitoring up to nplan = 11 = ng = 40 with 80% chance is about dyin = 0.882.

Subject experts might claim that an effect size of § = 0.7 is more realistic. Such an
effect can still be found if we sample up to n; = ng = 40, but with less chance. Providing
designSaviT with a,7plan, Omin, €.g. Lines 6 and 7 of R Code we see that under Pg
with § = 0.7 we have 64.2 % power to reject the null by monitoring up to npjan = 40.

If any of these prospective analyses show that (a) the planned sample size is too
high, (b) the smallest detectable effect size is unrealistically large, or (c) the power is too
low, then we can either request more funds to invite the derived additional number of
participants to the study, or decide, in advance, that it is futile to conduct this experiment,
and spend our time and efforts on different endeavours instead.

Lastly, if there is no prior information regarding dyi, or the permissible type II error
rate 3, we can run designSaviT with only o, nplan, €.g. Line 8 of R Code The underlying
code then finds the parameter value that at the specified nplan has the narrowest confidence
interval. For the Many Labs 2 project with npjan = n1 = no = 40 this yielded gpon = 0.134.
It is worth noting that the associated mom confidence interval becomes even narrower if we
continue sampling. For instance, at npja, = 40 the narrowest mom confidence width is 1.315
and attained by gmon = 0.134, if s? = 1, whereas it has width 0.85 at n; = ny = 100. Running
Line 8 of R Code @ with npjan = n1 = n2 = 100 shows that the narrowest mom interval is
attained by gpom = 0.05193 leading a to width of 0.82.

In all cases, the design function optimises the requested E-process, which can then
be used for subsequent inference as demonstrated in R Code The key point is that a
sampling strategy for an experiment based on anytime-valid ¢-tests can be derived with just
a few lines of code. Importantly, the planned sample sizes are only an indication, not a
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commitment, nor a promise of the number of samples that have to be collected. The realised
sample size at which the experiment can be stopped can be smaller(larger) than planned,
when the true effect is larger(smaller) than minimal clinically relevant. Regardless of the
specific value of the data-governing J, the evidence at hand, as quantified by the e-value,
will safely guide us in adjusting the experiment during the data collection process.

4 Not All Bayes Factors Are E-Processes

The next two sections may be omitted during the initial reading, as they explore the
more nuanced differences between E-processes, Bayes factors, and the tests they form. By
definition, a Bayes factor is a ratio of marginal/averaged likelihoods (e.g. Jeffreys, 1961, Ly
et al., 2016a, 2016b), whereas the E-processes discussed so far are mixtures of T-likelihood
ratios. In other words, the order of marginalising/mixing and taking ratios matters.

Frequentist principles such as power and type I error control are the main motivation
for this work. It is therefore surprising that ensuring these frequentist principles over
time led us to E-processes that were previously derived as Bayes factors, as remarked in
Section The suggestion to employ these Bayes factors (e.g. Jeffreys, 1961, Johnson and
Rossell, 2010, Rouder et al., |2009)) for inference is not new, but the realisation that these
specific Bayes factors are also E-processes is novel. This knowledge allows us to take the
best of the two typically competing philosophies of inference.

When FE-processes are Bayes factors they have a likelihood interpretation. This
allows us to reason from the particular observations to the unobserved general population
of interestﬁ For instance, an e-value of e = 7 can then be interpreted as the data being
7 times more likely under the alternative compared to the null, whereas e = 1/3 can be
interpreted as the data being 3 times more likely under the null compared to the alternative.
For E-processes that are not Bayes factors this interpretation holds approximately.

When Bayes factors are F-processes it is guaranteed that the likelihood interpre-
tation is correct with high chance. For instance, under the null there is no more than «
chance, say, 1%, to ever observe the alternative being more than 1/«, say, 100, times more
likely compared to the null. This (i.e. the Bayes factor being an E-process) holds when-
ever the Bayes factor is constructed with so-called Haar priors on the nuisance parameters
(Pérez-Ortiz et al., 2024), which is true for the above-mentioned grow, eGauss, mom, and
eCauchy E-processes.

That said, not all Bayes factors are E-processes. As such, we cannot assume type I
error control by simply taking any Bayes factor BFig in favour of the alternative over the
null and reject the null hypothesis as soon as it crosses the threshold 1/a. In Appendix @
we constructed a (non-default) computationally convenient two-sample Bayes factor ¢-test
with 8 tuning parameters based on priors that do not take the structure of the problem
into account. Depending on the values of these 8 tuning parameters, perhaps due to how
they were estimated using past data, the procedure that stops as soon as this Bayes factor
crosses 1/a = 20 becomes unreliable; see the dashed brown FPR curve in the left panel
of Fig. 2l This reflects a point made earlier by De Heide and Griinwald, 2021] that there
can be issues with Bayes factors under optional stopping. The right panel of Fig. 2| shows

8As opposed to the notion of chance, which we used to reason from the general population about the
relative frequencies of potential realisations.
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A computation convenient Bayes factor progression as a function of sample size Comparison of intervals as a function of sample size
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Left panel: The (non-default) computationally convenient Bayes factor (Appendix@ tends
to overstate the evidence against the null. Right panel: The (Bayesian) credible interval
(yellow) and the classical confidence interval (red) both do not cover the true data generating
mean difference of zero at all times, unlike the anytime-valid confidence interval (blue),
which is also a wee bit wider.

that the coverage rate of the associated 95% credible interval will also drop well below the
nominal level of 95%. Extending this graph further ultimately leads to a coverage rate of 0%.
Hence, provided that we sample long enough, we will certainly draw incorrect conclusions if
we track the 95% credible interval and reject the null as soon as zero is outside the interval.
Fig. [§] shows the typical evolution of the chosen computationally convenient Bayes factor
BFg for the same data (under the null) that were used for Fig. [4] The right panel of Fig.
shows three types of intervals in one plot. The (Bayesian) credible interval (yellow) quickly
intersects with the classical confidence interval (red), and both unfortunately do not cover
the true mean difference, here, ¢ = 0 at all times, whereas the anytime-valid confidence
interval (blue) does. Hence, as with 95% confidence intervals, we cannot guarantee that
the 95% (Bayesian) credible interval covers the true underlying parameter with 95% chance
during data collection or at a possibly data-driven stopped time. This problem cannot be
solved by choosing different priors, as typical priors yield credible intervals that (relatively
quickly) converge to, and thus behave as, classical confidence intervals (Ghosal & van der
Vaart, 2017)).

An anytime-valid confidence interval based on e-values avoids being turned into a
classical confidence interval by not updating a prior to a posterior as is the case for credible
intervals, but by inverting the anytime-valid test. This is, thus, a completely different
procedure yielding wider intervals as shown in Fig. [§l We feel that the additional width
is a relatively low price to pay for reliability and convenience, as it is guaranteed that the
true underlying parameter value is covered with 95% chance regardless of when or even if
data collection has stopped. The resulting anytime-valid confidence interval in some cases
still has some special, though, non-standard Bayesian interpretation (Pawel et al., 2024).

We introduced the example in this section to show that type I error control due
to Ville’s inequality does not automatically hold for all Bayes factors in general. The
constructed Bayes factor in Fig. [§] in this case is not an F-process because it violates
Property (iii) (Eq. (6)) by having conditional expectations larger than one for at least one
data generating distribution from the null model. Hence, Bayes factors are not necessarily
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E-processes, and it was already mentioned that not all E-processes are Bayes factors (e.g.
Pandeva et al., [2024, Ramdas et al., 2023| and Turner et al., [2024).

4.1 Anytime-Valid Tests Are More Flexible Compared to Sequential Bayes
Factor Tests

Even when a Bayes factor is an E-process, it is used differently in forming a sequen-
tial Bayes factor test compared to how it is used in an anytime-valid test. Sequential Bayes
factor tests (e.g. Schonbrodt et al., [2017, Schnuerch et al., [2022, Pramanik and Johnson,
2022])) follow Protocol This procedure does not come with an npja, at which the detec-

# Pseudo code: This code does NOT run

n « 1
bf10 « 1

while (B < bf10 && bf10 < A) {
bf10 <« computeBayesFactor(x[1:n], y[l1:n], somePrior)

if (bf10 >= A) {
"Reject the null and accept the altermnative
stop ()
} else if (bf10 <= B) {
"Reject the alternative and accept the null"
stop ()
} else {
"Increase sample size and test again
at the start of the while loop"
n <« n + 1

Protocol 4.1: The sequential Bayes factor testing procedure in pseudo R code without a
maximum sample size.

tion of an effect |§] > dpin with at least 1 — 5 power is guaranteed. Crucially, it also has an
additional evidence boundary for accepting the null. The current discussion in sequential
Bayes factor testing revolves around the selection of the boundaries A and B, thus, the
specific stopping rule, and which Bayes factor to use. Because sequential Bayes factor tests
do not automatically come with explicit type I and type II error guarantees, they have to
be estimated in extensive simulations for particularly chosen Bayes factors with specifically
chosen tuning and data-governing parameters.

For instance, Schonbrodt et al. (2017) suggested employing the eCauchy FE-
process/Bayes factor t-test, constructed with a Cauchy prior on d;, featuring a prior width
of 1, and decision boundaries set to A = 6 and B = 1/6 for early lines of research. This
recommendation was based on the observation that these particular choices resulted in re-
alised type I and II error rates of 4.7% of 4.6%, respectively, in a large-scale simulation
study when the data generating § was set equal to 0.5.
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Inspired by Wald’s sequential probability ratio test, Schnuerch et al. (2022)) argue
for the boundaries A = % and B = % instead. These boundaries were also explored
by Pramanik and Johnson (2022) who recommend using the non-local moment prior, that
is, the mom E-process with the two bumps at £0.3 as default. Their large-scale simulation
studies show that the resulting sequential Bayes factor test yields average sample sizes close
to those of the two-point prior variant at £0.3. In the large-scale simulation studies the
realised type I and type II error were observed to be below the tolerable o and 3 respectively.
This can partially be explained by the employed Bayes factors also being E-processes, at
least as far as the type I error is concerned. Bayes factors that are not E-processes, on
the other hand, can yield unfavourable results. For instance, applying the Wald boundaries
with A = % =16 and B = % = 0.21 to the computationally convenient Bayes factor of
Appendix [D]results in inflated type I error rates. For the same data used in the simulations
above, i.e. Fig. [2| the computationally convenient Bayes factor results in 16.8% correct
null acceptance, but 24.9% false positive rejections, and no conclusion was reached for the
remaining 58.2% due to the Bayes factor sample paths staying between both the lower
B-= % and upper A = % boundaries until n = 200. The latter inconclusive category can
lead to this procedure requiring more data points than the savi testing procedure.

Note the difference in order of approach between anytime-valid tests and the se-
quential Bayes factor tests: For e-value tests, the type I error guarantee comes from Ville’s
inequality, which holds for all stopping times and, therefore, also any stopping time used in
simulations. For sequential Bayes factor tests, the protocol comes first. This means that the
estimated type I and type II errors depend on the specific stopping rule, i.e. halting as soon
as BF1g > A or BFg < B, such as A =16 and B = 0.21 for a = 0.05 and 8 = 0.2. Violating the
stopping rule might therefore invalidate the estimated type I and type II error. For instance,
during data acquisition a hopeful investigator changes his mind and continues sampling de-
spite observing BF1g < 0.21 by interpreting BF1y = 0.21 as only “moderate evidence* for the
null (e.g. Jeffreys, 1961, Appendix B, Lee and Wagenmakers, 2013)). Continuing sampling
after hitting the lower boundary makes the sequential Bayes factor Protocol equivalent
to the anytime-valid testing Protocol 2.1] that has the potential to run indefinitely due to the
absence of an npja,. By Ville’s inequality we know that halting as soon as BFig > 16 only
guarantees a type I error of 6.25% under the null, if the Bayes factor is also an E-process
(if it is not, we cannot even say this). Assuming it is an E-process, a type I error guarantee
of level a = 0.05 therefore forces the investigator to stop as soon as BFig < 0.21 so that
the unaccounted chance of 1.25% can be absorbed by the lower boundary. E-processes are
robust to these types of adaptations, since Ville’s inequality provides type I error protection
for all stopping times simultaneously, making anytime-valid tests more flexible in general.

The additional stopping rule for the null also complicates the design of sequential
Bayes factor tests. To the best of our knowledge, all sequential Bayes factor tests require
extensive simulations to provide an indication of both the realised type I and type II error,
and they will all have to be re-performed when the stopping rule or the tuning parameter
of the Bayes factor under consideration is changed. Moreover, Schnuerch et al. (2022)
notes that there is no guarantee that a sequential Bayes factor test will terminate at, or
before reaching a certain sample size. In contrast, type I error control for E-processes is
mathematically guaranteed by Ville’s inequality, and type II error control and estimates of
the run times of experiments can be obtained with much cheaper simulations. Specifically,
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e-value sampling designs provide an indication of how long the experiment should run for
in terms of nplan, and monitoring the test until np., guarantees a 1 — 8 chance to detect
effects || > dmin. This nplan, in turn, is found by relatively quick simulations for typical
values of a, 8 and dpmin.

5 Practical Guidance for Selecting Amongst Various Types of EF-Processes

In Section we listed four types of F-processes in the t-test setting. Each type
provides type I error control over time, though some are better suited for certain purposes
than others. In this section, we provide insights that may guide the choice of the E-process

type.

5.1 Default Choice: The mom E-Process

We recommend the mom E-process (Johnson & Rossell, [2010) as a default proce-
dure, because the resulting anytime-valid test appears to provide the best balance between
efficiency and robustness to the choice of dmiy. It also yields reasonable anytime-valid con-
fidence intervals (see the blue curves in Fig. . Table 2| shows the planned sample sizes
for various types of E-processes for o = 0.05 and 5 = 0.2 in the two-sample -test scenario
with n = ny = ny for expected or minimal clinically relevant dmin = 0.5 and dyin = 0.2, which
Cohen (1988)) interprets as a medium and a small effect size, respectively. The ordering of

Table 2

Planned and expected sample sizes for different E-processes under different
data-generating effect sizes §. The mom E-process provides the best balance between
efficiency and robustness to the choice of dmin. Fxcept for the third and the last column
With Nmean above them, the table shows the planned sample sizes n1 = no based on a =0.05
and B =0.2. To acknowledge that these planned (and average) sample sizes are found by
simulation we also included two times the bootstrap standard errors. The grow E-process
has the lowest nplan for § > Omin, but requires an enormous number of samples to detect
effects smaller than dmin with 1 — 3 chance. The mom E-process is more robust to the
choice of dmin and yields competitive nplan close to those of the grow E-process when

0 > Omin- The average sample sizes of grow and mom are lower than the sample sizes needed
for a classical fixed sample size p-value test.

o

Tuning Omin = 0.5 Omin = 0.2

True Nplan 0 =0min Mmean 0=0.8>0min 0 =0.2<0nin Nplan 0 =0min  Mmean
grow 89+1.71 56 +0.48 40+£0.99 | 2612+25.93 | 531 £11.83 323+2.96
mom 100 £ 1.77 59 +£0.59 40 + 0.97 814 +14.46 | 596 +£ 10.27 344 +3.61
eGauss 106 £ 1.75 66 + 0.61 45+ 0.77 702 +£13.38 | 643 £12.87 385+3.79
eCauchy | 114 +1.88 70 £ 0.68 47 +0.90 741 +13.58 | 686 + 11.51 407 +4.21

the types of E-processes in terms of the lowest 1y, remains the same for various values of
a, 3, Omin, see Fig. [0l For a fair comparison between the four types of E-processes, we chose
the fastest evidence accumulating E-process for each type as mentioned in Section[2.3] The
third and last columns also show the average sample sizes. For instance, under § = di, = 0.5,
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the first two rows show that the procedure, which monitors the grow (or mom) e-value up
to nplan and stops as soon as e, > 1 Ja, will, on average, stop after nmean = 11 = 12 = 56 (or
ny = ng = 59) participants in both groups. For the same «, 3 and dpin, the classical p-value
test should always be performed at ny = ny = 64. Under 6 = Smin = 0.2, we get average
sample sizes of Nyean = N1 = no = 323 and 344 participants in both groups for the grow and
mom F-processes, respectively, whereas the classical p-value test should always be performed
at n1 = ng = 394. Hence, both the grow and mom E-process will on average outperform the
classical p-value test.

The fact that the grow E-process yields the lowest npay, is due to it being the fastest
evidence accumulating procedure amongst all E-processes, see Appendix [C] for more and
Griinwald et al. (2024) for full details. However, in case the grow t-test was optimised for
Omin = 0.5, but the data-governing effect size is § = 0.2, then the grow E-process requires
many more samples to detect the effect with 1 - 3 = 80% power. If the grow E-process
were tuned to Smm = 0.2 from the beginning, then it only needs npja, = 531 instead of
Nplan = 2612, which equates to a relative increase of 392%. The relative increase is much
less for mom (36.6%), eGauss (9.2%), and eCauchy (8.0%), though, the latter two types have
higher baselines (643 and 686 compared to 596 respectively), see also Fig. @

Comparison of Npjan @nd Nean (@bsolute) for different E-processes and classical p-values Comparison of Npjan @nd Nean (relative) for different E-processes and classical p-values
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Figure 9

To detect an effect with 80% power, the anytime-valid tests require more samples in the
worst-case compared to the classical fized sample p-value test when the minimal clinical
relevant effect size dmin equals the data-governing §. On average, however, the grow and
mom E-process tests outperform the classical tests, and the gain is higher for smaller data-
governing effect sizes. Left panel: The dotted red line represents the number of samples
needed for the classical p-value test to reject the null with 80% under the effect size shown
on the x-axis. The four dashed lines at the top represent the worst-case Npian1 = Nplan,2
of eCauchy (brown), eGauss (yellow), mom (blue) and grow (purple). The solid version of
these lines represent the average sample sizes. Right panel: The same information as in the
left plot is shown, but scaled so the sample sizes of the classical p-value test are set to 100%
representing the baseline. Roughly speaking, the worst-case additional data in the planning
stage required for eCauchy (brown) is 82%, for eGauss (yellow) is 69%, for mom (blue) is
58%, and for grow (purple) is 42%. Roughly speaking, we require for eCauchy (brown) still
12% and for eGauss (yellow) 6% more data on average. For mom (blue) we require 4%, and
for grow (purple) 10% less data.
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Comparison of confidence sequences for different E-processes
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Figure 10

The confidence interval associated to the grow (purple) E-process stops shrinking after a
certain sample size. The other confidence intervals shrink and are hard to distinguish from
each other. Listed in order of widest to narrowest at n = 1024 we have: grow in purple, mom
in blue, eCauchy in red, and eGauss in yellow. The data were generated with a true mean
difference of ¢ = 1.

5.2 Fast Detection: The grow E-Process

If the focus is on sequentially detecting an effect as quickly as possible, then there is
a case to be made for the grow E-process. It has the theoretical desirable property of being
the fastest evidence accumulating E-process in the worst case amongst all E-processes for
the M of interest. Table [2| suggests the grow choice when effects smaller than 0., are truly
uninteresting or impossible to measure due to the limits of our measurement instruments.
Unfortunately, this grow E-process comes with the additional caveat that its associated
anytime-valid confidence interval stops shrinking after a certain sample size. Hence, if it
can be guaranteed that sampling will not exceed a certain sample size, then grow confidence
intervals can still be reasonable. This, however, might not be realistic.

5.3 Eventually Narrowest Anytime-Valid Confidence Interval: The eGauss E-
Process

One of the major advantage of the eGauss FE-process is that both the two-sided
e-value and the anytime-valid confidence interval have an explicit form, and are therefore
computationally stable, and easily analysed (Wang & Ramdas, |in press). Furthermore, if
the goal is to eventually get the most precise inference regarding the magnitude of the effect,
then the eGauss E-process can be recommended. Listed in order of widest to narrowest at
n = 1024, Fig. [I0]shows the confidence intervals associated with grow in purple, mom in blue,
eCauchy in red, and eGauss in yellow. The differences between mom, eCauchy and eGauss
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are hardly visible. This (eventually) narrower confidence width comes at a cost in terms
of somewhat larger planned sample sizes for the test compared to those of grow and mom.
Note that this choice for eGauss relies on long term gains, as it does not yield the narrowest
interval at all times. For instance, the grow interval is the narrowest between n = 16 and
n = 64.

5.4 Information Consistent Inference: The eCauchy F-Processes

Of the listed E-processes, only the eCauchy E-process is information consistent. It
will therefore yield irrefutable evidence against the null in case the data are overwhelmingly
informative. For the case at hand, overwhelmingly informative data correspond to observing
a non-zero sample mean difference without any sampling variability, see Gronau et al. (2020)),
and Ly et al. (2016a, 2016b) for more details. When it comes to npjan eCauchy performs
relatively poorly, while its confidence interval width is close to that of eGauss. Another
reason to choose eCauchy would be its overall robustness to the specification of dpip.

Table 2| shows that choosing din close to the data generating § can result in fast
detection of |§| > dmin, but a relatively harsh penalty in terms of npla, whenever || < dmin.
This is not a reason to choose dyin as small as possible, as a smaller 0., yields a larger npjan,
which in turn leads to wasteful testing whenever the null holds true. The increase in npay, for
|8] < dmin should not pose a problem if 0y, truly represents the minimal clinically relevant
effect size. In the ideal situation dyy is given by the context of the inference problem at
hand, perhaps guided by an original finding that we aim to replicate, a meta-analysis, or
by conventions in the field such as those posed by Cohen (1988]).

6 The Two Real-World Examples Revisited With an e-Value Design

With a specified design object at hand, we revisit the examples discussed at the
beginning of this manuscript. The first revised example shows how we can trade off 8 in
favour of further resource conservation. The second revised example shows how, in addition
to resource conservation, we get more interpretable results.

6.1 Example 1: Moral Typecasting (Gray & Wegner, 2009, Study la) Revis-
ited

A reasonable estimate of the underlying standardised effect size based on the original
findings (Gray & Wegner, 2009, Study 1a) is within (0.769,0.872)EI We err on the side of
caution by using the lower bound for our power analyses. Furthermore, we can argue
for a one-sided test (Griinwald & Koolen, 2025), as the working hypothesis deals with the
offending adult man being perceived as more, not less, responsible compared to the offending
baby. A classical power analysis shows that for dp,i, = 0.769 and 1- 3 = 80% power, the one-
sided p-value test should be performed after we gathered data from ny = ny = 22 participants
in each group.

Lines 1 to 3 of R Code show that we should plan for np, = n1 = ng = 37
participants in each group to detect a data-governing § of at least dyin = 0.769 with 80%

9The lower (upper) bound equals the observed mean difference 5.29-3.86 divided by the largest (smallest)
sample standard deviation. Typical estimates divide the mean difference by some type of average between
the two standard deviations.
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deltaMin <« (5.29-3.86)/1.86

designObj <« designSaviT(deltaMin=deltaMin, beta=0.2, seed=1,
testType="twoSample", alternative="greater")

plot (designObj)

s result <« saviTTest(x, y, designObj=designObj, sequential=TRUE)

plot(result)
plot (result, wantConfSeqPlot=TRUE)

R Code 6.1: R Code for designing and visualising anytime-valid tests. All the code needed
to design, perform and visualise an anytime-valid test. The design object is created on Line
2 and 3. Line 4 yields a plot similar to Fig.[7l The anytime-valid test is performed on Line
6 for data vectors x and y. Line 7 plots the e-value sample path, and Line 8 illustrates the
anytime-valid confidence interval as a function of the sample size similar to Fig.

chanceF_UI The procedure that samples until this npja, or the first time e, > 1/ will then
on average stop after nmean = 22 participants in each group, if § = dmin.

We compare the two designs side by side. For the classical analysis we pretend that
for each replication attempt, we sample up to nq = ng = 22, stop the experiment, and then
compute the one-sided p—valueF_r] By reducing the sample sizes compared to the analysis
in Section we are going to have less power to reject the null. Indeed, this procedure
results in 48 null rejections at p < 0.05 out of a total of 61 replication attempts (78.7%). For
this conclusion, we used data from a total of n; = 1315 of ny = 1324 participants, thus, on
average n1 = 21.56 and ng = 21.71 in each replication attempt. In other words, this classical
design required 2713 and 2650 fewer participants.

The one-sided e-value test allows for informed conclusions with even less data.
Tracking the e-value up to nplan = 37 or stopping as soon as e, > 20 yields 51 null re-
jections out of a total of 61 trials (83.6%). These conclusions were based on a total of
nq1 = 1031 and ny = 1062 participants, which corresponds to n; = 16.90 and ng = 17.41
per each replication attempt on average. As a result, the designed e-value test reduced
the number of participants needed by 2997 and 2912 in the respective groups, leading to
significant resource savings.

This demonstration highlights the benefits of planned analyses in general, and effi-
ciency of e-value based tests in particular. The general conclusions remain the same if we
tuned the E-process to the upper bound for d,,;, instead. Hence, the precise specification
of dmin is not necessary to gain efficiency and conserve resources.

6.2 Example 2: The Macbeth Effect — Moral Violations and Desire for Cleans-
ing Zhong and Liljenquist (2006, Study 2) Revisited

A reasonable estimate of the data-governing standardised effect size based on the
original findings in Zhong and Liljenquist (2006, Study 2) is within (0.909,1.429). As before,

OFor a two-sided e-value test we require Nplan = 45 and the procedure then stops after nmean = 28 in each
group on average

"For trials that gathered fewer than ny = ng = 22 data points the p-value test is done at the end of the
trial. This was the case for the “tanzaniaon” data set, which had only n; = 3 and n2 = 13 valid responses.
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we err on the side of caution by using the lower bound for our design. A classical power
analysis shows that for dpi, = 0.909 and 1- 3 = 80% power, the one-sided p-value test should
be conducted after gathering data from n; = no = 16 participants in each group. Lines 2 to 3
of R Code with deltaMin <- (4.95-3.75)/1.32 shows that with the correspondingly
tuned mom E-process, we should plan for npja, = n1 = ng = 27 participants in each group
to detect a data governing ¢ of at least dpmin = 0.909 with 80% chance. If § = dni, the
procedure is expected to stop after testing nmean = 17 participants in each groupH For
most replication attempts the one-sided e-value test hit np.,. We get one null rejection out
of a total of 57 replication attempts (1.75%) based on a total of ny = 1427 and no = 1441
participants per group, thus, ny = 25.04 and no = 25.28 on average. If the magnitude of
the data governing § was indeed at least din, then we have provided such an effect size
ample chance to reject the null. Since this did not occur for most replication attempts, we
not only conclude that there was not enough evidence to reject the null, but we can also
infer that the postulate § > dpi, is unlikely with high chance. Moreover, we come to this
conclusion with 2012 and 2067 fewer participants per group, which is a reduction of 58.5%
and 58.9% from the total sample sizes in the analysis of Section [I.2]

We would like to reiterate the point that with e-values we do not have to stop at the
first-passage time e, > 1/, nor at npla,. Due to E-processes being robust to any stopping
time, there is no need to discard newly available data once the test is conducted or the
confidence interval is computed, as is the case with a classical analysis.

7 Summary and Concluding Remarks

Determining the appropriate sample size at which a classical p-value test or confi-
dence interval should be computed is difficult. Especially, before experimentation when no
data are present. The fact that classical p-value tests and confidence intervals should be
performed once — and only once — puts undue pressure on the well-intentioned researcher
dedicated to upholding the highest standards of research practice through pre-registering
their confirmatory analyses.

This problem is circumvented with e-value based methods, which can be used flex-
ibly, allowing us to adapt the experiment to new information as they become available.
Only a few lines of code suffice, e.g. R Code to construct a design object that de-
rives a non-binding planned sample size npl., based on an optimal, say, mom type ¢-test
E-process. Analogous code can be used to construct design objects for anytime-valid z-
tests (i.e. designSaviZ()), anytime-valid tests for two proportions (Turner et al., |2024)
(i.e. designSaviTwoProportions()), the anytime-valid logrank test (Ter Schure et al.,
2024) (i.e. designSavilogrank()), and many more are scheduled to be implemented into
the safestats package (Ly et al., [2024)).

Simulations with the aggressive first-passage time illustrated that type I error control
is maintained, despite flexible use of the optimal E-process, whereas simulations under the
alternative showed an increase in power compared to classical methods on average. This
increase in power translates into smaller expected sample sizes at which we can conclude
experiments, which further emphasises the non-binding nature of np,,. The ability to

12For a two-sided e-value test we require Nplan = 33 and the procedure stops after nmean = 21 in each group
on average.
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derive more reliable conclusions with less data allows us to save time, money and effort that
can be effectively allocated to other research endeavours. For a particular set of replication
attempts from the Many Labs 2 project the use of the optimal E-process allows the number
of participants to be reduced by more than 70% (Section , whereas a non-optimal E-
process already led to a reduction of more than 60% (Section . These conclusions
should not be viewed as criticism on the Many Labs 2 project, which did not exclusively
focus on replicating a particular effect efficiently, but also aimed to examine the variation
in replicability across samples and settings. Once the data are collected, it is best to use
them yielding narrower anytime-valid confidence intervals, thus, more precise estimates of
the effects of interest. Furthermore, it must be noted that anytime-validity does not mean
that the E-processes are robust to hypothesising after the results have become available.
Reliable science with e-values, thus, still requires us to pre-register the hypotheses (but not
the sampling plan) of our confirmatory analyses up front.

Anytime-valid tests overcome the classical trade-off between flexibility in data col-
lection and type I error control forced onto researchers by classical methods. Whereas type
I error control cannot be guaranteed when p-values are monitored, e-values can be tracked
continuously throughout data collection. The restrictions imposed by classical methods are
unhelpful and, in our opinion, can frustrate researchers in their pursuit of uncovering truths
about the world. With e-values, our aim is to simplify statistical practice, not to complicate
it. Achieving science that is both reproducible and generalisable requires effort, but this
effort should not be devoted to futilely maintaining an outdated predetermined sampling
plan method, especially since e-values eliminate the need for it.

If monitoring of the test is genuinely impossible and the test is destined for a singular
execution, sequential methods may lose their efficacy compared to classical p-value methods,
as was seen in Section [3.2] The phenomenon we observed there for the ¢-test holds for many
other models (e.g. the logrank test (Ter Schure et al., 2024)) or contingency tables (Turner
et al.,[2024))) as well: to obtain a desired power, one needs less data than in a classical test
on average, but one needs more in the worst-case (namely, nplan ). Nonetheless, we strongly
advocate for the use of F-process methods in individual studies as well, given their flexibility.
The case for e-value methods is even stronger in reproducibility studies such as Many Labs
2, where studies are repeated many times. Then the Law of Large Numbers kicks in and
the average, rather than the worst-case, will determine what happens: One can be almost
sure that the total amount of data needed over the studies is substantially less than with
classical tests. The same holds for meta-analyses, for which e-values are particularly useful
(Ter Schure et al., |[2022): one can define a meta-analytical e-value that safely combines the
evidence as the data from multiple studies accrue, ensuring type I error control even when
a study triggers replication attempts, regardless of the sample sizes within each study. But
this aspect is beyond the scope of this paper: While a more detailed exploration of e-values
in meta-analysis is currently underway, here, we concentrated on E-processes for individual
studies, to which they already bring ample advantages.
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Appendix A
Likelihood Ratios Are E-Processes
To verify Property (iii) for likelihood ratios, we exploit the fact that the null model is
simple, the law of total probability, and that a realised stopping time of N = m corresponds
to outcomes z(") belonging to some (measurable) set B,,. Firstly, we can write

LRy := i 1{N =m}LRn, (A1)

m=1

where 1 {N =m} =1 if the stopping time realises m, and zero otherwise. In other words,
LRy equals LR,,, whenever N = m as one would expect. The law of total probability allows
us to compute the expectation Ep,[LRy] in two steps: The integral over the outcomes of
X (™) conditioned on the event {N =m} and a (green) expectation Ep, pertaining to the
outcomes of N, that is,

Ep,[LRn] = Ez, | Ep,[ i 1{N =m} LRy, | {N = m}]| (A2)
m=1

Ep, | 11{N m} Ep, [LRyp [{N = m}]] (A3)

- iE%[l{N m} B, [LRyu | {N = m}]]. (A4)

1

3
Il

For Eq. we took 1{N =m} out of the inner integral, because it is a function of the
conditioning event {N = m}. For Eq. we use the fact that we can swap sums and
expectations of non-negative functions.

As before, the expectation Ep,[LRy, |{N = m}] defines an integral. However, by
conditioning on N = m the possible outcomes of length m becomes restricted. As an
example, we consider the z-test with variance known to be one, thus, z := \/nz,, where Z,
is the sample mean of n data points. As an example stopping time we take the first time
N at which p < 0.05, which corresponds to observing a z-score smaller than —1.96 or larger

than 1.96, or equivalently, |Z,| > 1'—\/956. The event N = m is equivalent to data sequences

(™ = (21,...,2,,) with sample means |7;| < 1\/9_6 for j =1,...,m— 1, otherwise m would

L. 96 , otherwise we would not have stopped at time

not be the first time to stop, and |Z,| >
m. We refer to all outcomes correspondlng to this restriction as the event B,,. In general,
we can identify {N =m} with an event By,.

Continuing from Eq. , and exploiting the fact that LR,, is a ratio of densities
that can be factorised via conditioning, we have that

Epo[LRN] = 3 x| 1{ B} Ep[LRy | B]| (A5)

=

EPO[l{BW} Bnm ;0((I(m)||3m)]P’O((Bm)po(m( | Br)dat )] (AG)

—_

NIV AL

B, [1{Bpn} 28 [ q@™) By)dat™ |, (A7)

3
n
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Evidence against the null quantified by the E—process as a function of sample size
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Figure A1l

Evidence against the null quantified by the E-process as a function of sample size. Inde-
pendent of the sample size n an observed z = 1.96 corresponds to p < a = 0.05, thus, a null
rejection. On the other hand, the evidence as quantified by the z-likelihood ratio, that is,
the e-value, would first increase and then decrease as a function of n.

where again a function of the conditioning event can be taken out of the expectation. Using
the fact that B,, corresponds exactly to the outcomes of X™ given B,, we can conclude
that the inner integral equals one, that is,

Bro[LRy] = 35 e [1{Bn} (55| = X0 B [1 N = m} 5205 (A8)
:ZQ(N:m)zlsl. (A9)
m=1

The last equality follows from the fact that the chance of N taking on any outcome is one,
in particular, under the measure Q corresponding to the numerator of LR,,.

As an aside, the p < 0.05 rule corresponds to the fixed threshold on the z-scale, that
is, |2| > 1.96. This is completely different than rejecting at a fixed threshold 1/a at the
likelihood ratio scale, as illustrated in Fig. For those interested in the technicalities,
the defining Property (iii) of E-processes also holds for any non-negative supermartingales.
For supermartingales, this property is known as Doob’s optional stopping theorem. In other
words, non-negative supermartingales are E-processes. However, not every E-processes is
a non-negative supermartingale, see Ruf et al. (2023) for the details.

Appendix B
The mom t-Test F-Process Based on the Gaussian Non-Local Moment Prior
In Pérez-Ortiz et al. (2024) it was shown that for any savi test defining parameter d5 the 7-
likelihood ratio Eq. is an FE-process. As such, for any prior 7(ds) the following mixture
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also defines an E-process

Buyo(t) = [ TpGn(6,)dss, (B1)

The computations of Gronau et al. (2020, Appendix A) and Ly et al. (2018) show that the
use of a symmetric 7(ds) simplifies the computations, as then

_”5_5? 2 2
Eng,y(t):fe 2 1Fy (VTH’ %; Vitzn(s;s)ﬂ(és)d(ss, (B2)

where for |z| < 1 the confluent hypergeometric function is given by 1F;(a;c;z) :=

Yo ((Z))Z ‘j—:, where (a); =I'(a+17)/T'(a) is known the Pochhammer symbol for a rising facto-
rial, and where I'(a) is the gamma function at a, and I'(n+ 1) = n! for n e N.

We can express E,, ., (t) analytically if we use a Gaussian kth moment prior density
introduced by Johnson and Rossell (2010)) for 7(ds), which is given by

5% exp(-52) w0 : 1
m(8) = Tg)zq, where py(2) = foo 6% eXP(—g_g) = (29)k+2r(k + %), (B3)

is the normalisation constant of the prior. The computations follow from Gradshteyn and
Ryzhik (2007, p. 822) yielding

1
—k-= 2
Eng () = (1+159) * 208y (51 k+ 33 33 Jhn i), (B4)
where for |z| < 1 the Gaussian hypergeometric function is given by oF; (a,b;c; 2) =
Yoo %j—: An Euler transform and the plugin k£ = 1 then yields the result shown
in Box

Appendix C
Growth-Rate Optimal in Worst Case E-Processes

There is a choice between E-processes, because the collection £(Mj) of all E-processes
for a null model My is vast. This collection includes some specifically constructed Bayes
factors, but £(M) also contains the pathological E-process that always yields the e-value
1, irrespective of the data. This pathological E-process will never commit a type I error,
but it will also not reject the null when it is blatantly false. A good FE-process should
therefore also indicate (large) evidence against the null, whenever it is false. For efficient
inference the evidence should grow quickly, as we can then reject the null and conclude the
experiment sooner, leading to resource conservation.

To measure the rate of growth, we fix a stopping time N and write Ex (M) for the
collection of E-variables for data samples collected with stopping time N. Suppose that £
and E}? are two E-variables with savi test defining tuning parameters s1, sz, respectively.
We prefer £} over 77, if under the alternative we expect EY} to, say, triple, whereas E}?
to only double the evidence against the null at time N. In general, we prefer inference
based on E}} over B2, if the rate of growth of E}} exceeds that of E3?, which we capture
using the logarithmic function. That is, if Ep, [log(Ey)] > Ep, [log(E7)], where 1 is the
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data-governing effect size. If data are indeed generated under Ps,, then the most preferred
En from Ex(My) is the one that achieves the maximurrB

Ep, [log(En)]. C1
By dhax ps, [log(En)] (C1)

The FE-variable that attains this maximum is referred to as the growth-rate optimal FE-
variable for Pg, .

Now we return to E-processes and we fix an alternative d;. For every stopping time
N, any E-process F gives us an E-variable E. In general, there do not always exist FE-
processes E such that, for arbitrary stopping time N, we have that Ey is the growth-rate
optimal FE-variable relative to the alternative ;. But for certain regular models, this is
possible after all: In that case, we have a growth-rate optimal E-process denoted by E°!.
Further regularity conditions show that E° yields the lowest possible expected stopping
time under the alternative Ps, (Ter Schure et al., |[2024)), if we stop at the first n for which
ES > 1/a.

Due to the lack of knowledge regarding Ps, we cannot specify the growth-rate op-
timal E-variable. A possible workaround involves a minimal clinically relevant effect size
Omin and the adoption of a conservative approach. The so-called grow, that is, growth-rate
optimal in worst case, F-variable then solves the following maximin problem

ma min [E loo(E . o
ENEgNE?MO)wmmIZél P‘Sl[ g( N)] ( )

As before, the maximum is over the collection Ex (M) of all E-variables for data samples
collected with stopping time N, and the minimum (the worst-case part) is over all data-
generating distributions Ps, with |d1| > [0min|- For models that have the so-called monotone
likelihood property, the problem gets easier as the data-governing d; is further away from
the null. For these models the inner minimum of Eq. is attained by &1 = dmin and
simplifies to the problem Eq. . This is the case for t-tests.

The work of Pérez-Ortiz et al., |2024] implies that for ¢-tests the optimal two-sided
grow F-variable depends only on dmin, but not on n. More specifically, the two-sided grow
E-process corresponds to the t-likelihood ratio with point priors at +dmin, see Fig.

The optimal mom test can be found by solving Eq. with 01 = dmin, but with the
candidate set of F-variables restricted to only the mom E-variables. The optimal solution is
asymptotically identified for v large and by differentiation with respect to guom, and leads
t0 Gmom = 02;,/2 as specified in the main text. For the optimal eGauss and eCauchy we
similarly restrict the search space of candidate E-variables to the respective class.

Appendix D
A Computationally Convenient (Two-Sided) Two-Sample t-Test
To construct a Bayes factor we need to select priors to marginalise out the free parameters.
Recall that the alternative model has three free parameters, say, 1, u2, o, whereas the null

1370 ease exposition, we write maximum, but it should in fact be the supremum. Similarly, below we write
a minimum, which should actually be an infimum. The differences between the maximum/minimum and
supremum/infimum matters substantially, see Griinwald et al. (2024) and Larsson et al. (2025) for further
details.
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model only has two, say, pg,0. The priors m (1, p2,0) and m(pg,0) used to construct
Bayes factor in favour of the alternative over the null for data (™ is then

(n)
BF1o(z(™) := [ ][] fz |Mla,u2>0')71'1(#17#2,0')d,u1d;$2do" 1)

f/ f(l"(n) |N9’H970)7T0(M970)d/‘gd‘7

A computational convenient choice is to exploit conjugacy, which states that normal like-
lihoods/densities N (2™ | 1, o) for data 2(™) combined with normal priors lead to normal
posteriors. For the two-sample t-test, we have under the alternative the likelihood function

@ | 1,2, 0) = N (@ |, )N (@2 | i, ) (b2)

2 2
Ny Zk:l VESE

=(2m) 2 0™e 202  exp ( - ﬁ[m(m - 501)2 +ng(p2 - f2)2])> (D3)

where n; = ni + ngy is the combined sample size, and Ty, si, v, = ni — 1 the sample mean,
the sample variance and the degrees of freedom for group k£ = 1,2. The likelihood under the
null is f(2(" |1, g2, o) with the means set to the grand mean, i.e. py = po = fig.

For the computationally convenient Bayes factor we use a (conditional) normal
prior on g, pi2, fig, that is, pg|o ~ /\/(ak,ngQ) for £k = 1,2 in the alternative model and
pglo ~ N(ag,goo?) in the null model. Combined with a conjugate inverse root gamma

1
prior on o, i.e. 0 ~ Gamma 2 (o, ), we have 8 parameters to play with. The resulting
Bayes factor is then given by

n4
_ _ ) +oo
n1ny n4 (n1x1+n2w2

T —70)2 N2 2 2
BF = 1+n.go e (F1-T2) g o ne a0)“+2fo+ Loy VkSk (D4)
10;7 - (1+n1g1)(1+n2g2) n1(z1-a1)? na(zz2-az)? N ) s
+ +2B0+X 51 VES,

1+ny g1 l+n292

where n = (a1, g1, a2, g2, ag, 9o, A, By ) collects the tuning parameters. For the example we
choose a1 = 3.98,¢91 = 0.03,a2 = 4.02,g2 = 0.05,a0 = 4,90 = 2 and a, = 2 and 3, = 1/2. An
interpretation for this choice is as follows: If there is a difference in the population mean
then it is relatively small with population means at 3.98 and 4.02 and this knowledge is
quite concentrated. On the other hand, if the null holds true, then the shared mean is 4
and the prior is relatively spread out. This conjugate Bayes factor is implemented as the
function conjugateBfTStat () in the safestats package.
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